Properties

Label 513.2.f.h.406.3
Level $513$
Weight $2$
Character 513.406
Analytic conductor $4.096$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(163,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,1,0,-3,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 8x^{10} - x^{9} + 41x^{8} - 7x^{7} + 91x^{6} + 9x^{5} + 135x^{4} - 12x^{3} + 45x^{2} + 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 406.3
Root \(-0.216506 + 0.375000i\) of defining polynomial
Character \(\chi\) \(=\) 513.406
Dual form 513.2.f.h.163.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.216506 - 0.375000i) q^{2} +(0.906250 - 1.56967i) q^{4} +(-1.01591 - 1.75962i) q^{5} -1.15054 q^{7} -1.65086 q^{8} +(-0.439904 + 0.761936i) q^{10} -3.69231 q^{11} +(0.690484 - 1.19595i) q^{13} +(0.249099 + 0.431453i) q^{14} +(-1.45508 - 2.52027i) q^{16} +(-1.17158 - 2.02924i) q^{17} +(-0.532593 + 4.32624i) q^{19} -3.68269 q^{20} +(0.799408 + 1.38462i) q^{22} +(-1.26501 + 2.19107i) q^{23} +(0.435835 - 0.754889i) q^{25} -0.597977 q^{26} +(-1.04268 + 1.80597i) q^{28} +(-0.309936 + 0.536825i) q^{29} +0.936857 q^{31} +(-2.28093 + 3.95068i) q^{32} +(-0.507311 + 0.878688i) q^{34} +(1.16885 + 2.02451i) q^{35} +3.82480 q^{37} +(1.73765 - 0.736936i) q^{38} +(1.67713 + 2.90488i) q^{40} +(-2.51591 - 4.35769i) q^{41} +(-5.09449 - 8.82391i) q^{43} +(-3.34615 + 5.79571i) q^{44} +1.09553 q^{46} +(1.27868 - 2.21475i) q^{47} -5.67626 q^{49} -0.377445 q^{50} +(-1.25150 - 2.16767i) q^{52} +(5.39033 - 9.33633i) q^{53} +(3.75107 + 6.49704i) q^{55} +1.89938 q^{56} +0.268412 q^{58} +(-3.76726 - 6.52508i) q^{59} +(3.55352 - 6.15488i) q^{61} +(-0.202835 - 0.351321i) q^{62} -3.84497 q^{64} -2.80589 q^{65} +(-1.62526 + 2.81503i) q^{67} -4.24699 q^{68} +(0.506127 - 0.876638i) q^{70} +(3.97238 + 6.88037i) q^{71} +(2.37756 + 4.11806i) q^{73} +(-0.828094 - 1.43430i) q^{74} +(6.30811 + 4.75665i) q^{76} +4.24815 q^{77} +(-2.90796 - 5.03674i) q^{79} +(-2.95647 + 5.12076i) q^{80} +(-1.08942 + 1.88694i) q^{82} +16.8621 q^{83} +(-2.38046 + 4.12308i) q^{85} +(-2.20598 + 3.82087i) q^{86} +6.09549 q^{88} +(5.57992 - 9.66470i) q^{89} +(-0.794430 + 1.37599i) q^{91} +(2.29284 + 3.97131i) q^{92} -1.10737 q^{94} +(8.15359 - 3.45793i) q^{95} +(-5.51591 - 9.55384i) q^{97} +(1.22895 + 2.12860i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - 3 q^{4} + 5 q^{5} + 2 q^{7} - 12 q^{8} + q^{10} - 4 q^{11} - 5 q^{13} + 2 q^{14} + 3 q^{16} + 10 q^{17} - 9 q^{19} - 2 q^{20} - 4 q^{22} + 3 q^{23} - 5 q^{25} - 2 q^{26} - 2 q^{28} - 6 q^{29}+ \cdots - 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.216506 0.375000i −0.153093 0.265165i 0.779270 0.626688i \(-0.215590\pi\)
−0.932363 + 0.361523i \(0.882257\pi\)
\(3\) 0 0
\(4\) 0.906250 1.56967i 0.453125 0.784836i
\(5\) −1.01591 1.75962i −0.454331 0.786924i 0.544319 0.838879i \(-0.316788\pi\)
−0.998649 + 0.0519545i \(0.983455\pi\)
\(6\) 0 0
\(7\) −1.15054 −0.434863 −0.217432 0.976076i \(-0.569768\pi\)
−0.217432 + 0.976076i \(0.569768\pi\)
\(8\) −1.65086 −0.583668
\(9\) 0 0
\(10\) −0.439904 + 0.761936i −0.139110 + 0.240945i
\(11\) −3.69231 −1.11327 −0.556636 0.830756i \(-0.687908\pi\)
−0.556636 + 0.830756i \(0.687908\pi\)
\(12\) 0 0
\(13\) 0.690484 1.19595i 0.191506 0.331698i −0.754244 0.656595i \(-0.771996\pi\)
0.945749 + 0.324897i \(0.105330\pi\)
\(14\) 0.249099 + 0.431453i 0.0665746 + 0.115311i
\(15\) 0 0
\(16\) −1.45508 2.52027i −0.363770 0.630067i
\(17\) −1.17158 2.02924i −0.284151 0.492164i 0.688252 0.725472i \(-0.258378\pi\)
−0.972403 + 0.233308i \(0.925045\pi\)
\(18\) 0 0
\(19\) −0.532593 + 4.32624i −0.122185 + 0.992507i
\(20\) −3.68269 −0.823475
\(21\) 0 0
\(22\) 0.799408 + 1.38462i 0.170434 + 0.295201i
\(23\) −1.26501 + 2.19107i −0.263774 + 0.456869i −0.967242 0.253858i \(-0.918301\pi\)
0.703468 + 0.710727i \(0.251634\pi\)
\(24\) 0 0
\(25\) 0.435835 0.754889i 0.0871671 0.150978i
\(26\) −0.597977 −0.117273
\(27\) 0 0
\(28\) −1.04268 + 1.80597i −0.197047 + 0.341296i
\(29\) −0.309936 + 0.536825i −0.0575536 + 0.0996858i −0.893367 0.449328i \(-0.851663\pi\)
0.835813 + 0.549014i \(0.184997\pi\)
\(30\) 0 0
\(31\) 0.936857 0.168264 0.0841322 0.996455i \(-0.473188\pi\)
0.0841322 + 0.996455i \(0.473188\pi\)
\(32\) −2.28093 + 3.95068i −0.403215 + 0.698389i
\(33\) 0 0
\(34\) −0.507311 + 0.878688i −0.0870031 + 0.150694i
\(35\) 1.16885 + 2.02451i 0.197572 + 0.342204i
\(36\) 0 0
\(37\) 3.82480 0.628794 0.314397 0.949292i \(-0.398198\pi\)
0.314397 + 0.949292i \(0.398198\pi\)
\(38\) 1.73765 0.736936i 0.281884 0.119547i
\(39\) 0 0
\(40\) 1.67713 + 2.90488i 0.265178 + 0.459302i
\(41\) −2.51591 4.35769i −0.392920 0.680557i 0.599913 0.800065i \(-0.295202\pi\)
−0.992833 + 0.119508i \(0.961868\pi\)
\(42\) 0 0
\(43\) −5.09449 8.82391i −0.776902 1.34563i −0.933719 0.358007i \(-0.883457\pi\)
0.156817 0.987628i \(-0.449877\pi\)
\(44\) −3.34615 + 5.79571i −0.504452 + 0.873736i
\(45\) 0 0
\(46\) 1.09553 0.161528
\(47\) 1.27868 2.21475i 0.186515 0.323054i −0.757571 0.652753i \(-0.773614\pi\)
0.944086 + 0.329699i \(0.106947\pi\)
\(48\) 0 0
\(49\) −5.67626 −0.810894
\(50\) −0.377445 −0.0533787
\(51\) 0 0
\(52\) −1.25150 2.16767i −0.173552 0.300601i
\(53\) 5.39033 9.33633i 0.740419 1.28244i −0.211885 0.977295i \(-0.567960\pi\)
0.952304 0.305149i \(-0.0987064\pi\)
\(54\) 0 0
\(55\) 3.75107 + 6.49704i 0.505794 + 0.876061i
\(56\) 1.89938 0.253816
\(57\) 0 0
\(58\) 0.268412 0.0352443
\(59\) −3.76726 6.52508i −0.490455 0.849493i 0.509485 0.860480i \(-0.329836\pi\)
−0.999940 + 0.0109866i \(0.996503\pi\)
\(60\) 0 0
\(61\) 3.55352 6.15488i 0.454982 0.788052i −0.543705 0.839276i \(-0.682979\pi\)
0.998687 + 0.0512241i \(0.0163123\pi\)
\(62\) −0.202835 0.351321i −0.0257601 0.0446179i
\(63\) 0 0
\(64\) −3.84497 −0.480621
\(65\) −2.80589 −0.348028
\(66\) 0 0
\(67\) −1.62526 + 2.81503i −0.198557 + 0.343911i −0.948061 0.318089i \(-0.896959\pi\)
0.749504 + 0.662000i \(0.230292\pi\)
\(68\) −4.24699 −0.515024
\(69\) 0 0
\(70\) 0.506127 0.876638i 0.0604938 0.104778i
\(71\) 3.97238 + 6.88037i 0.471435 + 0.816550i 0.999466 0.0326754i \(-0.0104028\pi\)
−0.528031 + 0.849225i \(0.677069\pi\)
\(72\) 0 0
\(73\) 2.37756 + 4.11806i 0.278273 + 0.481982i 0.970956 0.239260i \(-0.0769048\pi\)
−0.692683 + 0.721242i \(0.743571\pi\)
\(74\) −0.828094 1.43430i −0.0962640 0.166734i
\(75\) 0 0
\(76\) 6.30811 + 4.75665i 0.723590 + 0.545625i
\(77\) 4.24815 0.484122
\(78\) 0 0
\(79\) −2.90796 5.03674i −0.327171 0.566677i 0.654778 0.755821i \(-0.272762\pi\)
−0.981949 + 0.189144i \(0.939429\pi\)
\(80\) −2.95647 + 5.12076i −0.330543 + 0.572518i
\(81\) 0 0
\(82\) −1.08942 + 1.88694i −0.120307 + 0.208377i
\(83\) 16.8621 1.85086 0.925428 0.378924i \(-0.123706\pi\)
0.925428 + 0.378924i \(0.123706\pi\)
\(84\) 0 0
\(85\) −2.38046 + 4.12308i −0.258197 + 0.447210i
\(86\) −2.20598 + 3.82087i −0.237877 + 0.412015i
\(87\) 0 0
\(88\) 6.09549 0.649781
\(89\) 5.57992 9.66470i 0.591470 1.02446i −0.402565 0.915392i \(-0.631881\pi\)
0.994035 0.109065i \(-0.0347855\pi\)
\(90\) 0 0
\(91\) −0.794430 + 1.37599i −0.0832789 + 0.144243i
\(92\) 2.29284 + 3.97131i 0.239045 + 0.414038i
\(93\) 0 0
\(94\) −1.10737 −0.114217
\(95\) 8.15359 3.45793i 0.836540 0.354776i
\(96\) 0 0
\(97\) −5.51591 9.55384i −0.560056 0.970046i −0.997491 0.0707955i \(-0.977446\pi\)
0.437435 0.899250i \(-0.355887\pi\)
\(98\) 1.22895 + 2.12860i 0.124142 + 0.215021i
\(99\) 0 0
\(100\) −0.789952 1.36824i −0.0789952 0.136824i
\(101\) −4.00224 + 6.93209i −0.398238 + 0.689769i −0.993509 0.113757i \(-0.963712\pi\)
0.595271 + 0.803525i \(0.297045\pi\)
\(102\) 0 0
\(103\) −13.5972 −1.33977 −0.669884 0.742466i \(-0.733656\pi\)
−0.669884 + 0.742466i \(0.733656\pi\)
\(104\) −1.13989 + 1.97435i −0.111776 + 0.193601i
\(105\) 0 0
\(106\) −4.66817 −0.453412
\(107\) 11.7261 1.13360 0.566802 0.823854i \(-0.308181\pi\)
0.566802 + 0.823854i \(0.308181\pi\)
\(108\) 0 0
\(109\) 6.86196 + 11.8853i 0.657256 + 1.13840i 0.981323 + 0.192367i \(0.0616164\pi\)
−0.324067 + 0.946034i \(0.605050\pi\)
\(110\) 1.62426 2.81330i 0.154867 0.268238i
\(111\) 0 0
\(112\) 1.67413 + 2.89967i 0.158190 + 0.273993i
\(113\) 16.9792 1.59727 0.798635 0.601815i \(-0.205556\pi\)
0.798635 + 0.601815i \(0.205556\pi\)
\(114\) 0 0
\(115\) 5.14058 0.479362
\(116\) 0.561759 + 0.972994i 0.0521580 + 0.0903403i
\(117\) 0 0
\(118\) −1.63127 + 2.82544i −0.150171 + 0.260103i
\(119\) 1.34796 + 2.33473i 0.123567 + 0.214024i
\(120\) 0 0
\(121\) 2.63314 0.239376
\(122\) −3.07744 −0.278619
\(123\) 0 0
\(124\) 0.849026 1.47056i 0.0762448 0.132060i
\(125\) −11.9302 −1.06707
\(126\) 0 0
\(127\) 5.47243 9.47853i 0.485600 0.841084i −0.514263 0.857632i \(-0.671935\pi\)
0.999863 + 0.0165487i \(0.00526784\pi\)
\(128\) 5.39432 + 9.34323i 0.476795 + 0.825833i
\(129\) 0 0
\(130\) 0.607493 + 1.05221i 0.0532807 + 0.0922848i
\(131\) 11.2352 + 19.4600i 0.981628 + 1.70023i 0.656057 + 0.754711i \(0.272223\pi\)
0.325571 + 0.945518i \(0.394444\pi\)
\(132\) 0 0
\(133\) 0.612770 4.97751i 0.0531339 0.431605i
\(134\) 1.40752 0.121591
\(135\) 0 0
\(136\) 1.93412 + 3.35000i 0.165850 + 0.287260i
\(137\) 3.30172 5.71875i 0.282085 0.488586i −0.689813 0.723988i \(-0.742307\pi\)
0.971898 + 0.235402i \(0.0756406\pi\)
\(138\) 0 0
\(139\) 7.69199 13.3229i 0.652426 1.13003i −0.330107 0.943944i \(-0.607085\pi\)
0.982533 0.186091i \(-0.0595819\pi\)
\(140\) 4.23708 0.358099
\(141\) 0 0
\(142\) 1.72009 2.97929i 0.144347 0.250016i
\(143\) −2.54948 + 4.41583i −0.213198 + 0.369270i
\(144\) 0 0
\(145\) 1.25947 0.104594
\(146\) 1.02952 1.78317i 0.0852033 0.147576i
\(147\) 0 0
\(148\) 3.46623 6.00368i 0.284922 0.493499i
\(149\) −1.01811 1.76342i −0.0834067 0.144465i 0.821304 0.570490i \(-0.193247\pi\)
−0.904711 + 0.426025i \(0.859913\pi\)
\(150\) 0 0
\(151\) −13.4553 −1.09498 −0.547490 0.836812i \(-0.684417\pi\)
−0.547490 + 0.836812i \(0.684417\pi\)
\(152\) 0.879237 7.14202i 0.0713155 0.579294i
\(153\) 0 0
\(154\) −0.919751 1.59306i −0.0741157 0.128372i
\(155\) −0.951766 1.64851i −0.0764477 0.132411i
\(156\) 0 0
\(157\) 3.92767 + 6.80293i 0.313463 + 0.542933i 0.979109 0.203334i \(-0.0651777\pi\)
−0.665647 + 0.746267i \(0.731844\pi\)
\(158\) −1.25918 + 2.18097i −0.100175 + 0.173509i
\(159\) 0 0
\(160\) 9.26891 0.732772
\(161\) 1.45545 2.52091i 0.114705 0.198676i
\(162\) 0 0
\(163\) 6.47140 0.506879 0.253440 0.967351i \(-0.418438\pi\)
0.253440 + 0.967351i \(0.418438\pi\)
\(164\) −9.12019 −0.712167
\(165\) 0 0
\(166\) −3.65075 6.32329i −0.283353 0.490782i
\(167\) 8.59411 14.8854i 0.665032 1.15187i −0.314245 0.949342i \(-0.601751\pi\)
0.979277 0.202527i \(-0.0649154\pi\)
\(168\) 0 0
\(169\) 5.54646 + 9.60676i 0.426651 + 0.738981i
\(170\) 2.06154 0.158113
\(171\) 0 0
\(172\) −18.4675 −1.40814
\(173\) −4.67341 8.09458i −0.355313 0.615420i 0.631859 0.775084i \(-0.282292\pi\)
−0.987171 + 0.159664i \(0.948959\pi\)
\(174\) 0 0
\(175\) −0.501446 + 0.868530i −0.0379058 + 0.0656547i
\(176\) 5.37260 + 9.30561i 0.404975 + 0.701437i
\(177\) 0 0
\(178\) −4.83235 −0.362200
\(179\) −13.0265 −0.973643 −0.486822 0.873501i \(-0.661844\pi\)
−0.486822 + 0.873501i \(0.661844\pi\)
\(180\) 0 0
\(181\) 6.33448 10.9716i 0.470838 0.815515i −0.528606 0.848867i \(-0.677285\pi\)
0.999444 + 0.0333523i \(0.0106183\pi\)
\(182\) 0.687996 0.0509977
\(183\) 0 0
\(184\) 2.08836 3.61715i 0.153956 0.266660i
\(185\) −3.88567 6.73018i −0.285680 0.494813i
\(186\) 0 0
\(187\) 4.32585 + 7.49259i 0.316338 + 0.547913i
\(188\) −2.31762 4.01423i −0.169030 0.292768i
\(189\) 0 0
\(190\) −3.06203 2.30893i −0.222143 0.167507i
\(191\) −19.6919 −1.42486 −0.712429 0.701744i \(-0.752405\pi\)
−0.712429 + 0.701744i \(0.752405\pi\)
\(192\) 0 0
\(193\) −0.766445 1.32752i −0.0551699 0.0955571i 0.837121 0.547017i \(-0.184237\pi\)
−0.892291 + 0.451460i \(0.850903\pi\)
\(194\) −2.38846 + 4.13694i −0.171481 + 0.297015i
\(195\) 0 0
\(196\) −5.14411 + 8.90986i −0.367436 + 0.636418i
\(197\) 4.01965 0.286388 0.143194 0.989695i \(-0.454263\pi\)
0.143194 + 0.989695i \(0.454263\pi\)
\(198\) 0 0
\(199\) −3.76763 + 6.52572i −0.267080 + 0.462596i −0.968107 0.250539i \(-0.919392\pi\)
0.701026 + 0.713135i \(0.252726\pi\)
\(200\) −0.719504 + 1.24622i −0.0508766 + 0.0881208i
\(201\) 0 0
\(202\) 3.46604 0.243870
\(203\) 0.356594 0.617638i 0.0250280 0.0433497i
\(204\) 0 0
\(205\) −5.11191 + 8.85408i −0.357031 + 0.618396i
\(206\) 2.94387 + 5.09893i 0.205109 + 0.355260i
\(207\) 0 0
\(208\) −4.01883 −0.278656
\(209\) 1.96650 15.9738i 0.136025 1.10493i
\(210\) 0 0
\(211\) 1.59567 + 2.76379i 0.109851 + 0.190267i 0.915710 0.401841i \(-0.131629\pi\)
−0.805859 + 0.592108i \(0.798296\pi\)
\(212\) −9.76998 16.9221i −0.671005 1.16221i
\(213\) 0 0
\(214\) −2.53877 4.39728i −0.173547 0.300592i
\(215\) −10.3511 + 17.9287i −0.705941 + 1.22273i
\(216\) 0 0
\(217\) −1.07789 −0.0731720
\(218\) 2.97131 5.14647i 0.201243 0.348563i
\(219\) 0 0
\(220\) 13.5976 0.916752
\(221\) −3.23584 −0.217666
\(222\) 0 0
\(223\) 7.19749 + 12.4664i 0.481980 + 0.834813i 0.999786 0.0206844i \(-0.00658453\pi\)
−0.517806 + 0.855498i \(0.673251\pi\)
\(224\) 2.62430 4.54542i 0.175343 0.303704i
\(225\) 0 0
\(226\) −3.67611 6.36721i −0.244531 0.423540i
\(227\) 8.88794 0.589914 0.294957 0.955511i \(-0.404695\pi\)
0.294957 + 0.955511i \(0.404695\pi\)
\(228\) 0 0
\(229\) −6.83849 −0.451900 −0.225950 0.974139i \(-0.572549\pi\)
−0.225950 + 0.974139i \(0.572549\pi\)
\(230\) −1.11297 1.92772i −0.0733870 0.127110i
\(231\) 0 0
\(232\) 0.511661 0.886223i 0.0335922 0.0581834i
\(233\) −0.518688 0.898394i −0.0339804 0.0588557i 0.848535 0.529139i \(-0.177485\pi\)
−0.882515 + 0.470283i \(0.844152\pi\)
\(234\) 0 0
\(235\) −5.19614 −0.338959
\(236\) −13.6563 −0.888950
\(237\) 0 0
\(238\) 0.583682 1.01097i 0.0378345 0.0655312i
\(239\) −18.5956 −1.20285 −0.601426 0.798929i \(-0.705400\pi\)
−0.601426 + 0.798929i \(0.705400\pi\)
\(240\) 0 0
\(241\) −13.3437 + 23.1120i −0.859545 + 1.48878i 0.0128186 + 0.999918i \(0.495920\pi\)
−0.872364 + 0.488858i \(0.837414\pi\)
\(242\) −0.570091 0.987426i −0.0366468 0.0634742i
\(243\) 0 0
\(244\) −6.44076 11.1557i −0.412328 0.714172i
\(245\) 5.76659 + 9.98803i 0.368414 + 0.638112i
\(246\) 0 0
\(247\) 4.80623 + 3.62416i 0.305813 + 0.230599i
\(248\) −1.54662 −0.0982105
\(249\) 0 0
\(250\) 2.58297 + 4.47384i 0.163361 + 0.282950i
\(251\) −1.40097 + 2.42655i −0.0884286 + 0.153163i −0.906847 0.421460i \(-0.861518\pi\)
0.818418 + 0.574623i \(0.194851\pi\)
\(252\) 0 0
\(253\) 4.67082 8.09010i 0.293652 0.508620i
\(254\) −4.73927 −0.297368
\(255\) 0 0
\(256\) −1.50916 + 2.61395i −0.0943226 + 0.163372i
\(257\) −3.80716 + 6.59420i −0.237484 + 0.411335i −0.959992 0.280028i \(-0.909656\pi\)
0.722507 + 0.691363i \(0.242989\pi\)
\(258\) 0 0
\(259\) −4.40059 −0.273439
\(260\) −2.54284 + 4.40433i −0.157700 + 0.273145i
\(261\) 0 0
\(262\) 4.86500 8.42643i 0.300561 0.520587i
\(263\) 7.64649 + 13.2441i 0.471503 + 0.816667i 0.999469 0.0325986i \(-0.0103783\pi\)
−0.527965 + 0.849266i \(0.677045\pi\)
\(264\) 0 0
\(265\) −21.9045 −1.34558
\(266\) −1.99924 + 0.847875i −0.122581 + 0.0519865i
\(267\) 0 0
\(268\) 2.94578 + 5.10224i 0.179942 + 0.311669i
\(269\) −15.0110 25.9998i −0.915237 1.58524i −0.806554 0.591161i \(-0.798670\pi\)
−0.108683 0.994076i \(-0.534663\pi\)
\(270\) 0 0
\(271\) 6.22818 + 10.7875i 0.378335 + 0.655296i 0.990820 0.135186i \(-0.0431633\pi\)
−0.612485 + 0.790482i \(0.709830\pi\)
\(272\) −3.40949 + 5.90542i −0.206731 + 0.358068i
\(273\) 0 0
\(274\) −2.85938 −0.172741
\(275\) −1.60924 + 2.78728i −0.0970407 + 0.168079i
\(276\) 0 0
\(277\) 11.0756 0.665466 0.332733 0.943021i \(-0.392029\pi\)
0.332733 + 0.943021i \(0.392029\pi\)
\(278\) −6.66146 −0.399528
\(279\) 0 0
\(280\) −1.92961 3.34218i −0.115316 0.199734i
\(281\) −8.34817 + 14.4595i −0.498010 + 0.862579i −0.999997 0.00229612i \(-0.999269\pi\)
0.501987 + 0.864875i \(0.332602\pi\)
\(282\) 0 0
\(283\) −12.9129 22.3658i −0.767593 1.32951i −0.938865 0.344286i \(-0.888121\pi\)
0.171272 0.985224i \(-0.445212\pi\)
\(284\) 14.3999 0.854476
\(285\) 0 0
\(286\) 2.20791 0.130557
\(287\) 2.89466 + 5.01370i 0.170866 + 0.295949i
\(288\) 0 0
\(289\) 5.75478 9.96757i 0.338516 0.586328i
\(290\) −0.272684 0.472302i −0.0160126 0.0277346i
\(291\) 0 0
\(292\) 8.61867 0.504369
\(293\) −27.9386 −1.63219 −0.816094 0.577919i \(-0.803865\pi\)
−0.816094 + 0.577919i \(0.803865\pi\)
\(294\) 0 0
\(295\) −7.65442 + 13.2578i −0.445658 + 0.771902i
\(296\) −6.31422 −0.367006
\(297\) 0 0
\(298\) −0.440854 + 0.763581i −0.0255380 + 0.0442331i
\(299\) 1.74694 + 3.02580i 0.101028 + 0.174986i
\(300\) 0 0
\(301\) 5.86142 + 10.1523i 0.337846 + 0.585167i
\(302\) 2.91317 + 5.04576i 0.167634 + 0.290351i
\(303\) 0 0
\(304\) 11.6783 4.95274i 0.669794 0.284059i
\(305\) −14.4403 −0.826850
\(306\) 0 0
\(307\) −6.26206 10.8462i −0.357394 0.619025i 0.630130 0.776489i \(-0.283001\pi\)
−0.987525 + 0.157464i \(0.949668\pi\)
\(308\) 3.84989 6.66820i 0.219368 0.379956i
\(309\) 0 0
\(310\) −0.412127 + 0.713825i −0.0234072 + 0.0405425i
\(311\) −24.4906 −1.38873 −0.694366 0.719622i \(-0.744315\pi\)
−0.694366 + 0.719622i \(0.744315\pi\)
\(312\) 0 0
\(313\) 10.2334 17.7247i 0.578424 1.00186i −0.417236 0.908798i \(-0.637001\pi\)
0.995660 0.0930622i \(-0.0296655\pi\)
\(314\) 1.70073 2.94576i 0.0959779 0.166239i
\(315\) 0 0
\(316\) −10.5414 −0.592998
\(317\) 10.9981 19.0492i 0.617713 1.06991i −0.372189 0.928157i \(-0.621393\pi\)
0.989902 0.141753i \(-0.0452739\pi\)
\(318\) 0 0
\(319\) 1.14438 1.98212i 0.0640729 0.110977i
\(320\) 3.90616 + 6.76567i 0.218361 + 0.378212i
\(321\) 0 0
\(322\) −1.26046 −0.0702425
\(323\) 9.40297 3.98779i 0.523195 0.221887i
\(324\) 0 0
\(325\) −0.601875 1.04248i −0.0333860 0.0578263i
\(326\) −1.40110 2.42677i −0.0775997 0.134407i
\(327\) 0 0
\(328\) 4.15343 + 7.19394i 0.229335 + 0.397219i
\(329\) −1.47118 + 2.54816i −0.0811087 + 0.140484i
\(330\) 0 0
\(331\) 32.5077 1.78679 0.893393 0.449275i \(-0.148318\pi\)
0.893393 + 0.449275i \(0.148318\pi\)
\(332\) 15.2813 26.4679i 0.838669 1.45262i
\(333\) 0 0
\(334\) −7.44271 −0.407247
\(335\) 6.60449 0.360842
\(336\) 0 0
\(337\) −1.28184 2.22022i −0.0698264 0.120943i 0.828998 0.559251i \(-0.188911\pi\)
−0.898825 + 0.438308i \(0.855578\pi\)
\(338\) 2.40169 4.15985i 0.130635 0.226266i
\(339\) 0 0
\(340\) 4.31458 + 7.47308i 0.233991 + 0.405284i
\(341\) −3.45916 −0.187324
\(342\) 0 0
\(343\) 14.5845 0.787491
\(344\) 8.41029 + 14.5671i 0.453453 + 0.785403i
\(345\) 0 0
\(346\) −2.02365 + 3.50506i −0.108792 + 0.188433i
\(347\) 4.67453 + 8.09652i 0.250942 + 0.434644i 0.963785 0.266679i \(-0.0859264\pi\)
−0.712844 + 0.701323i \(0.752593\pi\)
\(348\) 0 0
\(349\) 9.97826 0.534124 0.267062 0.963679i \(-0.413947\pi\)
0.267062 + 0.963679i \(0.413947\pi\)
\(350\) 0.434265 0.0232125
\(351\) 0 0
\(352\) 8.42189 14.5871i 0.448888 0.777497i
\(353\) −27.7171 −1.47523 −0.737617 0.675219i \(-0.764049\pi\)
−0.737617 + 0.675219i \(0.764049\pi\)
\(354\) 0 0
\(355\) 8.07121 13.9797i 0.428375 0.741967i
\(356\) −10.1136 17.5173i −0.536020 0.928413i
\(357\) 0 0
\(358\) 2.82031 + 4.88492i 0.149058 + 0.258176i
\(359\) 17.1967 + 29.7856i 0.907609 + 1.57202i 0.817376 + 0.576104i \(0.195428\pi\)
0.0902324 + 0.995921i \(0.471239\pi\)
\(360\) 0 0
\(361\) −18.4327 4.60825i −0.970142 0.242539i
\(362\) −5.48582 −0.288328
\(363\) 0 0
\(364\) 1.43990 + 2.49399i 0.0754715 + 0.130720i
\(365\) 4.83080 8.36719i 0.252856 0.437959i
\(366\) 0 0
\(367\) −16.1477 + 27.9686i −0.842901 + 1.45995i 0.0445302 + 0.999008i \(0.485821\pi\)
−0.887431 + 0.460940i \(0.847512\pi\)
\(368\) 7.36278 0.383811
\(369\) 0 0
\(370\) −1.68255 + 2.91425i −0.0874714 + 0.151505i
\(371\) −6.20180 + 10.7418i −0.321981 + 0.557688i
\(372\) 0 0
\(373\) −35.2967 −1.82759 −0.913796 0.406173i \(-0.866863\pi\)
−0.913796 + 0.406173i \(0.866863\pi\)
\(374\) 1.87315 3.24439i 0.0968582 0.167763i
\(375\) 0 0
\(376\) −2.11093 + 3.65624i −0.108863 + 0.188556i
\(377\) 0.428011 + 0.741337i 0.0220437 + 0.0381808i
\(378\) 0 0
\(379\) 24.0421 1.23496 0.617479 0.786587i \(-0.288154\pi\)
0.617479 + 0.786587i \(0.288154\pi\)
\(380\) 1.96137 15.9322i 0.100616 0.817304i
\(381\) 0 0
\(382\) 4.26343 + 7.38448i 0.218136 + 0.377823i
\(383\) −3.35932 5.81852i −0.171653 0.297312i 0.767345 0.641235i \(-0.221578\pi\)
−0.938998 + 0.343923i \(0.888244\pi\)
\(384\) 0 0
\(385\) −4.31576 7.47511i −0.219951 0.380967i
\(386\) −0.331881 + 0.574834i −0.0168923 + 0.0292583i
\(387\) 0 0
\(388\) −19.9952 −1.01510
\(389\) 18.2243 31.5655i 0.924010 1.60043i 0.130864 0.991400i \(-0.458225\pi\)
0.793146 0.609032i \(-0.208442\pi\)
\(390\) 0 0
\(391\) 5.92828 0.299806
\(392\) 9.37071 0.473292
\(393\) 0 0
\(394\) −0.870280 1.50737i −0.0438441 0.0759402i
\(395\) −5.90848 + 10.2338i −0.297288 + 0.514918i
\(396\) 0 0
\(397\) −2.52467 4.37285i −0.126709 0.219467i 0.795690 0.605703i \(-0.207108\pi\)
−0.922400 + 0.386236i \(0.873775\pi\)
\(398\) 3.26286 0.163553
\(399\) 0 0
\(400\) −2.53670 −0.126835
\(401\) 5.57189 + 9.65080i 0.278247 + 0.481938i 0.970949 0.239286i \(-0.0769133\pi\)
−0.692702 + 0.721224i \(0.743580\pi\)
\(402\) 0 0
\(403\) 0.646885 1.12044i 0.0322236 0.0558129i
\(404\) 7.25407 + 12.5644i 0.360903 + 0.625103i
\(405\) 0 0
\(406\) −0.308819 −0.0153264
\(407\) −14.1223 −0.700019
\(408\) 0 0
\(409\) −2.46203 + 4.26436i −0.121740 + 0.210859i −0.920454 0.390851i \(-0.872181\pi\)
0.798714 + 0.601711i \(0.205514\pi\)
\(410\) 4.42704 0.218636
\(411\) 0 0
\(412\) −12.3224 + 21.3431i −0.607082 + 1.05150i
\(413\) 4.33438 + 7.50737i 0.213281 + 0.369414i
\(414\) 0 0
\(415\) −17.1304 29.6708i −0.840901 1.45648i
\(416\) 3.14989 + 5.45577i 0.154436 + 0.267491i
\(417\) 0 0
\(418\) −6.41594 + 2.72099i −0.313814 + 0.133088i
\(419\) 14.1877 0.693116 0.346558 0.938029i \(-0.387350\pi\)
0.346558 + 0.938029i \(0.387350\pi\)
\(420\) 0 0
\(421\) −8.50727 14.7350i −0.414619 0.718141i 0.580770 0.814068i \(-0.302752\pi\)
−0.995388 + 0.0959271i \(0.969418\pi\)
\(422\) 0.690947 1.19675i 0.0336348 0.0582571i
\(423\) 0 0
\(424\) −8.89869 + 15.4130i −0.432159 + 0.748521i
\(425\) −2.04247 −0.0990744
\(426\) 0 0
\(427\) −4.08847 + 7.08144i −0.197855 + 0.342695i
\(428\) 10.6268 18.4061i 0.513664 0.889692i
\(429\) 0 0
\(430\) 8.96434 0.432299
\(431\) 0.974953 1.68867i 0.0469618 0.0813403i −0.841589 0.540118i \(-0.818379\pi\)
0.888551 + 0.458778i \(0.151713\pi\)
\(432\) 0 0
\(433\) 14.6802 25.4268i 0.705483 1.22193i −0.261034 0.965330i \(-0.584063\pi\)
0.966517 0.256603i \(-0.0826032\pi\)
\(434\) 0.233370 + 0.404209i 0.0112021 + 0.0194027i
\(435\) 0 0
\(436\) 24.8746 1.19128
\(437\) −8.80535 6.63970i −0.421217 0.317620i
\(438\) 0 0
\(439\) 5.35767 + 9.27976i 0.255708 + 0.442899i 0.965087 0.261928i \(-0.0843582\pi\)
−0.709380 + 0.704826i \(0.751025\pi\)
\(440\) −6.19249 10.7257i −0.295216 0.511328i
\(441\) 0 0
\(442\) 0.700580 + 1.21344i 0.0333232 + 0.0577175i
\(443\) −9.91739 + 17.1774i −0.471190 + 0.816124i −0.999457 0.0329538i \(-0.989509\pi\)
0.528267 + 0.849078i \(0.322842\pi\)
\(444\) 0 0
\(445\) −22.6749 −1.07489
\(446\) 3.11661 5.39812i 0.147576 0.255608i
\(447\) 0 0
\(448\) 4.42379 0.209005
\(449\) 25.1068 1.18486 0.592431 0.805621i \(-0.298168\pi\)
0.592431 + 0.805621i \(0.298168\pi\)
\(450\) 0 0
\(451\) 9.28953 + 16.0899i 0.437427 + 0.757646i
\(452\) 15.3874 26.6518i 0.723763 1.25359i
\(453\) 0 0
\(454\) −1.92430 3.33298i −0.0903117 0.156424i
\(455\) 3.22829 0.151345
\(456\) 0 0
\(457\) 10.1416 0.474404 0.237202 0.971460i \(-0.423770\pi\)
0.237202 + 0.971460i \(0.423770\pi\)
\(458\) 1.48058 + 2.56443i 0.0691828 + 0.119828i
\(459\) 0 0
\(460\) 4.65865 8.06903i 0.217211 0.376220i
\(461\) 10.2604 + 17.7715i 0.477873 + 0.827700i 0.999678 0.0253645i \(-0.00807463\pi\)
−0.521805 + 0.853065i \(0.674741\pi\)
\(462\) 0 0
\(463\) 20.1006 0.934155 0.467077 0.884216i \(-0.345307\pi\)
0.467077 + 0.884216i \(0.345307\pi\)
\(464\) 1.80392 0.0837450
\(465\) 0 0
\(466\) −0.224598 + 0.389016i −0.0104043 + 0.0180208i
\(467\) 13.4426 0.622048 0.311024 0.950402i \(-0.399328\pi\)
0.311024 + 0.950402i \(0.399328\pi\)
\(468\) 0 0
\(469\) 1.86993 3.23881i 0.0863451 0.149554i
\(470\) 1.12500 + 1.94855i 0.0518922 + 0.0898800i
\(471\) 0 0
\(472\) 6.21922 + 10.7720i 0.286263 + 0.495822i
\(473\) 18.8104 + 32.5806i 0.864904 + 1.49806i
\(474\) 0 0
\(475\) 3.03371 + 2.28758i 0.139196 + 0.104961i
\(476\) 4.88634 0.223965
\(477\) 0 0
\(478\) 4.02607 + 6.97336i 0.184148 + 0.318954i
\(479\) −0.662849 + 1.14809i −0.0302864 + 0.0524575i −0.880771 0.473542i \(-0.842975\pi\)
0.850485 + 0.525999i \(0.176309\pi\)
\(480\) 0 0
\(481\) 2.64096 4.57428i 0.120418 0.208569i
\(482\) 11.5560 0.526362
\(483\) 0 0
\(484\) 2.38628 4.13316i 0.108467 0.187871i
\(485\) −11.2074 + 19.4118i −0.508901 + 0.881443i
\(486\) 0 0
\(487\) −5.65193 −0.256113 −0.128057 0.991767i \(-0.540874\pi\)
−0.128057 + 0.991767i \(0.540874\pi\)
\(488\) −5.86637 + 10.1609i −0.265558 + 0.459960i
\(489\) 0 0
\(490\) 2.49701 4.32494i 0.112803 0.195381i
\(491\) 20.7321 + 35.9090i 0.935626 + 1.62055i 0.773514 + 0.633779i \(0.218497\pi\)
0.162112 + 0.986772i \(0.448169\pi\)
\(492\) 0 0
\(493\) 1.45246 0.0654157
\(494\) 0.318478 2.58699i 0.0143290 0.116394i
\(495\) 0 0
\(496\) −1.36320 2.36113i −0.0612095 0.106018i
\(497\) −4.57039 7.91615i −0.205010 0.355088i
\(498\) 0 0
\(499\) 0.164582 + 0.285064i 0.00736769 + 0.0127612i 0.869686 0.493606i \(-0.164321\pi\)
−0.862318 + 0.506367i \(0.830988\pi\)
\(500\) −10.8118 + 18.7265i −0.483517 + 0.837476i
\(501\) 0 0
\(502\) 1.21328 0.0541512
\(503\) 9.08741 15.7399i 0.405188 0.701806i −0.589156 0.808020i \(-0.700539\pi\)
0.994343 + 0.106214i \(0.0338728\pi\)
\(504\) 0 0
\(505\) 16.2637 0.723727
\(506\) −4.04505 −0.179824
\(507\) 0 0
\(508\) −9.91879 17.1798i −0.440075 0.762232i
\(509\) 2.15475 3.73214i 0.0955076 0.165424i −0.814313 0.580426i \(-0.802886\pi\)
0.909820 + 0.415002i \(0.136219\pi\)
\(510\) 0 0
\(511\) −2.73548 4.73799i −0.121011 0.209597i
\(512\) 22.8842 1.01135
\(513\) 0 0
\(514\) 3.29710 0.145429
\(515\) 13.8135 + 23.9258i 0.608698 + 1.05430i
\(516\) 0 0
\(517\) −4.72130 + 8.17753i −0.207642 + 0.359647i
\(518\) 0.952756 + 1.65022i 0.0418617 + 0.0725065i
\(519\) 0 0
\(520\) 4.63214 0.203133
\(521\) −36.6688 −1.60649 −0.803245 0.595649i \(-0.796895\pi\)
−0.803245 + 0.595649i \(0.796895\pi\)
\(522\) 0 0
\(523\) −1.86705 + 3.23382i −0.0816402 + 0.141405i −0.903955 0.427628i \(-0.859349\pi\)
0.822314 + 0.569033i \(0.192683\pi\)
\(524\) 40.7278 1.77920
\(525\) 0 0
\(526\) 3.31103 5.73487i 0.144368 0.250052i
\(527\) −1.09761 1.90111i −0.0478125 0.0828137i
\(528\) 0 0
\(529\) 8.29948 + 14.3751i 0.360847 + 0.625005i
\(530\) 4.74246 + 8.21418i 0.205999 + 0.356801i
\(531\) 0 0
\(532\) −7.25774 5.47272i −0.314663 0.237272i
\(533\) −6.94879 −0.300986
\(534\) 0 0
\(535\) −11.9127 20.6334i −0.515031 0.892059i
\(536\) 2.68308 4.64722i 0.115891 0.200729i
\(537\) 0 0
\(538\) −6.49996 + 11.2583i −0.280233 + 0.485378i
\(539\) 20.9585 0.902746
\(540\) 0 0
\(541\) −10.2951 + 17.8316i −0.442620 + 0.766641i −0.997883 0.0650344i \(-0.979284\pi\)
0.555263 + 0.831675i \(0.312618\pi\)
\(542\) 2.69688 4.67114i 0.115841 0.200643i
\(543\) 0 0
\(544\) 10.6892 0.458296
\(545\) 13.9423 24.1488i 0.597223 1.03442i
\(546\) 0 0
\(547\) −7.42876 + 12.8670i −0.317631 + 0.550153i −0.979993 0.199031i \(-0.936221\pi\)
0.662362 + 0.749184i \(0.269554\pi\)
\(548\) −5.98437 10.3652i −0.255640 0.442781i
\(549\) 0 0
\(550\) 1.39364 0.0594251
\(551\) −2.15736 1.62677i −0.0919067 0.0693025i
\(552\) 0 0
\(553\) 3.34573 + 5.79497i 0.142275 + 0.246427i
\(554\) −2.39793 4.15333i −0.101878 0.176458i
\(555\) 0 0
\(556\) −13.9417 24.1478i −0.591261 1.02409i
\(557\) 6.31888 10.9446i 0.267740 0.463739i −0.700538 0.713615i \(-0.747057\pi\)
0.968278 + 0.249876i \(0.0803900\pi\)
\(558\) 0 0
\(559\) −14.0707 −0.595125
\(560\) 3.40154 5.89164i 0.143741 0.248967i
\(561\) 0 0
\(562\) 7.22973 0.304968
\(563\) 13.9053 0.586041 0.293020 0.956106i \(-0.405340\pi\)
0.293020 + 0.956106i \(0.405340\pi\)
\(564\) 0 0
\(565\) −17.2494 29.8769i −0.725689 1.25693i
\(566\) −5.59146 + 9.68469i −0.235026 + 0.407078i
\(567\) 0 0
\(568\) −6.55785 11.3585i −0.275161 0.476594i
\(569\) −11.5682 −0.484963 −0.242482 0.970156i \(-0.577961\pi\)
−0.242482 + 0.970156i \(0.577961\pi\)
\(570\) 0 0
\(571\) 20.2650 0.848062 0.424031 0.905648i \(-0.360615\pi\)
0.424031 + 0.905648i \(0.360615\pi\)
\(572\) 4.62093 + 8.00369i 0.193211 + 0.334651i
\(573\) 0 0
\(574\) 1.25343 2.17100i 0.0523170 0.0906156i
\(575\) 1.10268 + 1.90989i 0.0459848 + 0.0796479i
\(576\) 0 0
\(577\) −19.0894 −0.794702 −0.397351 0.917667i \(-0.630070\pi\)
−0.397351 + 0.917667i \(0.630070\pi\)
\(578\) −4.98379 −0.207298
\(579\) 0 0
\(580\) 1.14140 1.97696i 0.0473939 0.0820887i
\(581\) −19.4005 −0.804869
\(582\) 0 0
\(583\) −19.9028 + 34.4726i −0.824289 + 1.42771i
\(584\) −3.92503 6.79835i −0.162419 0.281318i
\(585\) 0 0
\(586\) 6.04888 + 10.4770i 0.249877 + 0.432799i
\(587\) 11.7053 + 20.2741i 0.483127 + 0.836801i 0.999812 0.0193744i \(-0.00616745\pi\)
−0.516685 + 0.856176i \(0.672834\pi\)
\(588\) 0 0
\(589\) −0.498963 + 4.05307i −0.0205594 + 0.167004i
\(590\) 6.62893 0.272909
\(591\) 0 0
\(592\) −5.56538 9.63953i −0.228736 0.396182i
\(593\) 8.18930 14.1843i 0.336294 0.582479i −0.647438 0.762118i \(-0.724160\pi\)
0.983733 + 0.179639i \(0.0574930\pi\)
\(594\) 0 0
\(595\) 2.73881 4.74377i 0.112280 0.194475i
\(596\) −3.69064 −0.151175
\(597\) 0 0
\(598\) 0.756449 1.31021i 0.0309335 0.0535784i
\(599\) −9.08296 + 15.7322i −0.371120 + 0.642798i −0.989738 0.142893i \(-0.954359\pi\)
0.618618 + 0.785692i \(0.287693\pi\)
\(600\) 0 0
\(601\) −7.00570 −0.285768 −0.142884 0.989739i \(-0.545638\pi\)
−0.142884 + 0.989739i \(0.545638\pi\)
\(602\) 2.53807 4.39606i 0.103444 0.179170i
\(603\) 0 0
\(604\) −12.1939 + 21.1205i −0.496163 + 0.859380i
\(605\) −2.67504 4.63331i −0.108756 0.188371i
\(606\) 0 0
\(607\) 10.8546 0.440576 0.220288 0.975435i \(-0.429300\pi\)
0.220288 + 0.975435i \(0.429300\pi\)
\(608\) −15.8768 11.9719i −0.643889 0.485527i
\(609\) 0 0
\(610\) 3.12642 + 5.41512i 0.126585 + 0.219252i
\(611\) −1.76582 3.05849i −0.0714375 0.123733i
\(612\) 0 0
\(613\) 24.4865 + 42.4119i 0.989002 + 1.71300i 0.622589 + 0.782549i \(0.286081\pi\)
0.366413 + 0.930452i \(0.380586\pi\)
\(614\) −2.71155 + 4.69654i −0.109429 + 0.189537i
\(615\) 0 0
\(616\) −7.01310 −0.282566
\(617\) 18.4730 31.9962i 0.743697 1.28812i −0.207104 0.978319i \(-0.566404\pi\)
0.950801 0.309802i \(-0.100263\pi\)
\(618\) 0 0
\(619\) −38.4572 −1.54573 −0.772863 0.634573i \(-0.781176\pi\)
−0.772863 + 0.634573i \(0.781176\pi\)
\(620\) −3.45015 −0.138561
\(621\) 0 0
\(622\) 5.30236 + 9.18396i 0.212605 + 0.368243i
\(623\) −6.41992 + 11.1196i −0.257209 + 0.445498i
\(624\) 0 0
\(625\) 9.94092 + 17.2182i 0.397637 + 0.688727i
\(626\) −8.86236 −0.354211
\(627\) 0 0
\(628\) 14.2378 0.568151
\(629\) −4.48108 7.76145i −0.178672 0.309469i
\(630\) 0 0
\(631\) −4.05213 + 7.01849i −0.161313 + 0.279402i −0.935340 0.353751i \(-0.884906\pi\)
0.774027 + 0.633153i \(0.218239\pi\)
\(632\) 4.80064 + 8.31496i 0.190959 + 0.330751i
\(633\) 0 0
\(634\) −9.52460 −0.378270
\(635\) −22.2381 −0.882492
\(636\) 0 0
\(637\) −3.91936 + 6.78854i −0.155291 + 0.268972i
\(638\) −0.991061 −0.0392365
\(639\) 0 0
\(640\) 10.9603 18.9838i 0.433245 0.750403i
\(641\) −4.91135 8.50671i −0.193987 0.335995i 0.752581 0.658500i \(-0.228809\pi\)
−0.946568 + 0.322505i \(0.895475\pi\)
\(642\) 0 0
\(643\) −13.5129 23.4050i −0.532895 0.923002i −0.999262 0.0384104i \(-0.987771\pi\)
0.466367 0.884592i \(-0.345563\pi\)
\(644\) −2.63800 4.56915i −0.103952 0.180050i
\(645\) 0 0
\(646\) −3.53123 2.66273i −0.138934 0.104764i
\(647\) −43.8308 −1.72316 −0.861582 0.507618i \(-0.830526\pi\)
−0.861582 + 0.507618i \(0.830526\pi\)
\(648\) 0 0
\(649\) 13.9099 + 24.0926i 0.546010 + 0.945718i
\(650\) −0.260619 + 0.451406i −0.0102223 + 0.0177056i
\(651\) 0 0
\(652\) 5.86471 10.1580i 0.229680 0.397817i
\(653\) −26.9486 −1.05458 −0.527291 0.849685i \(-0.676792\pi\)
−0.527291 + 0.849685i \(0.676792\pi\)
\(654\) 0 0
\(655\) 22.8281 39.5394i 0.891967 1.54493i
\(656\) −7.32170 + 12.6816i −0.285865 + 0.495132i
\(657\) 0 0
\(658\) 1.27408 0.0496687
\(659\) 18.9668 32.8514i 0.738840 1.27971i −0.214178 0.976795i \(-0.568707\pi\)
0.953018 0.302914i \(-0.0979593\pi\)
\(660\) 0 0
\(661\) 6.18965 10.7208i 0.240749 0.416990i −0.720179 0.693789i \(-0.755940\pi\)
0.960928 + 0.276799i \(0.0892735\pi\)
\(662\) −7.03813 12.1904i −0.273545 0.473793i
\(663\) 0 0
\(664\) −27.8370 −1.08028
\(665\) −9.38103 + 3.97849i −0.363781 + 0.154279i
\(666\) 0 0
\(667\) −0.784146 1.35818i −0.0303623 0.0525890i
\(668\) −15.5768 26.9798i −0.602685 1.04388i
\(669\) 0 0
\(670\) −1.42992 2.47669i −0.0552424 0.0956827i
\(671\) −13.1207 + 22.7257i −0.506519 + 0.877317i
\(672\) 0 0
\(673\) 46.7887 1.80357 0.901786 0.432183i \(-0.142256\pi\)
0.901786 + 0.432183i \(0.142256\pi\)
\(674\) −0.555054 + 0.961382i −0.0213799 + 0.0370310i
\(675\) 0 0
\(676\) 20.1059 0.773305
\(677\) 34.4443 1.32380 0.661901 0.749591i \(-0.269750\pi\)
0.661901 + 0.749591i \(0.269750\pi\)
\(678\) 0 0
\(679\) 6.34628 + 10.9921i 0.243548 + 0.421837i
\(680\) 3.92981 6.80663i 0.150701 0.261022i
\(681\) 0 0
\(682\) 0.748931 + 1.29719i 0.0286780 + 0.0496718i
\(683\) 15.5415 0.594679 0.297339 0.954772i \(-0.403901\pi\)
0.297339 + 0.954772i \(0.403901\pi\)
\(684\) 0 0
\(685\) −13.4171 −0.512640
\(686\) −3.15765 5.46921i −0.120560 0.208815i
\(687\) 0 0
\(688\) −14.8258 + 25.6790i −0.565227 + 0.979001i
\(689\) −7.44388 12.8932i −0.283589 0.491191i
\(690\) 0 0
\(691\) −11.0740 −0.421273 −0.210637 0.977564i \(-0.567554\pi\)
−0.210637 + 0.977564i \(0.567554\pi\)
\(692\) −16.9411 −0.644004
\(693\) 0 0
\(694\) 2.02413 3.50589i 0.0768349 0.133082i
\(695\) −31.2576 −1.18567
\(696\) 0 0
\(697\) −5.89521 + 10.2108i −0.223297 + 0.386762i
\(698\) −2.16036 3.74185i −0.0817707 0.141631i
\(699\) 0 0
\(700\) 0.908871 + 1.57421i 0.0343521 + 0.0594996i
\(701\) 10.7354 + 18.5943i 0.405471 + 0.702296i 0.994376 0.105906i \(-0.0337744\pi\)
−0.588906 + 0.808202i \(0.700441\pi\)
\(702\) 0 0
\(703\) −2.03706 + 16.5470i −0.0768293 + 0.624082i
\(704\) 14.1968 0.535063
\(705\) 0 0
\(706\) 6.00094 + 10.3939i 0.225848 + 0.391181i
\(707\) 4.60474 7.97565i 0.173179 0.299955i
\(708\) 0 0
\(709\) 24.1154 41.7691i 0.905674 1.56867i 0.0856629 0.996324i \(-0.472699\pi\)
0.820011 0.572348i \(-0.193967\pi\)
\(710\) −6.98987 −0.262325
\(711\) 0 0
\(712\) −9.21167 + 15.9551i −0.345222 + 0.597942i
\(713\) −1.18514 + 2.05272i −0.0443837 + 0.0768749i
\(714\) 0 0
\(715\) 10.3602 0.387450
\(716\) −11.8052 + 20.4473i −0.441182 + 0.764150i
\(717\) 0 0
\(718\) 7.44640 12.8976i 0.277897 0.481332i
\(719\) −19.2396 33.3240i −0.717517 1.24278i −0.961981 0.273117i \(-0.911945\pi\)
0.244464 0.969658i \(-0.421388\pi\)
\(720\) 0 0
\(721\) 15.6441 0.582616
\(722\) 2.26270 + 7.90997i 0.0842090 + 0.294379i
\(723\) 0 0
\(724\) −11.4812 19.8861i −0.426697 0.739061i
\(725\) 0.270162 + 0.467934i 0.0100336 + 0.0173786i
\(726\) 0 0
\(727\) −21.6478 37.4950i −0.802872 1.39061i −0.917719 0.397231i \(-0.869971\pi\)
0.114847 0.993383i \(-0.463362\pi\)
\(728\) 1.31149 2.27157i 0.0486072 0.0841901i
\(729\) 0 0
\(730\) −4.18360 −0.154842
\(731\) −11.9372 + 20.6759i −0.441515 + 0.764727i
\(732\) 0 0
\(733\) −13.5020 −0.498708 −0.249354 0.968412i \(-0.580218\pi\)
−0.249354 + 0.968412i \(0.580218\pi\)
\(734\) 13.9843 0.516170
\(735\) 0 0
\(736\) −5.77081 9.99534i −0.212715 0.368433i
\(737\) 6.00095 10.3940i 0.221048 0.382866i
\(738\) 0 0
\(739\) 4.89763 + 8.48294i 0.180162 + 0.312050i 0.941936 0.335793i \(-0.109004\pi\)
−0.761773 + 0.647843i \(0.775671\pi\)
\(740\) −14.0856 −0.517795
\(741\) 0 0
\(742\) 5.37091 0.197172
\(743\) 4.56485 + 7.90655i 0.167468 + 0.290063i 0.937529 0.347907i \(-0.113108\pi\)
−0.770061 + 0.637970i \(0.779774\pi\)
\(744\) 0 0
\(745\) −2.06862 + 3.58296i −0.0757884 + 0.131269i
\(746\) 7.64195 + 13.2362i 0.279792 + 0.484614i
\(747\) 0 0
\(748\) 15.6812 0.573362
\(749\) −13.4913 −0.492962
\(750\) 0 0
\(751\) 5.21254 9.02838i 0.190208 0.329450i −0.755111 0.655597i \(-0.772417\pi\)
0.945319 + 0.326147i \(0.105750\pi\)
\(752\) −7.44234 −0.271394
\(753\) 0 0
\(754\) 0.185334 0.321009i 0.00674948 0.0116904i
\(755\) 13.6695 + 23.6762i 0.497483 + 0.861667i
\(756\) 0 0
\(757\) −3.89716 6.75008i −0.141645 0.245336i 0.786471 0.617627i \(-0.211906\pi\)
−0.928116 + 0.372291i \(0.878572\pi\)
\(758\) −5.20526 9.01577i −0.189064 0.327468i
\(759\) 0 0
\(760\) −13.4604 + 5.70856i −0.488261 + 0.207071i
\(761\) −36.7419 −1.33189 −0.665947 0.745999i \(-0.731972\pi\)
−0.665947 + 0.745999i \(0.731972\pi\)
\(762\) 0 0
\(763\) −7.89496 13.6745i −0.285817 0.495049i
\(764\) −17.8458 + 30.9099i −0.645639 + 1.11828i
\(765\) 0 0
\(766\) −1.45463 + 2.51949i −0.0525579 + 0.0910329i
\(767\) −10.4049 −0.375700
\(768\) 0 0
\(769\) −4.07642 + 7.06056i −0.146999 + 0.254610i −0.930117 0.367263i \(-0.880295\pi\)
0.783118 + 0.621874i \(0.213628\pi\)
\(770\) −1.86878 + 3.23682i −0.0673461 + 0.116647i
\(771\) 0 0
\(772\) −2.77836 −0.0999955
\(773\) −9.24856 + 16.0190i −0.332648 + 0.576163i −0.983030 0.183444i \(-0.941275\pi\)
0.650382 + 0.759607i \(0.274609\pi\)
\(774\) 0 0
\(775\) 0.408315 0.707223i 0.0146671 0.0254042i
\(776\) 9.10601 + 15.7721i 0.326887 + 0.566184i
\(777\) 0 0
\(778\) −15.7827 −0.565838
\(779\) 20.1924 8.56357i 0.723467 0.306822i
\(780\) 0 0
\(781\) −14.6673 25.4044i −0.524836 0.909043i
\(782\) −1.28351 2.22311i −0.0458983 0.0794981i
\(783\) 0 0
\(784\) 8.25940 + 14.3057i 0.294978 + 0.510918i
\(785\) 7.98036 13.8224i 0.284831 0.493342i
\(786\) 0 0
\(787\) 16.0647 0.572643 0.286322 0.958134i \(-0.407567\pi\)
0.286322 + 0.958134i \(0.407567\pi\)
\(788\) 3.64281 6.30953i 0.129770 0.224768i
\(789\) 0 0
\(790\) 5.11690 0.182051
\(791\) −19.5353 −0.694595
\(792\) 0 0
\(793\) −4.90730 8.49970i −0.174263 0.301833i
\(794\) −1.09321 + 1.89350i −0.0387967 + 0.0671978i
\(795\) 0 0
\(796\) 6.82883 + 11.8279i 0.242041 + 0.419228i
\(797\) −6.01294 −0.212989 −0.106495 0.994313i \(-0.533963\pi\)
−0.106495 + 0.994313i \(0.533963\pi\)
\(798\) 0 0
\(799\) −5.99235 −0.211994
\(800\) 1.98822 + 3.44370i 0.0702941 + 0.121753i
\(801\) 0 0
\(802\) 2.41270 4.17892i 0.0851954 0.147563i
\(803\) −8.77869 15.2051i −0.309793 0.536578i
\(804\) 0 0
\(805\) −5.91445 −0.208457
\(806\) −0.560219 −0.0197329
\(807\) 0 0
\(808\) 6.60715 11.4439i 0.232439 0.402596i
\(809\) 0.0546010 0.00191967 0.000959834 1.00000i \(-0.499694\pi\)
0.000959834 1.00000i \(0.499694\pi\)
\(810\) 0 0
\(811\) 13.0470 22.5981i 0.458143 0.793527i −0.540720 0.841203i \(-0.681848\pi\)
0.998863 + 0.0476759i \(0.0151815\pi\)
\(812\) −0.646326 1.11947i −0.0226816 0.0392857i
\(813\) 0 0
\(814\) 3.05758 + 5.29588i 0.107168 + 0.185620i
\(815\) −6.57439 11.3872i −0.230291 0.398875i
\(816\) 0 0
\(817\) 40.8877 17.3404i 1.43048 0.606665i
\(818\) 2.13218 0.0745500
\(819\) 0 0
\(820\) 9.26533 + 16.0480i 0.323559 + 0.560421i
\(821\) −12.2698 + 21.2520i −0.428220 + 0.741699i −0.996715 0.0809878i \(-0.974193\pi\)
0.568495 + 0.822687i \(0.307526\pi\)
\(822\) 0 0
\(823\) −1.95109 + 3.37939i −0.0680108 + 0.117798i −0.898026 0.439943i \(-0.854999\pi\)
0.830015 + 0.557741i \(0.188332\pi\)
\(824\) 22.4470 0.781979
\(825\) 0 0
\(826\) 1.87684 3.25079i 0.0653037 0.113109i
\(827\) 11.1046 19.2337i 0.386145 0.668822i −0.605783 0.795630i \(-0.707140\pi\)
0.991927 + 0.126808i \(0.0404732\pi\)
\(828\) 0 0
\(829\) 40.1536 1.39459 0.697296 0.716784i \(-0.254387\pi\)
0.697296 + 0.716784i \(0.254387\pi\)
\(830\) −7.41770 + 12.8478i −0.257472 + 0.445955i
\(831\) 0 0
\(832\) −2.65489 + 4.59841i −0.0920418 + 0.159421i
\(833\) 6.65021 + 11.5185i 0.230416 + 0.399093i
\(834\) 0 0
\(835\) −34.9235 −1.20858
\(836\) −23.2915 17.5630i −0.805553 0.607430i
\(837\) 0 0
\(838\) −3.07173 5.32040i −0.106111 0.183790i
\(839\) −8.80697 15.2541i −0.304050 0.526631i 0.672999 0.739643i \(-0.265006\pi\)
−0.977049 + 0.213013i \(0.931672\pi\)
\(840\) 0 0
\(841\) 14.3079 + 24.7820i 0.493375 + 0.854551i
\(842\) −3.68376 + 6.38045i −0.126951 + 0.219885i
\(843\) 0 0
\(844\) 5.78431 0.199104
\(845\) 11.2695 19.5193i 0.387681 0.671484i
\(846\) 0 0
\(847\) −3.02953 −0.104096
\(848\) −31.3734 −1.07737
\(849\) 0 0
\(850\) 0.442208 + 0.765927i 0.0151676 + 0.0262711i
\(851\) −4.83843 + 8.38040i −0.165859 + 0.287276i
\(852\) 0 0
\(853\) 1.55952 + 2.70117i 0.0533970 + 0.0924862i 0.891488 0.453044i \(-0.149662\pi\)
−0.838091 + 0.545530i \(0.816328\pi\)
\(854\) 3.54072 0.121161
\(855\) 0 0
\(856\) −19.3581 −0.661647
\(857\) −9.52181 16.4923i −0.325259 0.563365i 0.656306 0.754495i \(-0.272118\pi\)
−0.981565 + 0.191130i \(0.938785\pi\)
\(858\) 0 0
\(859\) 9.75554 16.8971i 0.332855 0.576522i −0.650216 0.759750i \(-0.725321\pi\)
0.983070 + 0.183228i \(0.0586547\pi\)
\(860\) 18.7614 + 32.4957i 0.639759 + 1.10810i
\(861\) 0 0
\(862\) −0.844334 −0.0287581
\(863\) −28.7796 −0.979670 −0.489835 0.871815i \(-0.662943\pi\)
−0.489835 + 0.871815i \(0.662943\pi\)
\(864\) 0 0
\(865\) −9.49557 + 16.4468i −0.322859 + 0.559208i
\(866\) −12.7134 −0.432018
\(867\) 0 0
\(868\) −0.976839 + 1.69194i −0.0331561 + 0.0574280i
\(869\) 10.7371 + 18.5972i 0.364231 + 0.630866i
\(870\) 0 0
\(871\) 2.24443 + 3.88747i 0.0760496 + 0.131722i
\(872\) −11.3281 19.6209i −0.383619 0.664448i
\(873\) 0 0
\(874\) −0.583474 + 4.73954i −0.0197363 + 0.160317i
\(875\) 13.7262 0.464031
\(876\) 0 0
\(877\) 26.2114 + 45.3995i 0.885096 + 1.53303i 0.845604 + 0.533811i \(0.179240\pi\)
0.0394915 + 0.999220i \(0.487426\pi\)
\(878\) 2.31994 4.01825i 0.0782941 0.135609i
\(879\) 0 0
\(880\) 10.9162 18.9074i 0.367985 0.637369i
\(881\) −10.4947 −0.353575 −0.176788 0.984249i \(-0.556571\pi\)
−0.176788 + 0.984249i \(0.556571\pi\)
\(882\) 0 0
\(883\) −20.0002 + 34.6413i −0.673059 + 1.16577i 0.303973 + 0.952681i \(0.401687\pi\)
−0.977032 + 0.213092i \(0.931647\pi\)
\(884\) −2.93248 + 5.07921i −0.0986300 + 0.170832i
\(885\) 0 0
\(886\) 8.58872 0.288544
\(887\) 6.27708 10.8722i 0.210764 0.365054i −0.741190 0.671295i \(-0.765738\pi\)
0.951954 + 0.306242i \(0.0990716\pi\)
\(888\) 0 0
\(889\) −6.29626 + 10.9054i −0.211170 + 0.365757i
\(890\) 4.90925 + 8.50308i 0.164559 + 0.285024i
\(891\) 0 0
\(892\) 26.0909 0.873588
\(893\) 8.90051 + 6.71145i 0.297844 + 0.224590i
\(894\) 0 0
\(895\) 13.2338 + 22.9216i 0.442356 + 0.766183i
\(896\) −6.20638 10.7498i −0.207341 0.359124i
\(897\) 0 0
\(898\) −5.43578 9.41504i −0.181394 0.314184i
\(899\) −0.290365 + 0.502928i −0.00968423 + 0.0167736i
\(900\) 0 0
\(901\) −25.2609 −0.841563
\(902\) 4.02249 6.96715i 0.133934 0.231981i
\(903\) 0 0
\(904\) −28.0303 −0.932275
\(905\) −25.7411 −0.855665
\(906\) 0 0
\(907\) −16.5241 28.6206i −0.548673 0.950330i −0.998366 0.0571467i \(-0.981800\pi\)
0.449692 0.893183i \(-0.351534\pi\)
\(908\) 8.05470 13.9511i 0.267305 0.462985i
\(909\) 0 0
\(910\) −0.698946 1.21061i −0.0231698 0.0401313i
\(911\) 45.8125 1.51784 0.758918 0.651186i \(-0.225728\pi\)
0.758918 + 0.651186i \(0.225728\pi\)
\(912\) 0 0
\(913\) −62.2600 −2.06051
\(914\) −2.19572 3.80310i −0.0726281 0.125795i
\(915\) 0 0
\(916\) −6.19738 + 10.7342i −0.204767 + 0.354667i
\(917\) −12.9266 22.3895i −0.426874 0.739367i
\(918\) 0 0
\(919\) −41.5838 −1.37172 −0.685861 0.727733i \(-0.740574\pi\)
−0.685861 + 0.727733i \(0.740574\pi\)
\(920\) −8.48639 −0.279788
\(921\) 0 0
\(922\) 4.44287 7.69527i 0.146318 0.253430i
\(923\) 10.9715 0.361130
\(924\) 0 0
\(925\) 1.66698 2.88730i 0.0548101 0.0949339i
\(926\) −4.35191 7.53773i −0.143013 0.247705i
\(927\) 0 0
\(928\) −1.41388 2.44892i −0.0464130 0.0803896i
\(929\) 4.29016 + 7.43077i 0.140755 + 0.243796i 0.927781 0.373124i \(-0.121714\pi\)
−0.787026 + 0.616920i \(0.788380\pi\)
\(930\) 0 0
\(931\) 3.02313 24.5568i 0.0990792 0.804818i
\(932\) −1.88024 −0.0615894
\(933\) 0 0
\(934\) −2.91040 5.04097i −0.0952313 0.164945i
\(935\) 8.78939 15.2237i 0.287444 0.497867i
\(936\) 0 0
\(937\) 3.34450 5.79284i 0.109260 0.189244i −0.806211 0.591629i \(-0.798485\pi\)
0.915471 + 0.402385i \(0.131819\pi\)
\(938\) −1.61940 −0.0528754
\(939\) 0 0
\(940\) −4.70900 + 8.15623i −0.153591 + 0.266027i
\(941\) 6.78214 11.7470i 0.221091 0.382942i −0.734048 0.679097i \(-0.762371\pi\)
0.955140 + 0.296156i \(0.0957047\pi\)
\(942\) 0 0
\(943\) 12.7307 0.414568
\(944\) −10.9633 + 18.9890i −0.356825 + 0.618039i
\(945\) 0 0
\(946\) 8.14515 14.1078i 0.264822 0.458685i
\(947\) −13.1474 22.7720i −0.427234 0.739990i 0.569392 0.822066i \(-0.307179\pi\)
−0.996626 + 0.0820754i \(0.973845\pi\)
\(948\) 0 0
\(949\) 6.56668 0.213163
\(950\) 0.201024 1.63292i 0.00652209 0.0529788i
\(951\) 0 0
\(952\) −2.22529 3.85431i −0.0721220 0.124919i
\(953\) 3.79223 + 6.56834i 0.122842 + 0.212769i 0.920888 0.389828i \(-0.127466\pi\)
−0.798045 + 0.602598i \(0.794132\pi\)
\(954\) 0 0
\(955\) 20.0053 + 34.6502i 0.647357 + 1.12126i
\(956\) −16.8523 + 29.1890i −0.545042 + 0.944040i
\(957\) 0 0
\(958\) 0.574044 0.0185465
\(959\) −3.79876 + 6.57965i −0.122669 + 0.212468i
\(960\) 0 0
\(961\) −30.1223 −0.971687
\(962\) −2.28714 −0.0737404
\(963\) 0 0
\(964\) 24.1855 + 41.8905i 0.778963 + 1.34920i
\(965\) −1.55729 + 2.69730i −0.0501308 + 0.0868291i
\(966\) 0 0
\(967\) −1.07288 1.85829i −0.0345016 0.0597584i 0.848259 0.529582i \(-0.177651\pi\)
−0.882761 + 0.469823i \(0.844318\pi\)
\(968\) −4.34694 −0.139716
\(969\) 0 0
\(970\) 9.70589 0.311637
\(971\) −9.55697 16.5532i −0.306698 0.531216i 0.670940 0.741512i \(-0.265891\pi\)
−0.977638 + 0.210295i \(0.932557\pi\)
\(972\) 0 0
\(973\) −8.84994 + 15.3285i −0.283716 + 0.491411i
\(974\) 1.22368 + 2.11947i 0.0392092 + 0.0679123i
\(975\) 0 0
\(976\) −20.6826 −0.662035
\(977\) 45.5157 1.45618 0.728089 0.685483i \(-0.240409\pi\)
0.728089 + 0.685483i \(0.240409\pi\)
\(978\) 0 0
\(979\) −20.6028 + 35.6850i −0.658467 + 1.14050i
\(980\) 20.9039 0.667750
\(981\) 0 0
\(982\) 8.97726 15.5491i 0.286476 0.496191i
\(983\) −8.52072 14.7583i −0.271769 0.470717i 0.697546 0.716540i \(-0.254275\pi\)
−0.969315 + 0.245823i \(0.920942\pi\)
\(984\) 0 0
\(985\) −4.08362 7.07304i −0.130115 0.225366i
\(986\) −0.314468 0.544674i −0.0100147 0.0173460i
\(987\) 0 0
\(988\) 10.0444 4.25981i 0.319554 0.135523i
\(989\) 25.7784 0.819705
\(990\) 0 0
\(991\) 5.64050 + 9.76963i 0.179176 + 0.310343i 0.941599 0.336737i \(-0.109323\pi\)
−0.762422 + 0.647080i \(0.775990\pi\)
\(992\) −2.13690 + 3.70122i −0.0678467 + 0.117514i
\(993\) 0 0
\(994\) −1.97904 + 3.42779i −0.0627712 + 0.108723i
\(995\) 15.3104 0.485371
\(996\) 0 0
\(997\) 26.1792 45.3437i 0.829104 1.43605i −0.0696383 0.997572i \(-0.522185\pi\)
0.898742 0.438478i \(-0.144482\pi\)
\(998\) 0.0712660 0.123436i 0.00225589 0.00390731i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.f.h.406.3 yes 12
3.2 odd 2 513.2.f.f.406.4 yes 12
19.7 even 3 9747.2.a.bl.1.4 6
19.11 even 3 inner 513.2.f.h.163.3 yes 12
19.12 odd 6 9747.2.a.br.1.3 6
57.11 odd 6 513.2.f.f.163.4 12
57.26 odd 6 9747.2.a.bs.1.3 6
57.50 even 6 9747.2.a.bm.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.f.f.163.4 12 57.11 odd 6
513.2.f.f.406.4 yes 12 3.2 odd 2
513.2.f.h.163.3 yes 12 19.11 even 3 inner
513.2.f.h.406.3 yes 12 1.1 even 1 trivial
9747.2.a.bl.1.4 6 19.7 even 3
9747.2.a.bm.1.4 6 57.50 even 6
9747.2.a.br.1.3 6 19.12 odd 6
9747.2.a.bs.1.3 6 57.26 odd 6