L(s) = 1 | + (1.24 + 2.16i)2-s + (−2.12 + 3.67i)4-s + (0.535 + 0.927i)5-s − 0.193·7-s − 5.61·8-s + (−1.33 + 2.31i)10-s + 0.571·11-s + (−2.84 + 4.92i)13-s + (−0.241 − 0.418i)14-s + (−2.77 − 4.80i)16-s + (−1.02 − 1.77i)17-s + (−1.50 + 4.08i)19-s − 4.54·20-s + (0.714 + 1.23i)22-s + (0.777 − 1.34i)23-s + ⋯ |
L(s) = 1 | + (0.883 + 1.53i)2-s + (−1.06 + 1.83i)4-s + (0.239 + 0.414i)5-s − 0.0731·7-s − 1.98·8-s + (−0.423 + 0.732i)10-s + 0.172·11-s + (−0.788 + 1.36i)13-s + (−0.0646 − 0.111i)14-s + (−0.693 − 1.20i)16-s + (−0.248 − 0.429i)17-s + (−0.345 + 0.938i)19-s − 1.01·20-s + (0.152 + 0.263i)22-s + (0.162 − 0.280i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0424i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0424i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0428841 + 2.01905i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0428841 + 2.01905i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (1.50 - 4.08i)T \) |
good | 2 | \( 1 + (-1.24 - 2.16i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.535 - 0.927i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 0.193T + 7T^{2} \) |
| 11 | \( 1 - 0.571T + 11T^{2} \) |
| 13 | \( 1 + (2.84 - 4.92i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.02 + 1.77i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-0.777 + 1.34i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.04 + 5.28i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.86T + 31T^{2} \) |
| 37 | \( 1 - 9.36T + 37T^{2} \) |
| 41 | \( 1 + (0.964 + 1.67i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.60 - 2.78i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.30 + 9.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.84 - 6.66i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.89 - 10.2i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.01 - 6.94i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.37 + 5.83i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.50 + 6.06i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.03 - 6.99i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.44 - 4.22i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6.02T + 83T^{2} \) |
| 89 | \( 1 + (-8.79 + 15.2i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.79 - 6.57i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70048052945830478602780686670, −10.29867609919975925033991877751, −9.311433019317717362486332504900, −8.330060206099331312719105714846, −7.42147756216881920533388794998, −6.56772246894755268757802769447, −6.06441272897424677841236923784, −4.73996746447490160029416058608, −4.12470408436967608020279248208, −2.57677129702440396671365549528,
0.956250168749898855938373201905, 2.44925504021124640207161932027, 3.34928075268671497688962197201, 4.67165790119698596606100179957, 5.22413903880472668562739293471, 6.42083225224702747571683028608, 7.909365132884300286144009023113, 9.126457671415484765968836958831, 9.845256493615956485906097629572, 10.69245742391578599086139721845