Properties

Label 51.3
Level 51
Weight 3
Dimension 128
Nonzero newspaces 5
Newform subspaces 9
Sturm bound 576
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 51 = 3 \cdot 17 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 9 \)
Sturm bound: \(576\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(51))\).

Total New Old
Modular forms 224 156 68
Cusp forms 160 128 32
Eisenstein series 64 28 36

Trace form

\( 128 q - 8 q^{3} - 16 q^{4} - 8 q^{6} - 16 q^{7} - 8 q^{9} - 64 q^{10} - 80 q^{11} - 104 q^{12} - 64 q^{13} - 64 q^{14} - 32 q^{15} - 32 q^{16} + 16 q^{17} + 48 q^{18} + 32 q^{19} + 224 q^{20} + 112 q^{21}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(51))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
51.3.b \(\chi_{51}(35, \cdot)\) 51.3.b.a 10 1
51.3.c \(\chi_{51}(50, \cdot)\) 51.3.c.a 1 1
51.3.c.b 1
51.3.c.c 8
51.3.f \(\chi_{51}(38, \cdot)\) 51.3.f.a 20 2
51.3.g \(\chi_{51}(2, \cdot)\) 51.3.g.a 4 4
51.3.g.b 4
51.3.g.c 32
51.3.j \(\chi_{51}(7, \cdot)\) 51.3.j.a 48 8

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(51))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(51)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 2}\)