Properties

Label 2-51-17.5-c2-0-2
Degree $2$
Conductor $51$
Sign $0.900 + 0.434i$
Analytic cond. $1.38964$
Root an. cond. $1.17883$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.277 + 0.670i)2-s + (−0.962 − 1.44i)3-s + (2.45 − 2.45i)4-s + (1.19 − 6.01i)5-s + (0.698 − 1.04i)6-s + (2.29 + 11.5i)7-s + (5.01 + 2.07i)8-s + (−1.14 + 2.77i)9-s + (4.36 − 0.869i)10-s + (−9.91 − 6.62i)11-s + (−5.89 − 1.17i)12-s + (−2.41 − 2.41i)13-s + (−7.09 + 4.73i)14-s + (−9.81 + 4.06i)15-s − 9.95i·16-s + (−1.49 + 16.9i)17-s + ⋯
L(s)  = 1  + (0.138 + 0.335i)2-s + (−0.320 − 0.480i)3-s + (0.613 − 0.613i)4-s + (0.239 − 1.20i)5-s + (0.116 − 0.174i)6-s + (0.327 + 1.64i)7-s + (0.626 + 0.259i)8-s + (−0.127 + 0.307i)9-s + (0.436 − 0.0869i)10-s + (−0.901 − 0.602i)11-s + (−0.491 − 0.0977i)12-s + (−0.185 − 0.185i)13-s + (−0.506 + 0.338i)14-s + (−0.654 + 0.271i)15-s − 0.621i·16-s + (−0.0882 + 0.996i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.900 + 0.434i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.900 + 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51\)    =    \(3 \cdot 17\)
Sign: $0.900 + 0.434i$
Analytic conductor: \(1.38964\)
Root analytic conductor: \(1.17883\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{51} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 51,\ (\ :1),\ 0.900 + 0.434i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.24409 - 0.284224i\)
\(L(\frac12)\) \(\approx\) \(1.24409 - 0.284224i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.962 + 1.44i)T \)
17 \( 1 + (1.49 - 16.9i)T \)
good2 \( 1 + (-0.277 - 0.670i)T + (-2.82 + 2.82i)T^{2} \)
5 \( 1 + (-1.19 + 6.01i)T + (-23.0 - 9.56i)T^{2} \)
7 \( 1 + (-2.29 - 11.5i)T + (-45.2 + 18.7i)T^{2} \)
11 \( 1 + (9.91 + 6.62i)T + (46.3 + 111. i)T^{2} \)
13 \( 1 + (2.41 + 2.41i)T + 169iT^{2} \)
19 \( 1 + (-9.92 - 23.9i)T + (-255. + 255. i)T^{2} \)
23 \( 1 + (7.39 - 11.0i)T + (-202. - 488. i)T^{2} \)
29 \( 1 + (13.9 + 2.78i)T + (776. + 321. i)T^{2} \)
31 \( 1 + (13.5 - 9.04i)T + (367. - 887. i)T^{2} \)
37 \( 1 + (19.6 + 29.3i)T + (-523. + 1.26e3i)T^{2} \)
41 \( 1 + (8.32 + 41.8i)T + (-1.55e3 + 643. i)T^{2} \)
43 \( 1 + (-30.9 + 74.6i)T + (-1.30e3 - 1.30e3i)T^{2} \)
47 \( 1 + (-55.2 - 55.2i)T + 2.20e3iT^{2} \)
53 \( 1 + (11.4 + 27.6i)T + (-1.98e3 + 1.98e3i)T^{2} \)
59 \( 1 + (-2.27 - 0.940i)T + (2.46e3 + 2.46e3i)T^{2} \)
61 \( 1 + (36.5 - 7.27i)T + (3.43e3 - 1.42e3i)T^{2} \)
67 \( 1 + 4.40iT - 4.48e3T^{2} \)
71 \( 1 + (16.3 + 24.5i)T + (-1.92e3 + 4.65e3i)T^{2} \)
73 \( 1 + (-9.41 + 47.3i)T + (-4.92e3 - 2.03e3i)T^{2} \)
79 \( 1 + (13.7 + 9.19i)T + (2.38e3 + 5.76e3i)T^{2} \)
83 \( 1 + (128. - 53.2i)T + (4.87e3 - 4.87e3i)T^{2} \)
89 \( 1 + (4.21 - 4.21i)T - 7.92e3iT^{2} \)
97 \( 1 + (-108. - 21.6i)T + (8.69e3 + 3.60e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.41964738938250329560008013189, −14.11598135150760567424374469811, −12.70903490619407598938203361771, −11.99288632179942076055757746876, −10.61224667619144086754349079075, −8.958843159647941682038745151541, −7.82499122044916399210523680670, −5.66931550081437441231139147493, −5.52388035141119296737675033157, −1.90137320823998971975383765631, 2.88818346982209978263572405618, 4.51458437720809198352512864980, 6.88084859660952108024546650392, 7.51598536646531790977651764807, 9.968264963774170276082133505773, 10.78911726665121641713017101176, 11.47979041874196914292271284076, 13.14382435604417416048508843740, 14.14453099451887416264861385884, 15.40798827496287262468378361973

Graph of the $Z$-function along the critical line