Properties

Label 513.2.f.h
Level $513$
Weight $2$
Character orbit 513.f
Analytic conductor $4.096$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(163,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,1,0,-3,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 8x^{10} - x^{9} + 41x^{8} - 7x^{7} + 91x^{6} + 9x^{5} + 135x^{4} - 12x^{3} + 45x^{2} + 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{6} - \beta_1) q^{2} + ( - \beta_{8} + \beta_{3} - \beta_1) q^{4} + ( - \beta_{11} + \beta_{7} + 1) q^{5} + (\beta_{10} + \beta_{2}) q^{7} + (\beta_{10} + \beta_{6} + \beta_{3} - 1) q^{8}+ \cdots + (\beta_{11} + \beta_{10} - 3 \beta_{9} + \cdots - 8) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - 3 q^{4} + 5 q^{5} + 2 q^{7} - 12 q^{8} + q^{10} - 4 q^{11} - 5 q^{13} + 2 q^{14} + 3 q^{16} + 10 q^{17} - 9 q^{19} - 2 q^{20} - 4 q^{22} + 3 q^{23} - 5 q^{25} - 2 q^{26} - 2 q^{28} - 6 q^{29}+ \cdots - 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - x^{11} + 8x^{10} - x^{9} + 41x^{8} - 7x^{7} + 91x^{6} + 9x^{5} + 135x^{4} - 12x^{3} + 45x^{2} + 9x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 29682 \nu^{11} - 128524 \nu^{10} - 145321 \nu^{9} - 915818 \nu^{8} - 1810514 \nu^{7} + \cdots + 5891559 ) / 4197747 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 59825 \nu^{11} - 7498 \nu^{10} - 421642 \nu^{9} - 379953 \nu^{8} - 2547549 \nu^{7} + \cdots + 6303789 ) / 4197747 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 190049 \nu^{11} + 526361 \nu^{10} - 1996285 \nu^{9} + 2915957 \nu^{8} - 8819761 \nu^{7} + \cdots + 10085472 ) / 12593241 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 284569 \nu^{11} + 249956 \nu^{10} + 840215 \nu^{9} + 4696613 \nu^{8} + 4130102 \nu^{7} + \cdots + 9284058 ) / 12593241 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 101739 \nu^{11} - 59825 \nu^{10} + 746589 \nu^{9} + 223208 \nu^{8} + 4014554 \nu^{7} + \cdots + 1176054 ) / 4197747 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 392018 \nu^{11} - 697235 \nu^{10} + 3315619 \nu^{9} - 2631785 \nu^{8} + 15403114 \nu^{7} + \cdots - 11700747 ) / 12593241 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 478819 \nu^{11} - 1214995 \nu^{10} + 4391471 \nu^{9} - 5933194 \nu^{8} + 18762566 \nu^{7} + \cdots - 1743174 ) / 12593241 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 207857 \nu^{11} + 350255 \nu^{10} - 1805715 \nu^{9} + 1596591 \nu^{8} - 8795535 \nu^{7} + \cdots + 6745266 ) / 4197747 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 448870 \nu^{11} + 306623 \nu^{10} - 3311303 \nu^{9} - 736087 \nu^{8} - 17525221 \nu^{7} + \cdots - 7986312 ) / 4197747 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 1963853 \nu^{11} - 1874807 \nu^{10} + 16096396 \nu^{9} - 1527890 \nu^{8} + 83265427 \nu^{7} + \cdots + 19485603 ) / 12593241 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{8} - 2\beta_{7} + \beta_{6} + \beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{10} + 5\beta_{6} + \beta_{3} - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{9} - 6\beta_{8} + 8\beta_{7} - \beta_{4} + 6\beta_{3} - 8\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{11} - 7\beta_{10} - \beta_{9} - 9\beta_{8} + 9\beta_{7} - 28\beta_{6} - 7\beta_{4} + \beta_{2} - 28\beta _1 + 9 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -\beta_{11} - 10\beta_{10} - 55\beta_{6} - \beta_{5} - 35\beta_{3} + 8\beta_{2} + 40 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 11\beta_{9} + 65\beta_{8} - 65\beta_{7} - 8\beta_{5} + 43\beta_{4} - 65\beta_{3} + 165\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 11 \beta_{11} + 76 \beta_{10} + 51 \beta_{9} + 208 \beta_{8} - 222 \beta_{7} + 360 \beta_{6} + \cdots - 222 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 51\beta_{11} + 259\beta_{10} + 998\beta_{6} + 51\beta_{5} + 436\beta_{3} - 87\beta_{2} - 436 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -310\beta_{9} - 1257\beta_{8} + 1301\beta_{7} + 87\beta_{5} - 523\beta_{4} + 1257\beta_{3} - 2306\beta_1 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 310 \beta_{11} - 1567 \beta_{10} - 610 \beta_{9} - 2829 \beta_{8} + 2832 \beta_{7} - 6121 \beta_{6} + \cdots + 2832 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(\beta_{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
−0.963952 1.66961i
−0.690206 1.19547i
−0.216506 0.375000i
0.328657 + 0.569250i
0.792283 + 1.37227i
1.24972 + 2.16459i
−0.963952 + 1.66961i
−0.690206 + 1.19547i
−0.216506 + 0.375000i
0.328657 0.569250i
0.792283 1.37227i
1.24972 2.16459i
−0.963952 + 1.66961i 0 −0.858406 1.48680i 0.100478 0.174033i 0 3.71133 −0.545959 0 0.193712 + 0.335518i
163.2 −0.690206 + 1.19547i 0 0.0472324 + 0.0818090i 1.59642 2.76507i 0 −5.01270 −2.89122 0 2.20371 + 3.81694i
163.3 −0.216506 + 0.375000i 0 0.906250 + 1.56967i −1.01591 + 1.75962i 0 −1.15054 −1.65086 0 −0.439904 0.761936i
163.4 0.328657 0.569250i 0 0.783970 + 1.35788i 2.06470 3.57617i 0 3.83431 2.34525 0 −1.35716 2.35066i
163.5 0.792283 1.37227i 0 −0.255424 0.442408i −0.780905 + 1.35257i 0 −0.188849 2.35966 0 1.23740 + 2.14323i
163.6 1.24972 2.16459i 0 −2.12362 3.67822i 0.535221 0.927030i 0 −0.193560 −5.61687 0 −1.33776 2.31706i
406.1 −0.963952 1.66961i 0 −0.858406 + 1.48680i 0.100478 + 0.174033i 0 3.71133 −0.545959 0 0.193712 0.335518i
406.2 −0.690206 1.19547i 0 0.0472324 0.0818090i 1.59642 + 2.76507i 0 −5.01270 −2.89122 0 2.20371 3.81694i
406.3 −0.216506 0.375000i 0 0.906250 1.56967i −1.01591 1.75962i 0 −1.15054 −1.65086 0 −0.439904 + 0.761936i
406.4 0.328657 + 0.569250i 0 0.783970 1.35788i 2.06470 + 3.57617i 0 3.83431 2.34525 0 −1.35716 + 2.35066i
406.5 0.792283 + 1.37227i 0 −0.255424 + 0.442408i −0.780905 1.35257i 0 −0.188849 2.35966 0 1.23740 2.14323i
406.6 1.24972 + 2.16459i 0 −2.12362 + 3.67822i 0.535221 + 0.927030i 0 −0.193560 −5.61687 0 −1.33776 + 2.31706i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 163.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 513.2.f.h yes 12
3.b odd 2 1 513.2.f.f 12
19.c even 3 1 inner 513.2.f.h yes 12
19.c even 3 1 9747.2.a.bl 6
19.d odd 6 1 9747.2.a.br 6
57.f even 6 1 9747.2.a.bm 6
57.h odd 6 1 513.2.f.f 12
57.h odd 6 1 9747.2.a.bs 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
513.2.f.f 12 3.b odd 2 1
513.2.f.f 12 57.h odd 6 1
513.2.f.h yes 12 1.a even 1 1 trivial
513.2.f.h yes 12 19.c even 3 1 inner
9747.2.a.bl 6 19.c even 3 1
9747.2.a.bm 6 57.f even 6 1
9747.2.a.br 6 19.d odd 6 1
9747.2.a.bs 6 57.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(513, [\chi])\):

\( T_{2}^{12} - T_{2}^{11} + 8 T_{2}^{10} - T_{2}^{9} + 41 T_{2}^{8} - 7 T_{2}^{7} + 91 T_{2}^{6} + \cdots + 9 \) Copy content Toggle raw display
\( T_{7}^{6} - T_{7}^{5} - 27T_{7}^{4} + 34T_{7}^{3} + 98T_{7}^{2} + 33T_{7} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - T^{11} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} - 5 T^{11} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( (T^{6} - T^{5} - 27 T^{4} + \cdots + 3)^{2} \) Copy content Toggle raw display
$11$ \( (T^{6} + 2 T^{5} - 27 T^{4} + \cdots + 81)^{2} \) Copy content Toggle raw display
$13$ \( T^{12} + 5 T^{11} + \cdots + 1521 \) Copy content Toggle raw display
$17$ \( T^{12} - 10 T^{11} + \cdots + 729 \) Copy content Toggle raw display
$19$ \( T^{12} + 9 T^{11} + \cdots + 47045881 \) Copy content Toggle raw display
$23$ \( T^{12} - 3 T^{11} + \cdots + 47961 \) Copy content Toggle raw display
$29$ \( T^{12} + 6 T^{11} + \cdots + 870489 \) Copy content Toggle raw display
$31$ \( (T^{6} + 2 T^{5} + \cdots + 267)^{2} \) Copy content Toggle raw display
$37$ \( (T^{6} - 13 T^{5} + \cdots - 6339)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + 13 T^{11} + \cdots + 729 \) Copy content Toggle raw display
$43$ \( T^{12} + 3 T^{11} + \cdots + 1615441 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 219721329 \) Copy content Toggle raw display
$53$ \( T^{12} + T^{11} + \cdots + 8661249 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 276922881 \) Copy content Toggle raw display
$61$ \( T^{12} + 13 T^{11} + \cdots + 2886601 \) Copy content Toggle raw display
$67$ \( T^{12} - 9 T^{11} + \cdots + 9815689 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 481846401 \) Copy content Toggle raw display
$73$ \( T^{12} + 15 T^{11} + \cdots + 31798321 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 15054553809 \) Copy content Toggle raw display
$83$ \( (T^{6} + 8 T^{5} + \cdots - 681291)^{2} \) Copy content Toggle raw display
$89$ \( T^{12} - 29 T^{11} + \cdots + 6561 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 6717277681 \) Copy content Toggle raw display
show more
show less