Properties

Label 2-51-17.12-c2-0-0
Degree $2$
Conductor $51$
Sign $-0.415 - 0.909i$
Analytic cond. $1.38964$
Root an. cond. $1.17883$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.13 + 2.74i)2-s + (−1.44 + 0.962i)3-s + (−3.39 + 3.39i)4-s + (2.36 + 0.469i)5-s + (−4.27 − 2.85i)6-s + (−3.45 + 0.687i)7-s + (−2.19 − 0.908i)8-s + (1.14 − 2.77i)9-s + (1.39 + 7.00i)10-s + (9.01 − 13.4i)11-s + (1.62 − 8.15i)12-s + (1.90 + 1.90i)13-s + (−5.80 − 8.69i)14-s + (−3.85 + 1.59i)15-s + 12.1i·16-s + (15.6 + 6.64i)17-s + ⋯
L(s)  = 1  + (0.567 + 1.37i)2-s + (−0.480 + 0.320i)3-s + (−0.848 + 0.848i)4-s + (0.472 + 0.0939i)5-s + (−0.712 − 0.475i)6-s + (−0.493 + 0.0981i)7-s + (−0.274 − 0.113i)8-s + (0.127 − 0.307i)9-s + (0.139 + 0.700i)10-s + (0.819 − 1.22i)11-s + (0.135 − 0.679i)12-s + (0.146 + 0.146i)13-s + (−0.414 − 0.620i)14-s + (−0.256 + 0.106i)15-s + 0.759i·16-s + (0.920 + 0.390i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.415 - 0.909i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.415 - 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51\)    =    \(3 \cdot 17\)
Sign: $-0.415 - 0.909i$
Analytic conductor: \(1.38964\)
Root analytic conductor: \(1.17883\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{51} (46, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 51,\ (\ :1),\ -0.415 - 0.909i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.730124 + 1.13592i\)
\(L(\frac12)\) \(\approx\) \(0.730124 + 1.13592i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.44 - 0.962i)T \)
17 \( 1 + (-15.6 - 6.64i)T \)
good2 \( 1 + (-1.13 - 2.74i)T + (-2.82 + 2.82i)T^{2} \)
5 \( 1 + (-2.36 - 0.469i)T + (23.0 + 9.56i)T^{2} \)
7 \( 1 + (3.45 - 0.687i)T + (45.2 - 18.7i)T^{2} \)
11 \( 1 + (-9.01 + 13.4i)T + (-46.3 - 111. i)T^{2} \)
13 \( 1 + (-1.90 - 1.90i)T + 169iT^{2} \)
19 \( 1 + (1.93 + 4.67i)T + (-255. + 255. i)T^{2} \)
23 \( 1 + (32.9 + 21.9i)T + (202. + 488. i)T^{2} \)
29 \( 1 + (-0.0486 + 0.244i)T + (-776. - 321. i)T^{2} \)
31 \( 1 + (24.5 + 36.7i)T + (-367. + 887. i)T^{2} \)
37 \( 1 + (8.38 - 5.60i)T + (523. - 1.26e3i)T^{2} \)
41 \( 1 + (-52.7 + 10.4i)T + (1.55e3 - 643. i)T^{2} \)
43 \( 1 + (20.7 - 50.2i)T + (-1.30e3 - 1.30e3i)T^{2} \)
47 \( 1 + (-52.9 - 52.9i)T + 2.20e3iT^{2} \)
53 \( 1 + (-11.0 - 26.7i)T + (-1.98e3 + 1.98e3i)T^{2} \)
59 \( 1 + (10.2 + 4.26i)T + (2.46e3 + 2.46e3i)T^{2} \)
61 \( 1 + (5.87 + 29.5i)T + (-3.43e3 + 1.42e3i)T^{2} \)
67 \( 1 + 106. iT - 4.48e3T^{2} \)
71 \( 1 + (-2.20 + 1.47i)T + (1.92e3 - 4.65e3i)T^{2} \)
73 \( 1 + (-115. - 22.9i)T + (4.92e3 + 2.03e3i)T^{2} \)
79 \( 1 + (66.4 - 99.5i)T + (-2.38e3 - 5.76e3i)T^{2} \)
83 \( 1 + (38.6 - 16.0i)T + (4.87e3 - 4.87e3i)T^{2} \)
89 \( 1 + (7.13 - 7.13i)T - 7.92e3iT^{2} \)
97 \( 1 + (6.59 - 33.1i)T + (-8.69e3 - 3.60e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.79775868623870750377132115830, −14.49191759104210370676415824605, −13.82319931935683695148516405513, −12.49689937279175749204311111784, −10.98688215661091530477769060960, −9.505918358950653993814639153346, −8.029056251638613110316715366701, −6.30076630284928254782840668094, −5.85192085358886579991377341441, −4.02094896274649223532009141866, 1.76559544269202277957125471014, 3.83365811219061514106664237340, 5.52401799975986202361016139356, 7.23905819570941787679627814283, 9.563857738295138845622806432262, 10.30850430436509021126201300118, 11.78794609494584412546412724106, 12.36511981660482971728996650954, 13.41844688173228913157206452616, 14.39625678393530568746913537916

Graph of the $Z$-function along the critical line