Properties

Label 9747.2.a.bm.1.4
Level $9747$
Weight $2$
Character 9747.1
Self dual yes
Analytic conductor $77.830$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9747,2,Mod(1,9747)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9747, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9747.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9747 = 3^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9747.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-1,0,3,5,0,1,-6,0,1,2,0,-5,-2,0,-3,10,0,0,1,0,-4,3,0,5,1,0, 2,6,0,2,-8,0,4,3,0,-13,0,0,-6,13,0,3,-20,0,5,18,0,13,3,0,-22,1,0,6,24, 0,14,-11,0,13,22,0,0,-36,0,9,5,0,-30,6,0,15,43,0,0,29,0,-13,1,0,-4,8,0, 3,7,0,15,-29,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.8301868501\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.54265221.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 7x^{4} + 4x^{3} + 12x^{2} - 3x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 513)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.433013\) of defining polynomial
Character \(\chi\) \(=\) 9747.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.433013 q^{2} -1.81250 q^{4} -2.03183 q^{5} -1.15054 q^{7} -1.65086 q^{8} -0.879808 q^{10} +3.69231 q^{11} +1.38097 q^{13} -0.498199 q^{14} +2.91016 q^{16} -2.34317 q^{17} +3.68269 q^{20} +1.59882 q^{22} -2.53003 q^{23} -0.871671 q^{25} +0.597977 q^{26} +2.08535 q^{28} +0.619872 q^{29} -0.936857 q^{31} +4.56186 q^{32} -1.01462 q^{34} +2.33770 q^{35} -3.82480 q^{37} +3.35427 q^{40} +5.03183 q^{41} +10.1890 q^{43} -6.69231 q^{44} -1.09553 q^{46} +2.55737 q^{47} -5.67626 q^{49} -0.377445 q^{50} -2.50300 q^{52} -10.7807 q^{53} -7.50214 q^{55} +1.89938 q^{56} +0.268412 q^{58} +7.53451 q^{59} -7.10705 q^{61} -0.405671 q^{62} -3.84497 q^{64} -2.80589 q^{65} -3.25052 q^{67} +4.24699 q^{68} +1.01225 q^{70} -7.94477 q^{71} -4.75513 q^{73} -1.65619 q^{74} -4.24815 q^{77} -5.81592 q^{79} -5.91294 q^{80} +2.17885 q^{82} -16.8621 q^{83} +4.76092 q^{85} +4.41196 q^{86} -6.09549 q^{88} -11.1598 q^{89} -1.58886 q^{91} +4.58568 q^{92} +1.10737 q^{94} -11.0318 q^{97} -2.45789 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + 3 q^{4} + 5 q^{5} + q^{7} - 6 q^{8} + q^{10} + 2 q^{11} - 5 q^{13} - 2 q^{14} - 3 q^{16} + 10 q^{17} + q^{20} - 4 q^{22} + 3 q^{23} + 5 q^{25} + q^{26} + 2 q^{28} + 6 q^{29} + 2 q^{31}+ \cdots + 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.433013 0.306186 0.153093 0.988212i \(-0.451077\pi\)
0.153093 + 0.988212i \(0.451077\pi\)
\(3\) 0 0
\(4\) −1.81250 −0.906250
\(5\) −2.03183 −0.908662 −0.454331 0.890833i \(-0.650122\pi\)
−0.454331 + 0.890833i \(0.650122\pi\)
\(6\) 0 0
\(7\) −1.15054 −0.434863 −0.217432 0.976076i \(-0.569768\pi\)
−0.217432 + 0.976076i \(0.569768\pi\)
\(8\) −1.65086 −0.583668
\(9\) 0 0
\(10\) −0.879808 −0.278220
\(11\) 3.69231 1.11327 0.556636 0.830756i \(-0.312092\pi\)
0.556636 + 0.830756i \(0.312092\pi\)
\(12\) 0 0
\(13\) 1.38097 0.383012 0.191506 0.981491i \(-0.438663\pi\)
0.191506 + 0.981491i \(0.438663\pi\)
\(14\) −0.498199 −0.133149
\(15\) 0 0
\(16\) 2.91016 0.727539
\(17\) −2.34317 −0.568302 −0.284151 0.958780i \(-0.591712\pi\)
−0.284151 + 0.958780i \(0.591712\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 3.68269 0.823475
\(21\) 0 0
\(22\) 1.59882 0.340869
\(23\) −2.53003 −0.527547 −0.263774 0.964585i \(-0.584967\pi\)
−0.263774 + 0.964585i \(0.584967\pi\)
\(24\) 0 0
\(25\) −0.871671 −0.174334
\(26\) 0.597977 0.117273
\(27\) 0 0
\(28\) 2.08535 0.394095
\(29\) 0.619872 0.115107 0.0575536 0.998342i \(-0.481670\pi\)
0.0575536 + 0.998342i \(0.481670\pi\)
\(30\) 0 0
\(31\) −0.936857 −0.168264 −0.0841322 0.996455i \(-0.526812\pi\)
−0.0841322 + 0.996455i \(0.526812\pi\)
\(32\) 4.56186 0.806430
\(33\) 0 0
\(34\) −1.01462 −0.174006
\(35\) 2.33770 0.395144
\(36\) 0 0
\(37\) −3.82480 −0.628794 −0.314397 0.949292i \(-0.601802\pi\)
−0.314397 + 0.949292i \(0.601802\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 3.35427 0.530356
\(41\) 5.03183 0.785840 0.392920 0.919573i \(-0.371465\pi\)
0.392920 + 0.919573i \(0.371465\pi\)
\(42\) 0 0
\(43\) 10.1890 1.55380 0.776902 0.629621i \(-0.216790\pi\)
0.776902 + 0.629621i \(0.216790\pi\)
\(44\) −6.69231 −1.00890
\(45\) 0 0
\(46\) −1.09553 −0.161528
\(47\) 2.55737 0.373031 0.186515 0.982452i \(-0.440281\pi\)
0.186515 + 0.982452i \(0.440281\pi\)
\(48\) 0 0
\(49\) −5.67626 −0.810894
\(50\) −0.377445 −0.0533787
\(51\) 0 0
\(52\) −2.50300 −0.347104
\(53\) −10.7807 −1.48084 −0.740419 0.672145i \(-0.765373\pi\)
−0.740419 + 0.672145i \(0.765373\pi\)
\(54\) 0 0
\(55\) −7.50214 −1.01159
\(56\) 1.89938 0.253816
\(57\) 0 0
\(58\) 0.268412 0.0352443
\(59\) 7.53451 0.980910 0.490455 0.871466i \(-0.336831\pi\)
0.490455 + 0.871466i \(0.336831\pi\)
\(60\) 0 0
\(61\) −7.10705 −0.909964 −0.454982 0.890501i \(-0.650354\pi\)
−0.454982 + 0.890501i \(0.650354\pi\)
\(62\) −0.405671 −0.0515203
\(63\) 0 0
\(64\) −3.84497 −0.480621
\(65\) −2.80589 −0.348028
\(66\) 0 0
\(67\) −3.25052 −0.397114 −0.198557 0.980089i \(-0.563625\pi\)
−0.198557 + 0.980089i \(0.563625\pi\)
\(68\) 4.24699 0.515024
\(69\) 0 0
\(70\) 1.01225 0.120988
\(71\) −7.94477 −0.942871 −0.471435 0.881901i \(-0.656264\pi\)
−0.471435 + 0.881901i \(0.656264\pi\)
\(72\) 0 0
\(73\) −4.75513 −0.556545 −0.278273 0.960502i \(-0.589762\pi\)
−0.278273 + 0.960502i \(0.589762\pi\)
\(74\) −1.65619 −0.192528
\(75\) 0 0
\(76\) 0 0
\(77\) −4.24815 −0.484122
\(78\) 0 0
\(79\) −5.81592 −0.654343 −0.327171 0.944965i \(-0.606095\pi\)
−0.327171 + 0.944965i \(0.606095\pi\)
\(80\) −5.91294 −0.661087
\(81\) 0 0
\(82\) 2.17885 0.240613
\(83\) −16.8621 −1.85086 −0.925428 0.378924i \(-0.876294\pi\)
−0.925428 + 0.378924i \(0.876294\pi\)
\(84\) 0 0
\(85\) 4.76092 0.516394
\(86\) 4.41196 0.475754
\(87\) 0 0
\(88\) −6.09549 −0.649781
\(89\) −11.1598 −1.18294 −0.591470 0.806327i \(-0.701452\pi\)
−0.591470 + 0.806327i \(0.701452\pi\)
\(90\) 0 0
\(91\) −1.58886 −0.166558
\(92\) 4.58568 0.478090
\(93\) 0 0
\(94\) 1.10737 0.114217
\(95\) 0 0
\(96\) 0 0
\(97\) −11.0318 −1.12011 −0.560056 0.828455i \(-0.689220\pi\)
−0.560056 + 0.828455i \(0.689220\pi\)
\(98\) −2.45789 −0.248285
\(99\) 0 0
\(100\) 1.57990 0.157990
\(101\) −8.00449 −0.796476 −0.398238 0.917282i \(-0.630378\pi\)
−0.398238 + 0.917282i \(0.630378\pi\)
\(102\) 0 0
\(103\) 13.5972 1.33977 0.669884 0.742466i \(-0.266344\pi\)
0.669884 + 0.742466i \(0.266344\pi\)
\(104\) −2.27979 −0.223551
\(105\) 0 0
\(106\) −4.66817 −0.453412
\(107\) 11.7261 1.13360 0.566802 0.823854i \(-0.308181\pi\)
0.566802 + 0.823854i \(0.308181\pi\)
\(108\) 0 0
\(109\) 13.7239 1.31451 0.657256 0.753667i \(-0.271717\pi\)
0.657256 + 0.753667i \(0.271717\pi\)
\(110\) −3.24852 −0.309734
\(111\) 0 0
\(112\) −3.34825 −0.316380
\(113\) 16.9792 1.59727 0.798635 0.601815i \(-0.205556\pi\)
0.798635 + 0.601815i \(0.205556\pi\)
\(114\) 0 0
\(115\) 5.14058 0.479362
\(116\) −1.12352 −0.104316
\(117\) 0 0
\(118\) 3.26254 0.300341
\(119\) 2.69591 0.247134
\(120\) 0 0
\(121\) 2.63314 0.239376
\(122\) −3.07744 −0.278619
\(123\) 0 0
\(124\) 1.69805 0.152490
\(125\) 11.9302 1.06707
\(126\) 0 0
\(127\) 10.9449 0.971200 0.485600 0.874181i \(-0.338601\pi\)
0.485600 + 0.874181i \(0.338601\pi\)
\(128\) −10.7886 −0.953590
\(129\) 0 0
\(130\) −1.21499 −0.106561
\(131\) 22.4705 1.96326 0.981628 0.190806i \(-0.0611103\pi\)
0.981628 + 0.190806i \(0.0611103\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.40752 −0.121591
\(135\) 0 0
\(136\) 3.86825 0.331699
\(137\) 6.60344 0.564170 0.282085 0.959389i \(-0.408974\pi\)
0.282085 + 0.959389i \(0.408974\pi\)
\(138\) 0 0
\(139\) −15.3840 −1.30485 −0.652426 0.757853i \(-0.726249\pi\)
−0.652426 + 0.757853i \(0.726249\pi\)
\(140\) −4.23708 −0.358099
\(141\) 0 0
\(142\) −3.44019 −0.288694
\(143\) 5.09896 0.426396
\(144\) 0 0
\(145\) −1.25947 −0.104594
\(146\) −2.05903 −0.170407
\(147\) 0 0
\(148\) 6.93245 0.569844
\(149\) −2.03622 −0.166813 −0.0834067 0.996516i \(-0.526580\pi\)
−0.0834067 + 0.996516i \(0.526580\pi\)
\(150\) 0 0
\(151\) 13.4553 1.09498 0.547490 0.836812i \(-0.315583\pi\)
0.547490 + 0.836812i \(0.315583\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −1.83950 −0.148231
\(155\) 1.90353 0.152895
\(156\) 0 0
\(157\) −7.85535 −0.626925 −0.313463 0.949601i \(-0.601489\pi\)
−0.313463 + 0.949601i \(0.601489\pi\)
\(158\) −2.51837 −0.200351
\(159\) 0 0
\(160\) −9.26891 −0.732772
\(161\) 2.91090 0.229411
\(162\) 0 0
\(163\) 6.47140 0.506879 0.253440 0.967351i \(-0.418438\pi\)
0.253440 + 0.967351i \(0.418438\pi\)
\(164\) −9.12019 −0.712167
\(165\) 0 0
\(166\) −7.30150 −0.566706
\(167\) −17.1882 −1.33006 −0.665032 0.746815i \(-0.731582\pi\)
−0.665032 + 0.746815i \(0.731582\pi\)
\(168\) 0 0
\(169\) −11.0929 −0.853302
\(170\) 2.06154 0.158113
\(171\) 0 0
\(172\) −18.4675 −1.40814
\(173\) 9.34682 0.710625 0.355313 0.934748i \(-0.384374\pi\)
0.355313 + 0.934748i \(0.384374\pi\)
\(174\) 0 0
\(175\) 1.00289 0.0758115
\(176\) 10.7452 0.809949
\(177\) 0 0
\(178\) −4.83235 −0.362200
\(179\) −13.0265 −0.973643 −0.486822 0.873501i \(-0.661844\pi\)
−0.486822 + 0.873501i \(0.661844\pi\)
\(180\) 0 0
\(181\) 12.6690 0.941676 0.470838 0.882220i \(-0.343952\pi\)
0.470838 + 0.882220i \(0.343952\pi\)
\(182\) −0.687996 −0.0509977
\(183\) 0 0
\(184\) 4.17672 0.307912
\(185\) 7.77134 0.571360
\(186\) 0 0
\(187\) −8.65170 −0.632675
\(188\) −4.63523 −0.338059
\(189\) 0 0
\(190\) 0 0
\(191\) 19.6919 1.42486 0.712429 0.701744i \(-0.247595\pi\)
0.712429 + 0.701744i \(0.247595\pi\)
\(192\) 0 0
\(193\) −1.53289 −0.110340 −0.0551699 0.998477i \(-0.517570\pi\)
−0.0551699 + 0.998477i \(0.517570\pi\)
\(194\) −4.77692 −0.342963
\(195\) 0 0
\(196\) 10.2882 0.734873
\(197\) −4.01965 −0.286388 −0.143194 0.989695i \(-0.545737\pi\)
−0.143194 + 0.989695i \(0.545737\pi\)
\(198\) 0 0
\(199\) 7.53526 0.534160 0.267080 0.963674i \(-0.413941\pi\)
0.267080 + 0.963674i \(0.413941\pi\)
\(200\) 1.43901 0.101753
\(201\) 0 0
\(202\) −3.46604 −0.243870
\(203\) −0.713187 −0.0500559
\(204\) 0 0
\(205\) −10.2238 −0.714062
\(206\) 5.88774 0.410218
\(207\) 0 0
\(208\) 4.01883 0.278656
\(209\) 0 0
\(210\) 0 0
\(211\) 3.19135 0.219701 0.109851 0.993948i \(-0.464963\pi\)
0.109851 + 0.993948i \(0.464963\pi\)
\(212\) 19.5400 1.34201
\(213\) 0 0
\(214\) 5.07754 0.347094
\(215\) −20.7023 −1.41188
\(216\) 0 0
\(217\) 1.07789 0.0731720
\(218\) 5.94263 0.402486
\(219\) 0 0
\(220\) 13.5976 0.916752
\(221\) −3.23584 −0.217666
\(222\) 0 0
\(223\) 14.3950 0.963960 0.481980 0.876182i \(-0.339918\pi\)
0.481980 + 0.876182i \(0.339918\pi\)
\(224\) −5.24860 −0.350687
\(225\) 0 0
\(226\) 7.35222 0.489062
\(227\) 8.88794 0.589914 0.294957 0.955511i \(-0.404695\pi\)
0.294957 + 0.955511i \(0.404695\pi\)
\(228\) 0 0
\(229\) −6.83849 −0.451900 −0.225950 0.974139i \(-0.572549\pi\)
−0.225950 + 0.974139i \(0.572549\pi\)
\(230\) 2.22594 0.146774
\(231\) 0 0
\(232\) −1.02332 −0.0671844
\(233\) −1.03738 −0.0679607 −0.0339804 0.999423i \(-0.510818\pi\)
−0.0339804 + 0.999423i \(0.510818\pi\)
\(234\) 0 0
\(235\) −5.19614 −0.338959
\(236\) −13.6563 −0.888950
\(237\) 0 0
\(238\) 1.16736 0.0756689
\(239\) 18.5956 1.20285 0.601426 0.798929i \(-0.294600\pi\)
0.601426 + 0.798929i \(0.294600\pi\)
\(240\) 0 0
\(241\) −26.6875 −1.71909 −0.859545 0.511060i \(-0.829253\pi\)
−0.859545 + 0.511060i \(0.829253\pi\)
\(242\) 1.14018 0.0732937
\(243\) 0 0
\(244\) 12.8815 0.824655
\(245\) 11.5332 0.736828
\(246\) 0 0
\(247\) 0 0
\(248\) 1.54662 0.0982105
\(249\) 0 0
\(250\) 5.16594 0.326723
\(251\) −2.80194 −0.176857 −0.0884286 0.996083i \(-0.528185\pi\)
−0.0884286 + 0.996083i \(0.528185\pi\)
\(252\) 0 0
\(253\) −9.34164 −0.587304
\(254\) 4.73927 0.297368
\(255\) 0 0
\(256\) 3.01832 0.188645
\(257\) 7.61432 0.474969 0.237484 0.971391i \(-0.423677\pi\)
0.237484 + 0.971391i \(0.423677\pi\)
\(258\) 0 0
\(259\) 4.40059 0.273439
\(260\) 5.08568 0.315400
\(261\) 0 0
\(262\) 9.73001 0.601122
\(263\) 15.2930 0.943006 0.471503 0.881864i \(-0.343712\pi\)
0.471503 + 0.881864i \(0.343712\pi\)
\(264\) 0 0
\(265\) 21.9045 1.34558
\(266\) 0 0
\(267\) 0 0
\(268\) 5.89156 0.359884
\(269\) 30.0220 1.83047 0.915237 0.402916i \(-0.132003\pi\)
0.915237 + 0.402916i \(0.132003\pi\)
\(270\) 0 0
\(271\) −12.4564 −0.756670 −0.378335 0.925669i \(-0.623503\pi\)
−0.378335 + 0.925669i \(0.623503\pi\)
\(272\) −6.81899 −0.413462
\(273\) 0 0
\(274\) 2.85938 0.172741
\(275\) −3.21848 −0.194081
\(276\) 0 0
\(277\) 11.0756 0.665466 0.332733 0.943021i \(-0.392029\pi\)
0.332733 + 0.943021i \(0.392029\pi\)
\(278\) −6.66146 −0.399528
\(279\) 0 0
\(280\) −3.85922 −0.230633
\(281\) 16.6963 0.996020 0.498010 0.867171i \(-0.334064\pi\)
0.498010 + 0.867171i \(0.334064\pi\)
\(282\) 0 0
\(283\) 25.8258 1.53519 0.767593 0.640937i \(-0.221454\pi\)
0.767593 + 0.640937i \(0.221454\pi\)
\(284\) 14.3999 0.854476
\(285\) 0 0
\(286\) 2.20791 0.130557
\(287\) −5.78932 −0.341733
\(288\) 0 0
\(289\) −11.5096 −0.677033
\(290\) −0.545368 −0.0320251
\(291\) 0 0
\(292\) 8.61867 0.504369
\(293\) −27.9386 −1.63219 −0.816094 0.577919i \(-0.803865\pi\)
−0.816094 + 0.577919i \(0.803865\pi\)
\(294\) 0 0
\(295\) −15.3088 −0.891315
\(296\) 6.31422 0.367006
\(297\) 0 0
\(298\) −0.881708 −0.0510760
\(299\) −3.49389 −0.202057
\(300\) 0 0
\(301\) −11.7228 −0.675693
\(302\) 5.82634 0.335268
\(303\) 0 0
\(304\) 0 0
\(305\) 14.4403 0.826850
\(306\) 0 0
\(307\) −12.5241 −0.714789 −0.357394 0.933954i \(-0.616335\pi\)
−0.357394 + 0.933954i \(0.616335\pi\)
\(308\) 7.69977 0.438735
\(309\) 0 0
\(310\) 0.824254 0.0468145
\(311\) 24.4906 1.38873 0.694366 0.719622i \(-0.255685\pi\)
0.694366 + 0.719622i \(0.255685\pi\)
\(312\) 0 0
\(313\) −20.4667 −1.15685 −0.578424 0.815736i \(-0.696332\pi\)
−0.578424 + 0.815736i \(0.696332\pi\)
\(314\) −3.40147 −0.191956
\(315\) 0 0
\(316\) 10.5414 0.592998
\(317\) −21.9961 −1.23543 −0.617713 0.786404i \(-0.711941\pi\)
−0.617713 + 0.786404i \(0.711941\pi\)
\(318\) 0 0
\(319\) 2.28876 0.128146
\(320\) 7.81232 0.436722
\(321\) 0 0
\(322\) 1.26046 0.0702425
\(323\) 0 0
\(324\) 0 0
\(325\) −1.20375 −0.0667720
\(326\) 2.80220 0.155199
\(327\) 0 0
\(328\) −8.30685 −0.458669
\(329\) −2.94236 −0.162217
\(330\) 0 0
\(331\) −32.5077 −1.78679 −0.893393 0.449275i \(-0.851682\pi\)
−0.893393 + 0.449275i \(0.851682\pi\)
\(332\) 30.5625 1.67734
\(333\) 0 0
\(334\) −7.44271 −0.407247
\(335\) 6.60449 0.360842
\(336\) 0 0
\(337\) −2.56368 −0.139653 −0.0698264 0.997559i \(-0.522245\pi\)
−0.0698264 + 0.997559i \(0.522245\pi\)
\(338\) −4.80338 −0.261269
\(339\) 0 0
\(340\) −8.62916 −0.467982
\(341\) −3.45916 −0.187324
\(342\) 0 0
\(343\) 14.5845 0.787491
\(344\) −16.8206 −0.906905
\(345\) 0 0
\(346\) 4.04729 0.217584
\(347\) 9.34905 0.501883 0.250942 0.968002i \(-0.419260\pi\)
0.250942 + 0.968002i \(0.419260\pi\)
\(348\) 0 0
\(349\) 9.97826 0.534124 0.267062 0.963679i \(-0.413947\pi\)
0.267062 + 0.963679i \(0.413947\pi\)
\(350\) 0.434265 0.0232125
\(351\) 0 0
\(352\) 16.8438 0.897776
\(353\) 27.7171 1.47523 0.737617 0.675219i \(-0.235951\pi\)
0.737617 + 0.675219i \(0.235951\pi\)
\(354\) 0 0
\(355\) 16.1424 0.856750
\(356\) 20.2272 1.07204
\(357\) 0 0
\(358\) −5.64062 −0.298116
\(359\) 34.3935 1.81522 0.907609 0.419817i \(-0.137906\pi\)
0.907609 + 0.419817i \(0.137906\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 5.48582 0.288328
\(363\) 0 0
\(364\) 2.87981 0.150943
\(365\) 9.66160 0.505711
\(366\) 0 0
\(367\) 32.2953 1.68580 0.842901 0.538068i \(-0.180846\pi\)
0.842901 + 0.538068i \(0.180846\pi\)
\(368\) −7.36278 −0.383811
\(369\) 0 0
\(370\) 3.36509 0.174943
\(371\) 12.4036 0.643963
\(372\) 0 0
\(373\) 35.2967 1.82759 0.913796 0.406173i \(-0.133137\pi\)
0.913796 + 0.406173i \(0.133137\pi\)
\(374\) −3.74630 −0.193716
\(375\) 0 0
\(376\) −4.22186 −0.217726
\(377\) 0.856023 0.0440874
\(378\) 0 0
\(379\) −24.0421 −1.23496 −0.617479 0.786587i \(-0.711846\pi\)
−0.617479 + 0.786587i \(0.711846\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8.52686 0.436272
\(383\) 6.71864 0.343307 0.171653 0.985157i \(-0.445089\pi\)
0.171653 + 0.985157i \(0.445089\pi\)
\(384\) 0 0
\(385\) 8.63151 0.439903
\(386\) −0.663761 −0.0337845
\(387\) 0 0
\(388\) 19.9952 1.01510
\(389\) 36.4486 1.84802 0.924010 0.382369i \(-0.124892\pi\)
0.924010 + 0.382369i \(0.124892\pi\)
\(390\) 0 0
\(391\) 5.92828 0.299806
\(392\) 9.37071 0.473292
\(393\) 0 0
\(394\) −1.74056 −0.0876882
\(395\) 11.8170 0.594576
\(396\) 0 0
\(397\) 5.04933 0.253419 0.126709 0.991940i \(-0.459558\pi\)
0.126709 + 0.991940i \(0.459558\pi\)
\(398\) 3.26286 0.163553
\(399\) 0 0
\(400\) −2.53670 −0.126835
\(401\) −11.1438 −0.556494 −0.278247 0.960510i \(-0.589753\pi\)
−0.278247 + 0.960510i \(0.589753\pi\)
\(402\) 0 0
\(403\) −1.29377 −0.0644472
\(404\) 14.5081 0.721807
\(405\) 0 0
\(406\) −0.308819 −0.0153264
\(407\) −14.1223 −0.700019
\(408\) 0 0
\(409\) −4.92406 −0.243479 −0.121740 0.992562i \(-0.538847\pi\)
−0.121740 + 0.992562i \(0.538847\pi\)
\(410\) −4.42704 −0.218636
\(411\) 0 0
\(412\) −24.6448 −1.21416
\(413\) −8.66876 −0.426562
\(414\) 0 0
\(415\) 34.2609 1.68180
\(416\) 6.29978 0.308872
\(417\) 0 0
\(418\) 0 0
\(419\) −14.1877 −0.693116 −0.346558 0.938029i \(-0.612650\pi\)
−0.346558 + 0.938029i \(0.612650\pi\)
\(420\) 0 0
\(421\) −17.0145 −0.829238 −0.414619 0.909995i \(-0.636085\pi\)
−0.414619 + 0.909995i \(0.636085\pi\)
\(422\) 1.38189 0.0672695
\(423\) 0 0
\(424\) 17.7974 0.864317
\(425\) 2.04247 0.0990744
\(426\) 0 0
\(427\) 8.17695 0.395710
\(428\) −21.2535 −1.02733
\(429\) 0 0
\(430\) −8.96434 −0.432299
\(431\) −1.94991 −0.0939237 −0.0469618 0.998897i \(-0.514954\pi\)
−0.0469618 + 0.998897i \(0.514954\pi\)
\(432\) 0 0
\(433\) 29.3603 1.41097 0.705483 0.708727i \(-0.250730\pi\)
0.705483 + 0.708727i \(0.250730\pi\)
\(434\) 0.466741 0.0224043
\(435\) 0 0
\(436\) −24.8746 −1.19128
\(437\) 0 0
\(438\) 0 0
\(439\) 10.7153 0.511415 0.255708 0.966754i \(-0.417692\pi\)
0.255708 + 0.966754i \(0.417692\pi\)
\(440\) 12.3850 0.590431
\(441\) 0 0
\(442\) −1.40116 −0.0666464
\(443\) −19.8348 −0.942379 −0.471190 0.882032i \(-0.656175\pi\)
−0.471190 + 0.882032i \(0.656175\pi\)
\(444\) 0 0
\(445\) 22.6749 1.07489
\(446\) 6.23321 0.295151
\(447\) 0 0
\(448\) 4.42379 0.209005
\(449\) 25.1068 1.18486 0.592431 0.805621i \(-0.298168\pi\)
0.592431 + 0.805621i \(0.298168\pi\)
\(450\) 0 0
\(451\) 18.5791 0.874854
\(452\) −30.7748 −1.44753
\(453\) 0 0
\(454\) 3.84859 0.180623
\(455\) 3.22829 0.151345
\(456\) 0 0
\(457\) 10.1416 0.474404 0.237202 0.971460i \(-0.423770\pi\)
0.237202 + 0.971460i \(0.423770\pi\)
\(458\) −2.96115 −0.138366
\(459\) 0 0
\(460\) −9.31731 −0.434422
\(461\) 20.5207 0.955746 0.477873 0.878429i \(-0.341408\pi\)
0.477873 + 0.878429i \(0.341408\pi\)
\(462\) 0 0
\(463\) 20.1006 0.934155 0.467077 0.884216i \(-0.345307\pi\)
0.467077 + 0.884216i \(0.345307\pi\)
\(464\) 1.80392 0.0837450
\(465\) 0 0
\(466\) −0.449197 −0.0208086
\(467\) −13.4426 −0.622048 −0.311024 0.950402i \(-0.600672\pi\)
−0.311024 + 0.950402i \(0.600672\pi\)
\(468\) 0 0
\(469\) 3.73985 0.172690
\(470\) −2.24999 −0.103784
\(471\) 0 0
\(472\) −12.4384 −0.572525
\(473\) 37.6208 1.72981
\(474\) 0 0
\(475\) 0 0
\(476\) −4.88634 −0.223965
\(477\) 0 0
\(478\) 8.05214 0.368297
\(479\) −1.32570 −0.0605727 −0.0302864 0.999541i \(-0.509642\pi\)
−0.0302864 + 0.999541i \(0.509642\pi\)
\(480\) 0 0
\(481\) −5.28193 −0.240835
\(482\) −11.5560 −0.526362
\(483\) 0 0
\(484\) −4.77256 −0.216935
\(485\) 22.4148 1.01780
\(486\) 0 0
\(487\) 5.65193 0.256113 0.128057 0.991767i \(-0.459126\pi\)
0.128057 + 0.991767i \(0.459126\pi\)
\(488\) 11.7327 0.531117
\(489\) 0 0
\(490\) 4.99402 0.225607
\(491\) 41.4642 1.87125 0.935626 0.352993i \(-0.114836\pi\)
0.935626 + 0.352993i \(0.114836\pi\)
\(492\) 0 0
\(493\) −1.45246 −0.0654157
\(494\) 0 0
\(495\) 0 0
\(496\) −2.72640 −0.122419
\(497\) 9.14078 0.410020
\(498\) 0 0
\(499\) −0.329164 −0.0147354 −0.00736769 0.999973i \(-0.502345\pi\)
−0.00736769 + 0.999973i \(0.502345\pi\)
\(500\) −21.6235 −0.967034
\(501\) 0 0
\(502\) −1.21328 −0.0541512
\(503\) 18.1748 0.810375 0.405188 0.914234i \(-0.367206\pi\)
0.405188 + 0.914234i \(0.367206\pi\)
\(504\) 0 0
\(505\) 16.2637 0.723727
\(506\) −4.04505 −0.179824
\(507\) 0 0
\(508\) −19.8376 −0.880150
\(509\) −4.30950 −0.191015 −0.0955076 0.995429i \(-0.530447\pi\)
−0.0955076 + 0.995429i \(0.530447\pi\)
\(510\) 0 0
\(511\) 5.47097 0.242021
\(512\) 22.8842 1.01135
\(513\) 0 0
\(514\) 3.29710 0.145429
\(515\) −27.6271 −1.21740
\(516\) 0 0
\(517\) 9.44260 0.415285
\(518\) 1.90551 0.0837233
\(519\) 0 0
\(520\) 4.63214 0.203133
\(521\) −36.6688 −1.60649 −0.803245 0.595649i \(-0.796895\pi\)
−0.803245 + 0.595649i \(0.796895\pi\)
\(522\) 0 0
\(523\) −3.73409 −0.163280 −0.0816402 0.996662i \(-0.526016\pi\)
−0.0816402 + 0.996662i \(0.526016\pi\)
\(524\) −40.7278 −1.77920
\(525\) 0 0
\(526\) 6.62206 0.288735
\(527\) 2.19521 0.0956250
\(528\) 0 0
\(529\) −16.5990 −0.721694
\(530\) 9.48492 0.411998
\(531\) 0 0
\(532\) 0 0
\(533\) 6.94879 0.300986
\(534\) 0 0
\(535\) −23.8254 −1.03006
\(536\) 5.36615 0.231782
\(537\) 0 0
\(538\) 12.9999 0.560466
\(539\) −20.9585 −0.902746
\(540\) 0 0
\(541\) 20.5902 0.885240 0.442620 0.896709i \(-0.354049\pi\)
0.442620 + 0.896709i \(0.354049\pi\)
\(542\) −5.39376 −0.231682
\(543\) 0 0
\(544\) −10.6892 −0.458296
\(545\) −27.8846 −1.19445
\(546\) 0 0
\(547\) −14.8575 −0.635262 −0.317631 0.948214i \(-0.602887\pi\)
−0.317631 + 0.948214i \(0.602887\pi\)
\(548\) −11.9687 −0.511279
\(549\) 0 0
\(550\) −1.39364 −0.0594251
\(551\) 0 0
\(552\) 0 0
\(553\) 6.69146 0.284550
\(554\) 4.79586 0.203756
\(555\) 0 0
\(556\) 27.8834 1.18252
\(557\) 12.6378 0.535479 0.267740 0.963491i \(-0.413723\pi\)
0.267740 + 0.963491i \(0.413723\pi\)
\(558\) 0 0
\(559\) 14.0707 0.595125
\(560\) 6.80308 0.287482
\(561\) 0 0
\(562\) 7.22973 0.304968
\(563\) 13.9053 0.586041 0.293020 0.956106i \(-0.405340\pi\)
0.293020 + 0.956106i \(0.405340\pi\)
\(564\) 0 0
\(565\) −34.4989 −1.45138
\(566\) 11.1829 0.470053
\(567\) 0 0
\(568\) 13.1157 0.550323
\(569\) −11.5682 −0.484963 −0.242482 0.970156i \(-0.577961\pi\)
−0.242482 + 0.970156i \(0.577961\pi\)
\(570\) 0 0
\(571\) 20.2650 0.848062 0.424031 0.905648i \(-0.360615\pi\)
0.424031 + 0.905648i \(0.360615\pi\)
\(572\) −9.24186 −0.386422
\(573\) 0 0
\(574\) −2.50685 −0.104634
\(575\) 2.20535 0.0919695
\(576\) 0 0
\(577\) −19.0894 −0.794702 −0.397351 0.917667i \(-0.630070\pi\)
−0.397351 + 0.917667i \(0.630070\pi\)
\(578\) −4.98379 −0.207298
\(579\) 0 0
\(580\) 2.28279 0.0947879
\(581\) 19.4005 0.804869
\(582\) 0 0
\(583\) −39.8055 −1.64858
\(584\) 7.85005 0.324837
\(585\) 0 0
\(586\) −12.0978 −0.499754
\(587\) 23.4105 0.966255 0.483127 0.875550i \(-0.339501\pi\)
0.483127 + 0.875550i \(0.339501\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −6.62893 −0.272909
\(591\) 0 0
\(592\) −11.1308 −0.457472
\(593\) 16.3786 0.672588 0.336294 0.941757i \(-0.390826\pi\)
0.336294 + 0.941757i \(0.390826\pi\)
\(594\) 0 0
\(595\) −5.47763 −0.224561
\(596\) 3.69064 0.151175
\(597\) 0 0
\(598\) −1.51290 −0.0618670
\(599\) 18.1659 0.742240 0.371120 0.928585i \(-0.378974\pi\)
0.371120 + 0.928585i \(0.378974\pi\)
\(600\) 0 0
\(601\) 7.00570 0.285768 0.142884 0.989739i \(-0.454362\pi\)
0.142884 + 0.989739i \(0.454362\pi\)
\(602\) −5.07614 −0.206888
\(603\) 0 0
\(604\) −24.3878 −0.992326
\(605\) −5.35008 −0.217512
\(606\) 0 0
\(607\) −10.8546 −0.440576 −0.220288 0.975435i \(-0.570700\pi\)
−0.220288 + 0.975435i \(0.570700\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 6.25284 0.253170
\(611\) 3.53165 0.142875
\(612\) 0 0
\(613\) −48.9731 −1.97800 −0.989002 0.147903i \(-0.952748\pi\)
−0.989002 + 0.147903i \(0.952748\pi\)
\(614\) −5.42310 −0.218858
\(615\) 0 0
\(616\) 7.01310 0.282566
\(617\) 36.9461 1.48739 0.743697 0.668517i \(-0.233071\pi\)
0.743697 + 0.668517i \(0.233071\pi\)
\(618\) 0 0
\(619\) −38.4572 −1.54573 −0.772863 0.634573i \(-0.781176\pi\)
−0.772863 + 0.634573i \(0.781176\pi\)
\(620\) −3.45015 −0.138561
\(621\) 0 0
\(622\) 10.6047 0.425211
\(623\) 12.8398 0.514417
\(624\) 0 0
\(625\) −19.8818 −0.795273
\(626\) −8.86236 −0.354211
\(627\) 0 0
\(628\) 14.2378 0.568151
\(629\) 8.96216 0.357345
\(630\) 0 0
\(631\) 8.10426 0.322625 0.161313 0.986903i \(-0.448427\pi\)
0.161313 + 0.986903i \(0.448427\pi\)
\(632\) 9.60128 0.381919
\(633\) 0 0
\(634\) −9.52460 −0.378270
\(635\) −22.2381 −0.882492
\(636\) 0 0
\(637\) −7.83873 −0.310582
\(638\) 0.991061 0.0392365
\(639\) 0 0
\(640\) 21.9207 0.866490
\(641\) 9.82271 0.387974 0.193987 0.981004i \(-0.437858\pi\)
0.193987 + 0.981004i \(0.437858\pi\)
\(642\) 0 0
\(643\) 27.0257 1.06579 0.532895 0.846181i \(-0.321104\pi\)
0.532895 + 0.846181i \(0.321104\pi\)
\(644\) −5.27600 −0.207904
\(645\) 0 0
\(646\) 0 0
\(647\) 43.8308 1.72316 0.861582 0.507618i \(-0.169474\pi\)
0.861582 + 0.507618i \(0.169474\pi\)
\(648\) 0 0
\(649\) 27.8197 1.09202
\(650\) −0.521239 −0.0204447
\(651\) 0 0
\(652\) −11.7294 −0.459359
\(653\) 26.9486 1.05458 0.527291 0.849685i \(-0.323208\pi\)
0.527291 + 0.849685i \(0.323208\pi\)
\(654\) 0 0
\(655\) −45.6562 −1.78393
\(656\) 14.6434 0.571729
\(657\) 0 0
\(658\) −1.27408 −0.0496687
\(659\) −37.9335 −1.47768 −0.738840 0.673881i \(-0.764626\pi\)
−0.738840 + 0.673881i \(0.764626\pi\)
\(660\) 0 0
\(661\) 12.3793 0.481499 0.240749 0.970587i \(-0.422607\pi\)
0.240749 + 0.970587i \(0.422607\pi\)
\(662\) −14.0763 −0.547089
\(663\) 0 0
\(664\) 27.8370 1.08028
\(665\) 0 0
\(666\) 0 0
\(667\) −1.56829 −0.0607245
\(668\) 31.1536 1.20537
\(669\) 0 0
\(670\) 2.85983 0.110485
\(671\) −26.2414 −1.01304
\(672\) 0 0
\(673\) −46.7887 −1.80357 −0.901786 0.432183i \(-0.857744\pi\)
−0.901786 + 0.432183i \(0.857744\pi\)
\(674\) −1.11011 −0.0427598
\(675\) 0 0
\(676\) 20.1059 0.773305
\(677\) 34.4443 1.32380 0.661901 0.749591i \(-0.269750\pi\)
0.661901 + 0.749591i \(0.269750\pi\)
\(678\) 0 0
\(679\) 12.6926 0.487096
\(680\) −7.85961 −0.301402
\(681\) 0 0
\(682\) −1.49786 −0.0573561
\(683\) 15.5415 0.594679 0.297339 0.954772i \(-0.403901\pi\)
0.297339 + 0.954772i \(0.403901\pi\)
\(684\) 0 0
\(685\) −13.4171 −0.512640
\(686\) 6.31529 0.241119
\(687\) 0 0
\(688\) 29.6515 1.13045
\(689\) −14.8878 −0.567178
\(690\) 0 0
\(691\) −11.0740 −0.421273 −0.210637 0.977564i \(-0.567554\pi\)
−0.210637 + 0.977564i \(0.567554\pi\)
\(692\) −16.9411 −0.644004
\(693\) 0 0
\(694\) 4.04826 0.153670
\(695\) 31.2576 1.18567
\(696\) 0 0
\(697\) −11.7904 −0.446594
\(698\) 4.32071 0.163541
\(699\) 0 0
\(700\) −1.81774 −0.0687042
\(701\) 21.4708 0.810941 0.405471 0.914108i \(-0.367108\pi\)
0.405471 + 0.914108i \(0.367108\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −14.1968 −0.535063
\(705\) 0 0
\(706\) 12.0019 0.451697
\(707\) 9.20949 0.346358
\(708\) 0 0
\(709\) −48.2308 −1.81135 −0.905674 0.423976i \(-0.860634\pi\)
−0.905674 + 0.423976i \(0.860634\pi\)
\(710\) 6.98987 0.262325
\(711\) 0 0
\(712\) 18.4233 0.690444
\(713\) 2.37027 0.0887674
\(714\) 0 0
\(715\) −10.3602 −0.387450
\(716\) 23.6105 0.882364
\(717\) 0 0
\(718\) 14.8928 0.555795
\(719\) −38.4792 −1.43503 −0.717517 0.696541i \(-0.754721\pi\)
−0.717517 + 0.696541i \(0.754721\pi\)
\(720\) 0 0
\(721\) −15.6441 −0.582616
\(722\) 0 0
\(723\) 0 0
\(724\) −22.9625 −0.853394
\(725\) −0.540324 −0.0200671
\(726\) 0 0
\(727\) 43.2956 1.60574 0.802872 0.596152i \(-0.203304\pi\)
0.802872 + 0.596152i \(0.203304\pi\)
\(728\) 2.62299 0.0972143
\(729\) 0 0
\(730\) 4.18360 0.154842
\(731\) −23.8745 −0.883030
\(732\) 0 0
\(733\) −13.5020 −0.498708 −0.249354 0.968412i \(-0.580218\pi\)
−0.249354 + 0.968412i \(0.580218\pi\)
\(734\) 13.9843 0.516170
\(735\) 0 0
\(736\) −11.5416 −0.425430
\(737\) −12.0019 −0.442096
\(738\) 0 0
\(739\) −9.79526 −0.360324 −0.180162 0.983637i \(-0.557662\pi\)
−0.180162 + 0.983637i \(0.557662\pi\)
\(740\) −14.0856 −0.517795
\(741\) 0 0
\(742\) 5.37091 0.197172
\(743\) −9.12970 −0.334936 −0.167468 0.985877i \(-0.553559\pi\)
−0.167468 + 0.985877i \(0.553559\pi\)
\(744\) 0 0
\(745\) 4.13724 0.151577
\(746\) 15.2839 0.559584
\(747\) 0 0
\(748\) 15.6812 0.573362
\(749\) −13.4913 −0.492962
\(750\) 0 0
\(751\) 10.4251 0.380417 0.190208 0.981744i \(-0.439084\pi\)
0.190208 + 0.981744i \(0.439084\pi\)
\(752\) 7.44234 0.271394
\(753\) 0 0
\(754\) 0.370669 0.0134990
\(755\) −27.3390 −0.994967
\(756\) 0 0
\(757\) 7.79432 0.283289 0.141645 0.989918i \(-0.454761\pi\)
0.141645 + 0.989918i \(0.454761\pi\)
\(758\) −10.4105 −0.378127
\(759\) 0 0
\(760\) 0 0
\(761\) 36.7419 1.33189 0.665947 0.745999i \(-0.268028\pi\)
0.665947 + 0.745999i \(0.268028\pi\)
\(762\) 0 0
\(763\) −15.7899 −0.571633
\(764\) −35.6916 −1.29128
\(765\) 0 0
\(766\) 2.90926 0.105116
\(767\) 10.4049 0.375700
\(768\) 0 0
\(769\) 8.15284 0.293999 0.146999 0.989137i \(-0.453038\pi\)
0.146999 + 0.989137i \(0.453038\pi\)
\(770\) 3.73756 0.134692
\(771\) 0 0
\(772\) 2.77836 0.0999955
\(773\) 18.4971 0.665295 0.332648 0.943051i \(-0.392058\pi\)
0.332648 + 0.943051i \(0.392058\pi\)
\(774\) 0 0
\(775\) 0.816631 0.0293342
\(776\) 18.2120 0.653773
\(777\) 0 0
\(778\) 15.7827 0.565838
\(779\) 0 0
\(780\) 0 0
\(781\) −29.3345 −1.04967
\(782\) 2.56702 0.0917965
\(783\) 0 0
\(784\) −16.5188 −0.589957
\(785\) 15.9607 0.569663
\(786\) 0 0
\(787\) −16.0647 −0.572643 −0.286322 0.958134i \(-0.592433\pi\)
−0.286322 + 0.958134i \(0.592433\pi\)
\(788\) 7.28562 0.259539
\(789\) 0 0
\(790\) 5.11690 0.182051
\(791\) −19.5353 −0.694595
\(792\) 0 0
\(793\) −9.81461 −0.348527
\(794\) 2.18643 0.0775933
\(795\) 0 0
\(796\) −13.6577 −0.484083
\(797\) −6.01294 −0.212989 −0.106495 0.994313i \(-0.533963\pi\)
−0.106495 + 0.994313i \(0.533963\pi\)
\(798\) 0 0
\(799\) −5.99235 −0.211994
\(800\) −3.97644 −0.140588
\(801\) 0 0
\(802\) −4.82540 −0.170391
\(803\) −17.5574 −0.619587
\(804\) 0 0
\(805\) −5.91445 −0.208457
\(806\) −0.560219 −0.0197329
\(807\) 0 0
\(808\) 13.2143 0.464877
\(809\) −0.0546010 −0.00191967 −0.000959834 1.00000i \(-0.500306\pi\)
−0.000959834 1.00000i \(0.500306\pi\)
\(810\) 0 0
\(811\) 26.0940 0.916286 0.458143 0.888879i \(-0.348515\pi\)
0.458143 + 0.888879i \(0.348515\pi\)
\(812\) 1.29265 0.0453632
\(813\) 0 0
\(814\) −6.11516 −0.214336
\(815\) −13.1488 −0.460582
\(816\) 0 0
\(817\) 0 0
\(818\) −2.13218 −0.0745500
\(819\) 0 0
\(820\) 18.5307 0.647119
\(821\) −24.5397 −0.856440 −0.428220 0.903674i \(-0.640859\pi\)
−0.428220 + 0.903674i \(0.640859\pi\)
\(822\) 0 0
\(823\) 3.90219 0.136022 0.0680108 0.997685i \(-0.478335\pi\)
0.0680108 + 0.997685i \(0.478335\pi\)
\(824\) −22.4470 −0.781979
\(825\) 0 0
\(826\) −3.75369 −0.130607
\(827\) −22.2092 −0.772289 −0.386145 0.922438i \(-0.626193\pi\)
−0.386145 + 0.922438i \(0.626193\pi\)
\(828\) 0 0
\(829\) −40.1536 −1.39459 −0.697296 0.716784i \(-0.745613\pi\)
−0.697296 + 0.716784i \(0.745613\pi\)
\(830\) 14.8354 0.514944
\(831\) 0 0
\(832\) −5.30978 −0.184084
\(833\) 13.3004 0.460833
\(834\) 0 0
\(835\) 34.9235 1.20858
\(836\) 0 0
\(837\) 0 0
\(838\) −6.14347 −0.212223
\(839\) 17.6139 0.608101 0.304050 0.952656i \(-0.401661\pi\)
0.304050 + 0.952656i \(0.401661\pi\)
\(840\) 0 0
\(841\) −28.6158 −0.986750
\(842\) −7.36751 −0.253901
\(843\) 0 0
\(844\) −5.78431 −0.199104
\(845\) 22.5389 0.775363
\(846\) 0 0
\(847\) −3.02953 −0.104096
\(848\) −31.3734 −1.07737
\(849\) 0 0
\(850\) 0.884416 0.0303352
\(851\) 9.67685 0.331718
\(852\) 0 0
\(853\) −3.11904 −0.106794 −0.0533970 0.998573i \(-0.517005\pi\)
−0.0533970 + 0.998573i \(0.517005\pi\)
\(854\) 3.54072 0.121161
\(855\) 0 0
\(856\) −19.3581 −0.661647
\(857\) 19.0436 0.650518 0.325259 0.945625i \(-0.394549\pi\)
0.325259 + 0.945625i \(0.394549\pi\)
\(858\) 0 0
\(859\) −19.5111 −0.665710 −0.332855 0.942978i \(-0.608012\pi\)
−0.332855 + 0.942978i \(0.608012\pi\)
\(860\) 37.5229 1.27952
\(861\) 0 0
\(862\) −0.844334 −0.0287581
\(863\) −28.7796 −0.979670 −0.489835 0.871815i \(-0.662943\pi\)
−0.489835 + 0.871815i \(0.662943\pi\)
\(864\) 0 0
\(865\) −18.9911 −0.645718
\(866\) 12.7134 0.432018
\(867\) 0 0
\(868\) −1.95368 −0.0663122
\(869\) −21.4742 −0.728462
\(870\) 0 0
\(871\) −4.48886 −0.152099
\(872\) −22.6563 −0.767238
\(873\) 0 0
\(874\) 0 0
\(875\) −13.7262 −0.464031
\(876\) 0 0
\(877\) 52.4228 1.77019 0.885096 0.465409i \(-0.154093\pi\)
0.885096 + 0.465409i \(0.154093\pi\)
\(878\) 4.63988 0.156588
\(879\) 0 0
\(880\) −21.8324 −0.735970
\(881\) 10.4947 0.353575 0.176788 0.984249i \(-0.443429\pi\)
0.176788 + 0.984249i \(0.443429\pi\)
\(882\) 0 0
\(883\) 40.0003 1.34612 0.673059 0.739589i \(-0.264980\pi\)
0.673059 + 0.739589i \(0.264980\pi\)
\(884\) 5.86496 0.197260
\(885\) 0 0
\(886\) −8.58872 −0.288544
\(887\) −12.5542 −0.421528 −0.210764 0.977537i \(-0.567595\pi\)
−0.210764 + 0.977537i \(0.567595\pi\)
\(888\) 0 0
\(889\) −12.5925 −0.422339
\(890\) 9.81851 0.329117
\(891\) 0 0
\(892\) −26.0909 −0.873588
\(893\) 0 0
\(894\) 0 0
\(895\) 26.4675 0.884712
\(896\) 12.4128 0.414681
\(897\) 0 0
\(898\) 10.8716 0.362788
\(899\) −0.580731 −0.0193685
\(900\) 0 0
\(901\) 25.2609 0.841563
\(902\) 8.04497 0.267868
\(903\) 0 0
\(904\) −28.0303 −0.932275
\(905\) −25.7411 −0.855665
\(906\) 0 0
\(907\) −33.0482 −1.09735 −0.548673 0.836037i \(-0.684867\pi\)
−0.548673 + 0.836037i \(0.684867\pi\)
\(908\) −16.1094 −0.534609
\(909\) 0 0
\(910\) 1.39789 0.0463396
\(911\) 45.8125 1.51784 0.758918 0.651186i \(-0.225728\pi\)
0.758918 + 0.651186i \(0.225728\pi\)
\(912\) 0 0
\(913\) −62.2600 −2.06051
\(914\) 4.39145 0.145256
\(915\) 0 0
\(916\) 12.3948 0.409534
\(917\) −25.8532 −0.853748
\(918\) 0 0
\(919\) −41.5838 −1.37172 −0.685861 0.727733i \(-0.740574\pi\)
−0.685861 + 0.727733i \(0.740574\pi\)
\(920\) −8.48639 −0.279788
\(921\) 0 0
\(922\) 8.88574 0.292636
\(923\) −10.9715 −0.361130
\(924\) 0 0
\(925\) 3.33397 0.109620
\(926\) 8.70382 0.286025
\(927\) 0 0
\(928\) 2.82777 0.0928259
\(929\) 8.58031 0.281511 0.140755 0.990044i \(-0.455047\pi\)
0.140755 + 0.990044i \(0.455047\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.88024 0.0615894
\(933\) 0 0
\(934\) −5.82081 −0.190463
\(935\) 17.5788 0.574887
\(936\) 0 0
\(937\) −6.68899 −0.218520 −0.109260 0.994013i \(-0.534848\pi\)
−0.109260 + 0.994013i \(0.534848\pi\)
\(938\) 1.61940 0.0528754
\(939\) 0 0
\(940\) 9.41800 0.307181
\(941\) −13.5643 −0.442183 −0.221091 0.975253i \(-0.570962\pi\)
−0.221091 + 0.975253i \(0.570962\pi\)
\(942\) 0 0
\(943\) −12.7307 −0.414568
\(944\) 21.9266 0.713651
\(945\) 0 0
\(946\) 16.2903 0.529643
\(947\) −26.2948 −0.854467 −0.427234 0.904141i \(-0.640512\pi\)
−0.427234 + 0.904141i \(0.640512\pi\)
\(948\) 0 0
\(949\) −6.56668 −0.213163
\(950\) 0 0
\(951\) 0 0
\(952\) −4.45057 −0.144244
\(953\) −7.58446 −0.245685 −0.122842 0.992426i \(-0.539201\pi\)
−0.122842 + 0.992426i \(0.539201\pi\)
\(954\) 0 0
\(955\) −40.0106 −1.29471
\(956\) −33.7046 −1.09008
\(957\) 0 0
\(958\) −0.574044 −0.0185465
\(959\) −7.59753 −0.245337
\(960\) 0 0
\(961\) −30.1223 −0.971687
\(962\) −2.28714 −0.0737404
\(963\) 0 0
\(964\) 48.3710 1.55793
\(965\) 3.11457 0.100262
\(966\) 0 0
\(967\) 2.14576 0.0690031 0.0345016 0.999405i \(-0.489016\pi\)
0.0345016 + 0.999405i \(0.489016\pi\)
\(968\) −4.34694 −0.139716
\(969\) 0 0
\(970\) 9.70589 0.311637
\(971\) 19.1139 0.613396 0.306698 0.951807i \(-0.400776\pi\)
0.306698 + 0.951807i \(0.400776\pi\)
\(972\) 0 0
\(973\) 17.6999 0.567432
\(974\) 2.44736 0.0784184
\(975\) 0 0
\(976\) −20.6826 −0.662035
\(977\) 45.5157 1.45618 0.728089 0.685483i \(-0.240409\pi\)
0.728089 + 0.685483i \(0.240409\pi\)
\(978\) 0 0
\(979\) −41.2055 −1.31693
\(980\) −20.9039 −0.667750
\(981\) 0 0
\(982\) 17.9545 0.572952
\(983\) 17.0414 0.543538 0.271769 0.962363i \(-0.412391\pi\)
0.271769 + 0.962363i \(0.412391\pi\)
\(984\) 0 0
\(985\) 8.16724 0.260230
\(986\) −0.628935 −0.0200294
\(987\) 0 0
\(988\) 0 0
\(989\) −25.7784 −0.819705
\(990\) 0 0
\(991\) 11.2810 0.358353 0.179176 0.983817i \(-0.442657\pi\)
0.179176 + 0.983817i \(0.442657\pi\)
\(992\) −4.27381 −0.135693
\(993\) 0 0
\(994\) 3.95807 0.125542
\(995\) −15.3104 −0.485371
\(996\) 0 0
\(997\) −52.3584 −1.65821 −0.829104 0.559095i \(-0.811149\pi\)
−0.829104 + 0.559095i \(0.811149\pi\)
\(998\) −0.142532 −0.00451177
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9747.2.a.bm.1.4 6
3.2 odd 2 9747.2.a.br.1.3 6
19.8 odd 6 513.2.f.f.406.4 yes 12
19.12 odd 6 513.2.f.f.163.4 12
19.18 odd 2 9747.2.a.bs.1.3 6
57.8 even 6 513.2.f.h.406.3 yes 12
57.50 even 6 513.2.f.h.163.3 yes 12
57.56 even 2 9747.2.a.bl.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.f.f.163.4 12 19.12 odd 6
513.2.f.f.406.4 yes 12 19.8 odd 6
513.2.f.h.163.3 yes 12 57.50 even 6
513.2.f.h.406.3 yes 12 57.8 even 6
9747.2.a.bl.1.4 6 57.56 even 2
9747.2.a.bm.1.4 6 1.1 even 1 trivial
9747.2.a.br.1.3 6 3.2 odd 2
9747.2.a.bs.1.3 6 19.18 odd 2