Newspace parameters
Level: | \( N \) | \(=\) | \( 51 = 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 51.j (of order \(16\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.38964934824\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −1.50885 | + | 3.64269i | −0.962276 | + | 1.44015i | −8.16414 | − | 8.16414i | 0.501657 | + | 2.52200i | −3.79408 | − | 5.67825i | −0.668021 | + | 3.35837i | 27.4872 | − | 11.3856i | −1.14805 | − | 2.77164i | −9.94380 | − | 1.97794i |
7.2 | −0.927907 | + | 2.24016i | 0.962276 | − | 1.44015i | −1.32890 | − | 1.32890i | 1.42152 | + | 7.14649i | 2.33327 | + | 3.49198i | 0.118569 | − | 0.596086i | −4.75061 | + | 1.96777i | −1.14805 | − | 2.77164i | −17.3284 | − | 3.44682i |
7.3 | −0.412445 | + | 0.995731i | −0.962276 | + | 1.44015i | 2.00706 | + | 2.00706i | −0.354838 | − | 1.78389i | −1.03711 | − | 1.55215i | −2.27450 | + | 11.4347i | −6.80922 | + | 2.82047i | −1.14805 | − | 2.77164i | 1.92263 | + | 0.382434i |
7.4 | 0.217952 | − | 0.526183i | 0.962276 | − | 1.44015i | 2.59906 | + | 2.59906i | −0.692512 | − | 3.48150i | −0.548051 | − | 0.820216i | −0.153043 | + | 0.769402i | 4.03879 | − | 1.67292i | −1.14805 | − | 2.77164i | −1.98284 | − | 0.394411i |
7.5 | 0.277861 | − | 0.670815i | −0.962276 | + | 1.44015i | 2.45564 | + | 2.45564i | 1.19712 | + | 6.01834i | 0.698694 | + | 1.04567i | 2.29221 | − | 11.5237i | 5.01286 | − | 2.07640i | −1.14805 | − | 2.77164i | 4.36982 | + | 0.869212i |
7.6 | 1.27100 | − | 3.06846i | 0.962276 | − | 1.44015i | −4.97161 | − | 4.97161i | 1.29074 | + | 6.48900i | −3.19599 | − | 4.78314i | −0.615844 | + | 3.09605i | −9.30025 | + | 3.85229i | −1.14805 | − | 2.77164i | 21.5518 | + | 4.28692i |
10.1 | −1.20106 | + | 2.89963i | −1.44015 | − | 0.962276i | −4.13685 | − | 4.13685i | −8.14921 | + | 1.62098i | 4.51995 | − | 3.02014i | 2.78848 | + | 0.554662i | 5.36545 | − | 2.22244i | 1.14805 | + | 2.77164i | 5.08750 | − | 25.5766i |
10.2 | −0.699672 | + | 1.68916i | 1.44015 | + | 0.962276i | 0.464717 | + | 0.464717i | −1.46623 | + | 0.291651i | −2.63307 | + | 1.75936i | 2.48667 | + | 0.494629i | −7.86676 | + | 3.25852i | 1.14805 | + | 2.77164i | 0.533234 | − | 2.68075i |
10.3 | −0.129487 | + | 0.312609i | −1.44015 | − | 0.962276i | 2.74747 | + | 2.74747i | 4.39054 | − | 0.873333i | 0.487296 | − | 0.325601i | 5.56021 | + | 1.10600i | −2.46508 | + | 1.02107i | 1.14805 | + | 2.77164i | −0.295505 | + | 1.48561i |
10.4 | 0.599063 | − | 1.44627i | 1.44015 | + | 0.962276i | 1.09562 | + | 1.09562i | 1.92847 | − | 0.383596i | 2.25445 | − | 1.50637i | −10.3593 | − | 2.06060i | 8.02596 | − | 3.32446i | 1.14805 | + | 2.77164i | 0.600492 | − | 3.01888i |
10.5 | 1.13525 | − | 2.74074i | −1.44015 | − | 0.962276i | −3.39445 | − | 3.39445i | 2.36138 | − | 0.469707i | −4.27229 | + | 2.85465i | −3.45573 | − | 0.687388i | −2.19392 | + | 0.908751i | 1.14805 | + | 2.77164i | 1.39341 | − | 7.00517i |
10.6 | 1.37830 | − | 3.32751i | 1.44015 | + | 0.962276i | −6.34417 | − | 6.34417i | −5.25707 | + | 1.04570i | 5.18693 | − | 3.46580i | 12.7656 | + | 2.53924i | −16.5444 | + | 6.85292i | 1.14805 | + | 2.77164i | −3.76625 | + | 18.9342i |
22.1 | −1.50885 | − | 3.64269i | −0.962276 | − | 1.44015i | −8.16414 | + | 8.16414i | 0.501657 | − | 2.52200i | −3.79408 | + | 5.67825i | −0.668021 | − | 3.35837i | 27.4872 | + | 11.3856i | −1.14805 | + | 2.77164i | −9.94380 | + | 1.97794i |
22.2 | −0.927907 | − | 2.24016i | 0.962276 | + | 1.44015i | −1.32890 | + | 1.32890i | 1.42152 | − | 7.14649i | 2.33327 | − | 3.49198i | 0.118569 | + | 0.596086i | −4.75061 | − | 1.96777i | −1.14805 | + | 2.77164i | −17.3284 | + | 3.44682i |
22.3 | −0.412445 | − | 0.995731i | −0.962276 | − | 1.44015i | 2.00706 | − | 2.00706i | −0.354838 | + | 1.78389i | −1.03711 | + | 1.55215i | −2.27450 | − | 11.4347i | −6.80922 | − | 2.82047i | −1.14805 | + | 2.77164i | 1.92263 | − | 0.382434i |
22.4 | 0.217952 | + | 0.526183i | 0.962276 | + | 1.44015i | 2.59906 | − | 2.59906i | −0.692512 | + | 3.48150i | −0.548051 | + | 0.820216i | −0.153043 | − | 0.769402i | 4.03879 | + | 1.67292i | −1.14805 | + | 2.77164i | −1.98284 | + | 0.394411i |
22.5 | 0.277861 | + | 0.670815i | −0.962276 | − | 1.44015i | 2.45564 | − | 2.45564i | 1.19712 | − | 6.01834i | 0.698694 | − | 1.04567i | 2.29221 | + | 11.5237i | 5.01286 | + | 2.07640i | −1.14805 | + | 2.77164i | 4.36982 | − | 0.869212i |
22.6 | 1.27100 | + | 3.06846i | 0.962276 | + | 1.44015i | −4.97161 | + | 4.97161i | 1.29074 | − | 6.48900i | −3.19599 | + | 4.78314i | −0.615844 | − | 3.09605i | −9.30025 | − | 3.85229i | −1.14805 | + | 2.77164i | 21.5518 | − | 4.28692i |
28.1 | −2.49222 | − | 1.03231i | 0.337906 | + | 1.69877i | 2.31706 | + | 2.31706i | −6.00641 | − | 4.01336i | 0.911522 | − | 4.58253i | −8.31178 | + | 5.55375i | 0.746544 | + | 1.80232i | −2.77164 | + | 1.14805i | 10.8263 | + | 16.2026i |
28.2 | −1.58813 | − | 0.657825i | 0.337906 | + | 1.69877i | −0.739002 | − | 0.739002i | 7.17579 | + | 4.79471i | 0.580854 | − | 2.92015i | 6.00636 | − | 4.01332i | 3.31880 | + | 8.01229i | −2.77164 | + | 1.14805i | −8.24201 | − | 12.3350i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.e | odd | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 51.3.j.a | ✓ | 48 |
3.b | odd | 2 | 1 | 153.3.p.c | 48 | ||
17.e | odd | 16 | 1 | inner | 51.3.j.a | ✓ | 48 |
51.i | even | 16 | 1 | 153.3.p.c | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
51.3.j.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
51.3.j.a | ✓ | 48 | 17.e | odd | 16 | 1 | inner |
153.3.p.c | 48 | 3.b | odd | 2 | 1 | ||
153.3.p.c | 48 | 51.i | even | 16 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(51, [\chi])\).