Properties

Label 51.3.f.a.47.8
Level $51$
Weight $3$
Character 51.47
Analytic conductor $1.390$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,3,Mod(38,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.38"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 51.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38964934824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 62 x^{18} + 1545 x^{16} + 20120 x^{14} + 149608 x^{12} + 655792 x^{10} + 1690896 x^{8} + \cdots + 36864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.8
Root \(-1.52557i\) of defining polynomial
Character \(\chi\) \(=\) 51.47
Dual form 51.3.f.a.38.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52557 q^{2} +(-0.805308 + 2.88989i) q^{3} +2.37853 q^{4} +(0.0213954 - 0.0213954i) q^{5} +(-2.03387 + 7.29864i) q^{6} +(6.89994 - 6.89994i) q^{7} -4.09515 q^{8} +(-7.70296 - 4.65451i) q^{9} +(0.0540358 - 0.0540358i) q^{10} +(-2.99781 - 2.99781i) q^{11} +(-1.91545 + 6.87369i) q^{12} -5.86939 q^{13} +(17.4263 - 17.4263i) q^{14} +(0.0446006 + 0.0790604i) q^{15} -19.8567 q^{16} +(16.8769 + 2.04180i) q^{17} +(-19.4544 - 11.7553i) q^{18} +22.1601i q^{19} +(0.0508896 - 0.0508896i) q^{20} +(14.3835 + 25.4967i) q^{21} +(-7.57118 - 7.57118i) q^{22} +(-4.33017 - 4.33017i) q^{23} +(3.29786 - 11.8345i) q^{24} +24.9991i q^{25} -14.8236 q^{26} +(19.6543 - 18.5124i) q^{27} +(16.4117 - 16.4117i) q^{28} +(2.07869 - 2.07869i) q^{29} +(0.112642 + 0.199673i) q^{30} +(-35.3313 - 35.3313i) q^{31} -33.7690 q^{32} +(11.0775 - 6.24918i) q^{33} +(42.6240 + 5.15673i) q^{34} -0.295254i q^{35} +(-18.3217 - 11.0709i) q^{36} +(33.3847 + 33.3847i) q^{37} +55.9671i q^{38} +(4.72667 - 16.9619i) q^{39} +(-0.0876174 + 0.0876174i) q^{40} +(44.4867 + 44.4867i) q^{41} +(36.3266 + 64.3938i) q^{42} +19.1248i q^{43} +(-7.13037 - 7.13037i) q^{44} +(-0.264393 + 0.0652228i) q^{45} +(-10.9362 - 10.9362i) q^{46} -79.9440i q^{47} +(15.9908 - 57.3838i) q^{48} -46.2184i q^{49} +63.1371i q^{50} +(-19.4917 + 47.1283i) q^{51} -13.9605 q^{52} -54.2306 q^{53} +(49.6384 - 46.7545i) q^{54} -0.128279 q^{55} +(-28.2563 + 28.2563i) q^{56} +(-64.0404 - 17.8458i) q^{57} +(5.24989 - 5.24989i) q^{58} +5.34420 q^{59} +(0.106084 + 0.188047i) q^{60} +(44.0138 - 44.0138i) q^{61} +(-89.2317 - 89.2317i) q^{62} +(-85.2658 + 21.0341i) q^{63} -5.85937 q^{64} +(-0.125578 + 0.125578i) q^{65} +(27.9770 - 15.7828i) q^{66} -105.233 q^{67} +(40.1423 + 4.85649i) q^{68} +(16.0008 - 9.02659i) q^{69} -0.745687i q^{70} +(33.6145 - 33.6145i) q^{71} +(31.5447 + 19.0609i) q^{72} +(-20.6784 - 20.6784i) q^{73} +(84.3155 + 84.3155i) q^{74} +(-72.2447 - 20.1320i) q^{75} +52.7085i q^{76} -41.3694 q^{77} +(11.9376 - 42.8386i) q^{78} +(-17.7033 + 17.7033i) q^{79} +(-0.424843 + 0.424843i) q^{80} +(37.6711 + 71.7070i) q^{81} +(112.354 + 112.354i) q^{82} +86.0948 q^{83} +(34.2116 + 60.6446i) q^{84} +(0.404775 - 0.317404i) q^{85} +48.3010i q^{86} +(4.33320 + 7.68118i) q^{87} +(12.2765 + 12.2765i) q^{88} -87.8261i q^{89} +(-0.667745 + 0.164725i) q^{90} +(-40.4985 + 40.4985i) q^{91} +(-10.2994 - 10.2994i) q^{92} +(130.556 - 73.6510i) q^{93} -201.904i q^{94} +(0.474126 + 0.474126i) q^{95} +(27.1945 - 97.5889i) q^{96} +(66.3611 + 66.3611i) q^{97} -116.728i q^{98} +(9.13865 + 37.0453i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3} + 24 q^{4} - 2 q^{6} - 4 q^{7} - 16 q^{10} - 42 q^{12} - 12 q^{13} - 64 q^{16} - 4 q^{18} + 88 q^{21} - 40 q^{22} - 82 q^{24} + 54 q^{27} - 160 q^{28} + 48 q^{31} + 264 q^{33} + 152 q^{34}+ \cdots - 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.52557 1.26279 0.631394 0.775462i \(-0.282483\pi\)
0.631394 + 0.775462i \(0.282483\pi\)
\(3\) −0.805308 + 2.88989i −0.268436 + 0.963297i
\(4\) 2.37853 0.594632
\(5\) 0.0213954 0.0213954i 0.00427909 0.00427909i −0.704964 0.709243i \(-0.749037\pi\)
0.709243 + 0.704964i \(0.249037\pi\)
\(6\) −2.03387 + 7.29864i −0.338978 + 1.21644i
\(7\) 6.89994 6.89994i 0.985706 0.985706i −0.0141932 0.999899i \(-0.504518\pi\)
0.999899 + 0.0141932i \(0.00451800\pi\)
\(8\) −4.09515 −0.511893
\(9\) −7.70296 4.65451i −0.855884 0.517168i
\(10\) 0.0540358 0.0540358i 0.00540358 0.00540358i
\(11\) −2.99781 2.99781i −0.272528 0.272528i 0.557589 0.830117i \(-0.311726\pi\)
−0.830117 + 0.557589i \(0.811726\pi\)
\(12\) −1.91545 + 6.87369i −0.159621 + 0.572808i
\(13\) −5.86939 −0.451492 −0.225746 0.974186i \(-0.572482\pi\)
−0.225746 + 0.974186i \(0.572482\pi\)
\(14\) 17.4263 17.4263i 1.24474 1.24474i
\(15\) 0.0446006 + 0.0790604i 0.00297337 + 0.00527069i
\(16\) −19.8567 −1.24104
\(17\) 16.8769 + 2.04180i 0.992761 + 0.120106i
\(18\) −19.4544 11.7553i −1.08080 0.653073i
\(19\) 22.1601i 1.16632i 0.812356 + 0.583162i \(0.198185\pi\)
−0.812356 + 0.583162i \(0.801815\pi\)
\(20\) 0.0508896 0.0508896i 0.00254448 0.00254448i
\(21\) 14.3835 + 25.4967i 0.684929 + 1.21413i
\(22\) −7.57118 7.57118i −0.344145 0.344145i
\(23\) −4.33017 4.33017i −0.188268 0.188268i 0.606679 0.794947i \(-0.292501\pi\)
−0.794947 + 0.606679i \(0.792501\pi\)
\(24\) 3.29786 11.8345i 0.137411 0.493106i
\(25\) 24.9991i 0.999963i
\(26\) −14.8236 −0.570138
\(27\) 19.6543 18.5124i 0.727937 0.685644i
\(28\) 16.4117 16.4117i 0.586133 0.586133i
\(29\) 2.07869 2.07869i 0.0716790 0.0716790i −0.670358 0.742037i \(-0.733860\pi\)
0.742037 + 0.670358i \(0.233860\pi\)
\(30\) 0.112642 + 0.199673i 0.00375474 + 0.00665577i
\(31\) −35.3313 35.3313i −1.13972 1.13972i −0.988501 0.151218i \(-0.951681\pi\)
−0.151218 0.988501i \(-0.548319\pi\)
\(32\) −33.7690 −1.05528
\(33\) 11.0775 6.24918i 0.335682 0.189369i
\(34\) 42.6240 + 5.15673i 1.25365 + 0.151668i
\(35\) 0.295254i 0.00843584i
\(36\) −18.3217 11.0709i −0.508936 0.307525i
\(37\) 33.3847 + 33.3847i 0.902288 + 0.902288i 0.995634 0.0933453i \(-0.0297561\pi\)
−0.0933453 + 0.995634i \(0.529756\pi\)
\(38\) 55.9671i 1.47282i
\(39\) 4.72667 16.9619i 0.121197 0.434921i
\(40\) −0.0876174 + 0.0876174i −0.00219044 + 0.00219044i
\(41\) 44.4867 + 44.4867i 1.08504 + 1.08504i 0.996031 + 0.0890098i \(0.0283702\pi\)
0.0890098 + 0.996031i \(0.471630\pi\)
\(42\) 36.3266 + 64.3938i 0.864920 + 1.53318i
\(43\) 19.1248i 0.444762i 0.974960 + 0.222381i \(0.0713829\pi\)
−0.974960 + 0.222381i \(0.928617\pi\)
\(44\) −7.13037 7.13037i −0.162054 0.162054i
\(45\) −0.264393 + 0.0652228i −0.00587541 + 0.00144940i
\(46\) −10.9362 10.9362i −0.237743 0.237743i
\(47\) 79.9440i 1.70094i −0.526027 0.850468i \(-0.676319\pi\)
0.526027 0.850468i \(-0.323681\pi\)
\(48\) 15.9908 57.3838i 0.333141 1.19550i
\(49\) 46.2184i 0.943233i
\(50\) 63.1371i 1.26274i
\(51\) −19.4917 + 47.1283i −0.382191 + 0.924083i
\(52\) −13.9605 −0.268472
\(53\) −54.2306 −1.02322 −0.511610 0.859218i \(-0.670951\pi\)
−0.511610 + 0.859218i \(0.670951\pi\)
\(54\) 49.6384 46.7545i 0.919229 0.865823i
\(55\) −0.128279 −0.00233234
\(56\) −28.2563 + 28.2563i −0.504576 + 0.504576i
\(57\) −64.0404 17.8458i −1.12352 0.313083i
\(58\) 5.24989 5.24989i 0.0905153 0.0905153i
\(59\) 5.34420 0.0905796 0.0452898 0.998974i \(-0.485579\pi\)
0.0452898 + 0.998974i \(0.485579\pi\)
\(60\) 0.106084 + 0.188047i 0.00176806 + 0.00313412i
\(61\) 44.0138 44.0138i 0.721537 0.721537i −0.247381 0.968918i \(-0.579570\pi\)
0.968918 + 0.247381i \(0.0795700\pi\)
\(62\) −89.2317 89.2317i −1.43922 1.43922i
\(63\) −85.2658 + 21.0341i −1.35343 + 0.333875i
\(64\) −5.85937 −0.0915526
\(65\) −0.125578 + 0.125578i −0.00193197 + 0.00193197i
\(66\) 27.9770 15.7828i 0.423895 0.239133i
\(67\) −105.233 −1.57064 −0.785320 0.619090i \(-0.787502\pi\)
−0.785320 + 0.619090i \(0.787502\pi\)
\(68\) 40.1423 + 4.85649i 0.590328 + 0.0714189i
\(69\) 16.0008 9.02659i 0.231896 0.130820i
\(70\) 0.745687i 0.0106527i
\(71\) 33.6145 33.6145i 0.473444 0.473444i −0.429584 0.903027i \(-0.641340\pi\)
0.903027 + 0.429584i \(0.141340\pi\)
\(72\) 31.5447 + 19.0609i 0.438121 + 0.264735i
\(73\) −20.6784 20.6784i −0.283266 0.283266i 0.551144 0.834410i \(-0.314191\pi\)
−0.834410 + 0.551144i \(0.814191\pi\)
\(74\) 84.3155 + 84.3155i 1.13940 + 1.13940i
\(75\) −72.2447 20.1320i −0.963262 0.268426i
\(76\) 52.7085i 0.693533i
\(77\) −41.3694 −0.537265
\(78\) 11.9376 42.8386i 0.153046 0.549213i
\(79\) −17.7033 + 17.7033i −0.224093 + 0.224093i −0.810219 0.586127i \(-0.800652\pi\)
0.586127 + 0.810219i \(0.300652\pi\)
\(80\) −0.424843 + 0.424843i −0.00531054 + 0.00531054i
\(81\) 37.6711 + 71.7070i 0.465075 + 0.885271i
\(82\) 112.354 + 112.354i 1.37018 + 1.37018i
\(83\) 86.0948 1.03729 0.518644 0.854991i \(-0.326437\pi\)
0.518644 + 0.854991i \(0.326437\pi\)
\(84\) 34.2116 + 60.6446i 0.407281 + 0.721959i
\(85\) 0.404775 0.317404i 0.00476205 0.00373416i
\(86\) 48.3010i 0.561640i
\(87\) 4.33320 + 7.68118i 0.0498069 + 0.0882894i
\(88\) 12.2765 + 12.2765i 0.139505 + 0.139505i
\(89\) 87.8261i 0.986810i −0.869800 0.493405i \(-0.835752\pi\)
0.869800 0.493405i \(-0.164248\pi\)
\(90\) −0.667745 + 0.164725i −0.00741939 + 0.00183028i
\(91\) −40.4985 + 40.4985i −0.445038 + 0.445038i
\(92\) −10.2994 10.2994i −0.111950 0.111950i
\(93\) 130.556 73.6510i 1.40383 0.791946i
\(94\) 201.904i 2.14792i
\(95\) 0.474126 + 0.474126i 0.00499080 + 0.00499080i
\(96\) 27.1945 97.5889i 0.283276 1.01655i
\(97\) 66.3611 + 66.3611i 0.684135 + 0.684135i 0.960929 0.276794i \(-0.0892720\pi\)
−0.276794 + 0.960929i \(0.589272\pi\)
\(98\) 116.728i 1.19110i
\(99\) 9.13865 + 37.0453i 0.0923096 + 0.374195i
\(100\) 59.4610i 0.594610i
\(101\) 144.531i 1.43100i 0.698611 + 0.715502i \(0.253802\pi\)
−0.698611 + 0.715502i \(0.746198\pi\)
\(102\) −49.2278 + 119.026i −0.482626 + 1.16692i
\(103\) 82.6992 0.802905 0.401453 0.915880i \(-0.368505\pi\)
0.401453 + 0.915880i \(0.368505\pi\)
\(104\) 24.0360 0.231116
\(105\) 0.853253 + 0.237771i 0.00812622 + 0.00226448i
\(106\) −136.964 −1.29211
\(107\) −62.5184 + 62.5184i −0.584284 + 0.584284i −0.936078 0.351793i \(-0.885572\pi\)
0.351793 + 0.936078i \(0.385572\pi\)
\(108\) 46.7483 44.0323i 0.432855 0.407706i
\(109\) 66.9748 66.9748i 0.614448 0.614448i −0.329654 0.944102i \(-0.606932\pi\)
0.944102 + 0.329654i \(0.106932\pi\)
\(110\) −0.323977 −0.00294525
\(111\) −123.363 + 69.5932i −1.11138 + 0.626965i
\(112\) −137.010 + 137.010i −1.22331 + 1.22331i
\(113\) −90.9854 90.9854i −0.805180 0.805180i 0.178720 0.983900i \(-0.442804\pi\)
−0.983900 + 0.178720i \(0.942804\pi\)
\(114\) −161.739 45.0708i −1.41876 0.395358i
\(115\) −0.185291 −0.00161123
\(116\) 4.94422 4.94422i 0.0426226 0.0426226i
\(117\) 45.2117 + 27.3192i 0.386425 + 0.233497i
\(118\) 13.4972 0.114383
\(119\) 130.538 102.362i 1.09696 0.860181i
\(120\) −0.182646 0.323764i −0.00152205 0.00269803i
\(121\) 103.026i 0.851457i
\(122\) 111.160 111.160i 0.911148 0.911148i
\(123\) −164.387 + 92.7362i −1.33648 + 0.753953i
\(124\) −84.0364 84.0364i −0.677713 0.677713i
\(125\) 1.06975 + 1.06975i 0.00855801 + 0.00855801i
\(126\) −215.345 + 53.1232i −1.70909 + 0.421613i
\(127\) 126.106i 0.992960i −0.868048 0.496480i \(-0.834626\pi\)
0.868048 0.496480i \(-0.165374\pi\)
\(128\) 120.278 0.939671
\(129\) −55.2685 15.4013i −0.428438 0.119390i
\(130\) −0.317157 + 0.317157i −0.00243967 + 0.00243967i
\(131\) 137.002 137.002i 1.04581 1.04581i 0.0469159 0.998899i \(-0.485061\pi\)
0.998899 0.0469159i \(-0.0149393\pi\)
\(132\) 26.3481 14.8639i 0.199607 0.112605i
\(133\) 152.904 + 152.904i 1.14965 + 1.14965i
\(134\) −265.773 −1.98338
\(135\) 0.0244312 0.816593i 0.000180972 0.00604883i
\(136\) −69.1135 8.36149i −0.508188 0.0614815i
\(137\) 192.929i 1.40824i 0.710079 + 0.704122i \(0.248659\pi\)
−0.710079 + 0.704122i \(0.751341\pi\)
\(138\) 40.4113 22.7973i 0.292836 0.165198i
\(139\) −19.3326 19.3326i −0.139084 0.139084i 0.634137 0.773221i \(-0.281355\pi\)
−0.773221 + 0.634137i \(0.781355\pi\)
\(140\) 0.702271i 0.00501622i
\(141\) 231.029 + 64.3796i 1.63851 + 0.456593i
\(142\) 84.8959 84.8959i 0.597859 0.597859i
\(143\) 17.5953 + 17.5953i 0.123044 + 0.123044i
\(144\) 152.955 + 92.4233i 1.06219 + 0.641828i
\(145\) 0.0889489i 0.000613441i
\(146\) −52.2249 52.2249i −0.357705 0.357705i
\(147\) 133.566 + 37.2201i 0.908614 + 0.253198i
\(148\) 79.4064 + 79.4064i 0.536530 + 0.536530i
\(149\) 92.8272i 0.623001i 0.950246 + 0.311501i \(0.100832\pi\)
−0.950246 + 0.311501i \(0.899168\pi\)
\(150\) −182.459 50.8448i −1.21640 0.338965i
\(151\) 10.0788i 0.0667469i −0.999443 0.0333735i \(-0.989375\pi\)
0.999443 0.0333735i \(-0.0106251\pi\)
\(152\) 90.7490i 0.597033i
\(153\) −120.499 94.2818i −0.787573 0.616221i
\(154\) −104.481 −0.678451
\(155\) −1.51185 −0.00975390
\(156\) 11.2425 40.3444i 0.0720675 0.258618i
\(157\) −28.7471 −0.183103 −0.0915513 0.995800i \(-0.529183\pi\)
−0.0915513 + 0.995800i \(0.529183\pi\)
\(158\) −44.7110 + 44.7110i −0.282981 + 0.282981i
\(159\) 43.6724 156.721i 0.274669 0.985665i
\(160\) −0.722503 + 0.722503i −0.00451564 + 0.00451564i
\(161\) −59.7558 −0.371154
\(162\) 95.1411 + 181.101i 0.587291 + 1.11791i
\(163\) 21.0297 21.0297i 0.129017 0.129017i −0.639650 0.768666i \(-0.720921\pi\)
0.768666 + 0.639650i \(0.220921\pi\)
\(164\) 105.813 + 105.813i 0.645200 + 0.645200i
\(165\) 0.103304 0.370712i 0.000626084 0.00224674i
\(166\) 217.439 1.30987
\(167\) −167.822 + 167.822i −1.00492 + 1.00492i −0.00493391 + 0.999988i \(0.501571\pi\)
−0.999988 + 0.00493391i \(0.998429\pi\)
\(168\) −58.9026 104.413i −0.350611 0.621504i
\(169\) −134.550 −0.796155
\(170\) 1.02229 0.801628i 0.00601346 0.00471546i
\(171\) 103.145 170.699i 0.603185 0.998238i
\(172\) 45.4888i 0.264470i
\(173\) −172.379 + 172.379i −0.996409 + 0.996409i −0.999994 0.00358423i \(-0.998859\pi\)
0.00358423 + 0.999994i \(0.498859\pi\)
\(174\) 10.9438 + 19.3994i 0.0628956 + 0.111491i
\(175\) 172.492 + 172.492i 0.985670 + 0.985670i
\(176\) 59.5266 + 59.5266i 0.338219 + 0.338219i
\(177\) −4.30373 + 15.4442i −0.0243148 + 0.0872551i
\(178\) 221.811i 1.24613i
\(179\) −121.348 −0.677923 −0.338962 0.940800i \(-0.610076\pi\)
−0.338962 + 0.940800i \(0.610076\pi\)
\(180\) −0.628867 + 0.155134i −0.00349371 + 0.000861858i
\(181\) 30.5988 30.5988i 0.169054 0.169054i −0.617509 0.786563i \(-0.711858\pi\)
0.786563 + 0.617509i \(0.211858\pi\)
\(182\) −102.282 + 102.282i −0.561989 + 0.561989i
\(183\) 91.7504 + 162.640i 0.501368 + 0.888741i
\(184\) 17.7327 + 17.7327i 0.0963732 + 0.0963732i
\(185\) 1.42856 0.00772194
\(186\) 329.729 186.011i 1.77274 1.00006i
\(187\) −44.4729 56.7147i −0.237823 0.303287i
\(188\) 190.149i 1.01143i
\(189\) 7.87896 263.348i 0.0416876 1.39338i
\(190\) 1.19744 + 1.19744i 0.00630232 + 0.00630232i
\(191\) 27.2933i 0.142897i −0.997444 0.0714485i \(-0.977238\pi\)
0.997444 0.0714485i \(-0.0227622\pi\)
\(192\) 4.71860 16.9329i 0.0245760 0.0881924i
\(193\) −203.823 + 203.823i −1.05608 + 1.05608i −0.0577462 + 0.998331i \(0.518391\pi\)
−0.998331 + 0.0577462i \(0.981609\pi\)
\(194\) 167.600 + 167.600i 0.863917 + 0.863917i
\(195\) −0.261778 0.464037i −0.00134245 0.00237967i
\(196\) 109.932i 0.560877i
\(197\) −25.6048 25.6048i −0.129974 0.129974i 0.639127 0.769101i \(-0.279296\pi\)
−0.769101 + 0.639127i \(0.779296\pi\)
\(198\) 23.0804 + 93.5607i 0.116567 + 0.472529i
\(199\) −30.4685 30.4685i −0.153108 0.153108i 0.626397 0.779504i \(-0.284529\pi\)
−0.779504 + 0.626397i \(0.784529\pi\)
\(200\) 102.375i 0.511875i
\(201\) 84.7449 304.112i 0.421617 1.51299i
\(202\) 365.025i 1.80705i
\(203\) 28.6857i 0.141309i
\(204\) −46.3616 + 112.096i −0.227263 + 0.549490i
\(205\) 1.90362 0.00928596
\(206\) 208.863 1.01390
\(207\) 13.2003 + 53.5099i 0.0637695 + 0.258502i
\(208\) 116.547 0.560322
\(209\) 66.4318 66.4318i 0.317856 0.317856i
\(210\) 2.15496 + 0.600508i 0.0102617 + 0.00285956i
\(211\) 79.4704 79.4704i 0.376637 0.376637i −0.493250 0.869887i \(-0.664191\pi\)
0.869887 + 0.493250i \(0.164191\pi\)
\(212\) −128.989 −0.608439
\(213\) 70.0722 + 124.212i 0.328978 + 0.583156i
\(214\) −157.895 + 157.895i −0.737827 + 0.737827i
\(215\) 0.409182 + 0.409182i 0.00190317 + 0.00190317i
\(216\) −80.4872 + 75.8110i −0.372626 + 0.350977i
\(217\) −487.567 −2.24685
\(218\) 169.150 169.150i 0.775917 0.775917i
\(219\) 76.4109 43.1059i 0.348908 0.196831i
\(220\) −0.305115 −0.00138688
\(221\) −99.0574 11.9841i −0.448224 0.0542269i
\(222\) −311.563 + 175.763i −1.40344 + 0.791724i
\(223\) 239.323i 1.07320i 0.843837 + 0.536600i \(0.180291\pi\)
−0.843837 + 0.536600i \(0.819709\pi\)
\(224\) −233.004 + 233.004i −1.04020 + 1.04020i
\(225\) 116.358 192.567i 0.517149 0.855853i
\(226\) −229.790 229.790i −1.01677 1.01677i
\(227\) 4.78777 + 4.78777i 0.0210915 + 0.0210915i 0.717574 0.696482i \(-0.245253\pi\)
−0.696482 + 0.717574i \(0.745253\pi\)
\(228\) −152.322 42.4466i −0.668079 0.186169i
\(229\) 64.0470i 0.279681i −0.990174 0.139841i \(-0.955341\pi\)
0.990174 0.139841i \(-0.0446590\pi\)
\(230\) −0.467968 −0.00203464
\(231\) 33.3151 119.553i 0.144221 0.517546i
\(232\) −8.51254 + 8.51254i −0.0366920 + 0.0366920i
\(233\) 117.441 117.441i 0.504041 0.504041i −0.408650 0.912691i \(-0.634000\pi\)
0.912691 + 0.408650i \(0.134000\pi\)
\(234\) 114.186 + 68.9966i 0.487972 + 0.294857i
\(235\) −1.71044 1.71044i −0.00727845 0.00727845i
\(236\) 12.7113 0.0538616
\(237\) −36.9040 65.4173i −0.155713 0.276022i
\(238\) 329.684 258.522i 1.38523 1.08623i
\(239\) 159.936i 0.669189i −0.942362 0.334595i \(-0.891401\pi\)
0.942362 0.334595i \(-0.108599\pi\)
\(240\) −0.885621 1.56988i −0.00369009 0.00654117i
\(241\) −85.4402 85.4402i −0.354524 0.354524i 0.507266 0.861790i \(-0.330656\pi\)
−0.861790 + 0.507266i \(0.830656\pi\)
\(242\) 260.201i 1.07521i
\(243\) −237.562 + 51.1191i −0.977623 + 0.210367i
\(244\) 104.688 104.688i 0.429049 0.429049i
\(245\) −0.988862 0.988862i −0.00403617 0.00403617i
\(246\) −415.172 + 234.212i −1.68769 + 0.952082i
\(247\) 130.067i 0.526585i
\(248\) 144.687 + 144.687i 0.583414 + 0.583414i
\(249\) −69.3329 + 248.805i −0.278445 + 0.999216i
\(250\) 2.70174 + 2.70174i 0.0108070 + 0.0108070i
\(251\) 175.660i 0.699840i 0.936780 + 0.349920i \(0.113791\pi\)
−0.936780 + 0.349920i \(0.886209\pi\)
\(252\) −202.807 + 50.0302i −0.804790 + 0.198533i
\(253\) 25.9620i 0.102617i
\(254\) 318.490i 1.25390i
\(255\) 0.591295 + 1.42536i 0.00231880 + 0.00558966i
\(256\) 327.208 1.27816
\(257\) −125.343 −0.487717 −0.243859 0.969811i \(-0.578413\pi\)
−0.243859 + 0.969811i \(0.578413\pi\)
\(258\) −139.585 38.8972i −0.541026 0.150764i
\(259\) 460.705 1.77878
\(260\) −0.298691 + 0.298691i −0.00114881 + 0.00114881i
\(261\) −25.6873 + 6.33677i −0.0984189 + 0.0242788i
\(262\) 346.008 346.008i 1.32064 1.32064i
\(263\) −208.112 −0.791300 −0.395650 0.918401i \(-0.629481\pi\)
−0.395650 + 0.918401i \(0.629481\pi\)
\(264\) −45.3640 + 25.5913i −0.171833 + 0.0969368i
\(265\) −1.16029 + 1.16029i −0.00437844 + 0.00437844i
\(266\) 386.170 + 386.170i 1.45177 + 1.45177i
\(267\) 253.808 + 70.7271i 0.950591 + 0.264895i
\(268\) −250.299 −0.933953
\(269\) 8.40323 8.40323i 0.0312388 0.0312388i −0.691315 0.722554i \(-0.742968\pi\)
0.722554 + 0.691315i \(0.242968\pi\)
\(270\) 0.0617028 2.06237i 0.000228529 0.00763839i
\(271\) −304.338 −1.12302 −0.561510 0.827470i \(-0.689779\pi\)
−0.561510 + 0.827470i \(0.689779\pi\)
\(272\) −335.121 40.5435i −1.23206 0.149057i
\(273\) −84.4225 149.650i −0.309240 0.548169i
\(274\) 487.258i 1.77831i
\(275\) 74.9424 74.9424i 0.272518 0.272518i
\(276\) 38.0584 21.4700i 0.137893 0.0777899i
\(277\) −34.0345 34.0345i −0.122868 0.122868i 0.642999 0.765867i \(-0.277690\pi\)
−0.765867 + 0.642999i \(0.777690\pi\)
\(278\) −48.8260 48.8260i −0.175633 0.175633i
\(279\) 107.705 + 436.605i 0.386041 + 1.56489i
\(280\) 1.20911i 0.00431825i
\(281\) 283.239 1.00797 0.503983 0.863713i \(-0.331867\pi\)
0.503983 + 0.863713i \(0.331867\pi\)
\(282\) 583.482 + 162.595i 2.06909 + 0.576579i
\(283\) −62.0769 + 62.0769i −0.219353 + 0.219353i −0.808226 0.588873i \(-0.799572\pi\)
0.588873 + 0.808226i \(0.299572\pi\)
\(284\) 79.9530 79.9530i 0.281525 0.281525i
\(285\) −1.75199 + 0.988355i −0.00614733 + 0.00346791i
\(286\) 44.4383 + 44.4383i 0.155379 + 0.155379i
\(287\) 613.911 2.13906
\(288\) 260.121 + 157.178i 0.903199 + 0.545758i
\(289\) 280.662 + 68.9188i 0.971149 + 0.238473i
\(290\) 0.224647i 0.000774645i
\(291\) −245.218 + 138.335i −0.842672 + 0.475379i
\(292\) −49.1842 49.1842i −0.168439 0.168439i
\(293\) 219.206i 0.748144i 0.927400 + 0.374072i \(0.122039\pi\)
−0.927400 + 0.374072i \(0.877961\pi\)
\(294\) 337.332 + 94.0021i 1.14739 + 0.319735i
\(295\) 0.114341 0.114341i 0.000387598 0.000387598i
\(296\) −136.715 136.715i −0.461876 0.461876i
\(297\) −114.416 3.42316i −0.385240 0.0115258i
\(298\) 234.442i 0.786718i
\(299\) 25.4154 + 25.4154i 0.0850015 + 0.0850015i
\(300\) −171.836 47.8845i −0.572787 0.159615i
\(301\) 131.960 + 131.960i 0.438404 + 0.438404i
\(302\) 25.4547i 0.0842872i
\(303\) −417.680 116.392i −1.37848 0.384133i
\(304\) 440.028i 1.44746i
\(305\) 1.88339i 0.00617504i
\(306\) −304.329 238.116i −0.994538 0.778156i
\(307\) 90.9488 0.296250 0.148125 0.988969i \(-0.452676\pi\)
0.148125 + 0.988969i \(0.452676\pi\)
\(308\) −98.3983 −0.319475
\(309\) −66.5984 + 238.992i −0.215529 + 0.773436i
\(310\) −3.81830 −0.0123171
\(311\) 255.834 255.834i 0.822616 0.822616i −0.163867 0.986483i \(-0.552397\pi\)
0.986483 + 0.163867i \(0.0523967\pi\)
\(312\) −19.3564 + 69.4615i −0.0620398 + 0.222633i
\(313\) −45.8906 + 45.8906i −0.146615 + 0.146615i −0.776604 0.629989i \(-0.783059\pi\)
0.629989 + 0.776604i \(0.283059\pi\)
\(314\) −72.6030 −0.231220
\(315\) −1.37426 + 2.27433i −0.00436274 + 0.00722010i
\(316\) −42.1078 + 42.1078i −0.133253 + 0.133253i
\(317\) −122.939 122.939i −0.387819 0.387819i 0.486090 0.873909i \(-0.338423\pi\)
−0.873909 + 0.486090i \(0.838423\pi\)
\(318\) 110.298 395.810i 0.346849 1.24469i
\(319\) −12.4630 −0.0390690
\(320\) −0.125364 + 0.125364i −0.000391761 + 0.000391761i
\(321\) −130.325 231.018i −0.405997 0.719683i
\(322\) −150.918 −0.468689
\(323\) −45.2467 + 373.995i −0.140083 + 1.15788i
\(324\) 89.6017 + 170.557i 0.276549 + 0.526411i
\(325\) 146.729i 0.451475i
\(326\) 53.1121 53.1121i 0.162921 0.162921i
\(327\) 139.615 + 247.485i 0.426956 + 0.756836i
\(328\) −182.179 182.179i −0.555425 0.555425i
\(329\) −551.609 551.609i −1.67662 1.67662i
\(330\) 0.260902 0.936260i 0.000790611 0.00283715i
\(331\) 32.9705i 0.0996086i 0.998759 + 0.0498043i \(0.0158598\pi\)
−0.998759 + 0.0498043i \(0.984140\pi\)
\(332\) 204.779 0.616804
\(333\) −101.771 412.550i −0.305620 1.23889i
\(334\) −423.847 + 423.847i −1.26900 + 1.26900i
\(335\) −2.25150 + 2.25150i −0.00672090 + 0.00672090i
\(336\) −285.609 506.280i −0.850028 1.50679i
\(337\) −322.331 322.331i −0.956470 0.956470i 0.0426210 0.999091i \(-0.486429\pi\)
−0.999091 + 0.0426210i \(0.986429\pi\)
\(338\) −339.817 −1.00537
\(339\) 336.209 189.667i 0.991767 0.559489i
\(340\) 0.962768 0.754955i 0.00283167 0.00222045i
\(341\) 211.833i 0.621210i
\(342\) 260.499 431.112i 0.761694 1.26056i
\(343\) 19.1928 + 19.1928i 0.0559558 + 0.0559558i
\(344\) 78.3187i 0.227671i
\(345\) 0.149217 0.535472i 0.000432512 0.00155209i
\(346\) −435.356 + 435.356i −1.25825 + 1.25825i
\(347\) −285.050 285.050i −0.821469 0.821469i 0.164850 0.986319i \(-0.447286\pi\)
−0.986319 + 0.164850i \(0.947286\pi\)
\(348\) 10.3066 + 18.2699i 0.0296168 + 0.0524997i
\(349\) 4.65073i 0.0133259i 0.999978 + 0.00666294i \(0.00212090\pi\)
−0.999978 + 0.00666294i \(0.997879\pi\)
\(350\) 435.642 + 435.642i 1.24469 + 1.24469i
\(351\) −115.359 + 108.657i −0.328657 + 0.309563i
\(352\) 101.233 + 101.233i 0.287594 + 0.287594i
\(353\) 382.110i 1.08246i 0.840873 + 0.541232i \(0.182042\pi\)
−0.840873 + 0.541232i \(0.817958\pi\)
\(354\) −10.8694 + 39.0054i −0.0307045 + 0.110185i
\(355\) 1.43839i 0.00405181i
\(356\) 208.897i 0.586789i
\(357\) 190.690 + 459.674i 0.534147 + 1.28760i
\(358\) −306.474 −0.856073
\(359\) −77.1661 −0.214947 −0.107474 0.994208i \(-0.534276\pi\)
−0.107474 + 0.994208i \(0.534276\pi\)
\(360\) 1.08273 0.267097i 0.00300758 0.000741936i
\(361\) −130.072 −0.360310
\(362\) 77.2795 77.2795i 0.213479 0.213479i
\(363\) 297.735 + 82.9680i 0.820207 + 0.228562i
\(364\) −96.3268 + 96.3268i −0.264634 + 0.264634i
\(365\) −0.884847 −0.00242424
\(366\) 231.722 + 410.759i 0.633121 + 1.12229i
\(367\) 226.575 226.575i 0.617370 0.617370i −0.327486 0.944856i \(-0.606201\pi\)
0.944856 + 0.327486i \(0.106201\pi\)
\(368\) 85.9829 + 85.9829i 0.233649 + 0.233649i
\(369\) −135.615 549.742i −0.367521 1.48982i
\(370\) 3.60793 0.00975117
\(371\) −374.188 + 374.188i −1.00859 + 1.00859i
\(372\) 310.531 175.181i 0.834762 0.470917i
\(373\) 446.563 1.19722 0.598610 0.801040i \(-0.295720\pi\)
0.598610 + 0.801040i \(0.295720\pi\)
\(374\) −112.320 143.237i −0.300320 0.382987i
\(375\) −3.95295 + 2.22999i −0.0105412 + 0.00594663i
\(376\) 327.382i 0.870698i
\(377\) −12.2006 + 12.2006i −0.0323625 + 0.0323625i
\(378\) 19.8989 665.105i 0.0526426 1.75954i
\(379\) 219.441 + 219.441i 0.578999 + 0.578999i 0.934627 0.355628i \(-0.115733\pi\)
−0.355628 + 0.934627i \(0.615733\pi\)
\(380\) 1.12772 + 1.12772i 0.00296769 + 0.00296769i
\(381\) 364.433 + 101.554i 0.956516 + 0.266546i
\(382\) 68.9314i 0.180449i
\(383\) 280.815 0.733197 0.366599 0.930379i \(-0.380522\pi\)
0.366599 + 0.930379i \(0.380522\pi\)
\(384\) −96.8608 + 347.590i −0.252242 + 0.905183i
\(385\) −0.885115 + 0.885115i −0.00229900 + 0.00229900i
\(386\) −514.770 + 514.770i −1.33360 + 1.33360i
\(387\) 89.0164 147.317i 0.230016 0.380665i
\(388\) 157.842 + 157.842i 0.406809 + 0.406809i
\(389\) 403.158 1.03640 0.518199 0.855260i \(-0.326603\pi\)
0.518199 + 0.855260i \(0.326603\pi\)
\(390\) −0.661141 1.17196i −0.00169523 0.00300502i
\(391\) −64.2386 81.9213i −0.164293 0.209517i
\(392\) 189.271i 0.482835i
\(393\) 285.592 + 506.249i 0.726696 + 1.28817i
\(394\) −64.6669 64.6669i −0.164129 0.164129i
\(395\) 0.757540i 0.00191782i
\(396\) 21.7365 + 88.1133i 0.0548903 + 0.222508i
\(397\) 525.784 525.784i 1.32439 1.32439i 0.414214 0.910179i \(-0.364056\pi\)
0.910179 0.414214i \(-0.135944\pi\)
\(398\) −76.9504 76.9504i −0.193343 0.193343i
\(399\) −565.010 + 318.741i −1.41606 + 0.798849i
\(400\) 496.400i 1.24100i
\(401\) −294.784 294.784i −0.735122 0.735122i 0.236508 0.971630i \(-0.423997\pi\)
−0.971630 + 0.236508i \(0.923997\pi\)
\(402\) 214.030 768.057i 0.532412 1.91059i
\(403\) 207.373 + 207.373i 0.514573 + 0.514573i
\(404\) 343.772i 0.850920i
\(405\) 2.34019 + 0.728212i 0.00577825 + 0.00179806i
\(406\) 72.4478i 0.178443i
\(407\) 200.162i 0.491797i
\(408\) 79.8215 192.997i 0.195641 0.473032i
\(409\) −95.6272 −0.233807 −0.116904 0.993143i \(-0.537297\pi\)
−0.116904 + 0.993143i \(0.537297\pi\)
\(410\) 4.80774 0.0117262
\(411\) −557.545 155.368i −1.35656 0.378024i
\(412\) 196.702 0.477433
\(413\) 36.8747 36.8747i 0.0892849 0.0892849i
\(414\) 33.3383 + 135.143i 0.0805273 + 0.326433i
\(415\) 1.84204 1.84204i 0.00443864 0.00443864i
\(416\) 198.204 0.476451
\(417\) 71.4379 40.3005i 0.171314 0.0966438i
\(418\) 167.779 167.779i 0.401384 0.401384i
\(419\) −8.23730 8.23730i −0.0196594 0.0196594i 0.697209 0.716868i \(-0.254425\pi\)
−0.716868 + 0.697209i \(0.754425\pi\)
\(420\) 2.02949 + 0.565545i 0.00483211 + 0.00134654i
\(421\) 215.261 0.511308 0.255654 0.966768i \(-0.417709\pi\)
0.255654 + 0.966768i \(0.417709\pi\)
\(422\) 200.709 200.709i 0.475613 0.475613i
\(423\) −372.100 + 615.805i −0.879669 + 1.45580i
\(424\) 222.082 0.523779
\(425\) −51.0432 + 421.908i −0.120102 + 0.992725i
\(426\) 176.973 + 313.707i 0.415429 + 0.736403i
\(427\) 607.385i 1.42245i
\(428\) −148.702 + 148.702i −0.347434 + 0.347434i
\(429\) −65.0182 + 36.6789i −0.151558 + 0.0854986i
\(430\) 1.03342 + 1.03342i 0.00240330 + 0.00240330i
\(431\) 561.869 + 561.869i 1.30364 + 1.30364i 0.925919 + 0.377722i \(0.123292\pi\)
0.377722 + 0.925919i \(0.376708\pi\)
\(432\) −390.270 + 367.595i −0.903402 + 0.850915i
\(433\) 51.2892i 0.118451i 0.998245 + 0.0592254i \(0.0188631\pi\)
−0.998245 + 0.0592254i \(0.981137\pi\)
\(434\) −1231.39 −2.83730
\(435\) 0.257053 + 0.0716313i 0.000590926 + 0.000164670i
\(436\) 159.301 159.301i 0.365370 0.365370i
\(437\) 95.9571 95.9571i 0.219581 0.219581i
\(438\) 192.981 108.867i 0.440597 0.248555i
\(439\) 455.275 + 455.275i 1.03707 + 1.03707i 0.999286 + 0.0377871i \(0.0120309\pi\)
0.0377871 + 0.999286i \(0.487969\pi\)
\(440\) 0.525320 0.00119391
\(441\) −215.124 + 356.018i −0.487810 + 0.807298i
\(442\) −250.177 30.2669i −0.566011 0.0684771i
\(443\) 715.488i 1.61510i −0.589801 0.807549i \(-0.700794\pi\)
0.589801 0.807549i \(-0.299206\pi\)
\(444\) −293.423 + 165.529i −0.660862 + 0.372814i
\(445\) −1.87908 1.87908i −0.00422264 0.00422264i
\(446\) 604.429i 1.35522i
\(447\) −268.261 74.7545i −0.600136 0.167236i
\(448\) −40.4293 + 40.4293i −0.0902440 + 0.0902440i
\(449\) −207.961 207.961i −0.463164 0.463164i 0.436527 0.899691i \(-0.356208\pi\)
−0.899691 + 0.436527i \(0.856208\pi\)
\(450\) 293.872 486.342i 0.653049 1.08076i
\(451\) 266.725i 0.591407i
\(452\) −216.411 216.411i −0.478786 0.478786i
\(453\) 29.1266 + 8.11653i 0.0642971 + 0.0179173i
\(454\) 12.0919 + 12.0919i 0.0266341 + 0.0266341i
\(455\) 1.73296i 0.00380871i
\(456\) 262.255 + 73.0810i 0.575121 + 0.160265i
\(457\) 688.667i 1.50693i 0.657488 + 0.753465i \(0.271619\pi\)
−0.657488 + 0.753465i \(0.728381\pi\)
\(458\) 161.756i 0.353178i
\(459\) 369.503 272.302i 0.805017 0.593251i
\(460\) −0.440721 −0.000958089
\(461\) 413.461 0.896879 0.448439 0.893813i \(-0.351980\pi\)
0.448439 + 0.893813i \(0.351980\pi\)
\(462\) 84.1398 301.940i 0.182121 0.653550i
\(463\) −866.659 −1.87183 −0.935917 0.352220i \(-0.885427\pi\)
−0.935917 + 0.352220i \(0.885427\pi\)
\(464\) −41.2759 + 41.2759i −0.0889568 + 0.0889568i
\(465\) 1.21751 4.36910i 0.00261830 0.00939591i
\(466\) 296.607 296.607i 0.636496 0.636496i
\(467\) 747.435 1.60050 0.800252 0.599664i \(-0.204699\pi\)
0.800252 + 0.599664i \(0.204699\pi\)
\(468\) 107.537 + 64.9794i 0.229781 + 0.138845i
\(469\) −726.101 + 726.101i −1.54819 + 1.54819i
\(470\) −4.31983 4.31983i −0.00919113 0.00919113i
\(471\) 23.1503 83.0760i 0.0491513 0.176382i
\(472\) −21.8853 −0.0463671
\(473\) 57.3323 57.3323i 0.121210 0.121210i
\(474\) −93.2039 165.216i −0.196633 0.348558i
\(475\) −553.983 −1.16628
\(476\) 310.489 243.470i 0.652288 0.511491i
\(477\) 417.736 + 252.417i 0.875758 + 0.529176i
\(478\) 403.931i 0.845044i
\(479\) 452.004 452.004i 0.943641 0.943641i −0.0548535 0.998494i \(-0.517469\pi\)
0.998494 + 0.0548535i \(0.0174692\pi\)
\(480\) −1.50612 2.66979i −0.00313775 0.00556207i
\(481\) −195.948 195.948i −0.407376 0.407376i
\(482\) −215.786 215.786i −0.447688 0.447688i
\(483\) 48.1218 172.688i 0.0996311 0.357532i
\(484\) 245.051i 0.506304i
\(485\) 2.83965 0.00585494
\(486\) −599.981 + 129.105i −1.23453 + 0.265649i
\(487\) 57.3670 57.3670i 0.117797 0.117797i −0.645751 0.763548i \(-0.723456\pi\)
0.763548 + 0.645751i \(0.223456\pi\)
\(488\) −180.243 + 180.243i −0.369350 + 0.369350i
\(489\) 43.8382 + 77.7091i 0.0896487 + 0.158914i
\(490\) −2.49745 2.49745i −0.00509683 0.00509683i
\(491\) −213.710 −0.435255 −0.217628 0.976032i \(-0.569832\pi\)
−0.217628 + 0.976032i \(0.569832\pi\)
\(492\) −391.000 + 220.576i −0.794715 + 0.448325i
\(493\) 39.3262 30.8376i 0.0797691 0.0625510i
\(494\) 328.493i 0.664966i
\(495\) 0.988125 + 0.597074i 0.00199621 + 0.00120621i
\(496\) 701.563 + 701.563i 1.41444 + 1.41444i
\(497\) 463.876i 0.933352i
\(498\) −175.105 + 628.375i −0.351617 + 1.26180i
\(499\) −181.080 + 181.080i −0.362885 + 0.362885i −0.864874 0.501989i \(-0.832602\pi\)
0.501989 + 0.864874i \(0.332602\pi\)
\(500\) 2.54444 + 2.54444i 0.00508887 + 0.00508887i
\(501\) −349.839 620.136i −0.698281 1.23780i
\(502\) 443.642i 0.883750i
\(503\) −297.442 297.442i −0.591337 0.591337i 0.346656 0.937992i \(-0.387317\pi\)
−0.937992 + 0.346656i \(0.887317\pi\)
\(504\) 349.176 86.1378i 0.692810 0.170908i
\(505\) 3.09231 + 3.09231i 0.00612338 + 0.00612338i
\(506\) 65.5690i 0.129583i
\(507\) 108.354 388.836i 0.213717 0.766934i
\(508\) 299.947i 0.590446i
\(509\) 966.463i 1.89875i 0.314147 + 0.949374i \(0.398282\pi\)
−0.314147 + 0.949374i \(0.601718\pi\)
\(510\) 1.49336 + 3.59986i 0.00292816 + 0.00705855i
\(511\) −285.360 −0.558434
\(512\) 345.277 0.674370
\(513\) 410.237 + 435.542i 0.799683 + 0.849009i
\(514\) −316.564 −0.615883
\(515\) 1.76939 1.76939i 0.00343570 0.00343570i
\(516\) −131.458 36.6325i −0.254763 0.0709932i
\(517\) −239.657 + 239.657i −0.463552 + 0.463552i
\(518\) 1163.54 2.24622
\(519\) −359.338 636.974i −0.692366 1.22731i
\(520\) 0.514261 0.514261i 0.000988964 0.000988964i
\(521\) 231.742 + 231.742i 0.444803 + 0.444803i 0.893622 0.448819i \(-0.148155\pi\)
−0.448819 + 0.893622i \(0.648155\pi\)
\(522\) −64.8753 + 16.0040i −0.124282 + 0.0306590i
\(523\) 60.6041 0.115878 0.0579389 0.998320i \(-0.481547\pi\)
0.0579389 + 0.998320i \(0.481547\pi\)
\(524\) 325.863 325.863i 0.621875 0.621875i
\(525\) −637.393 + 359.575i −1.21408 + 0.684904i
\(526\) −525.602 −0.999244
\(527\) −524.144 668.423i −0.994581 1.26835i
\(528\) −219.963 + 124.088i −0.416596 + 0.235015i
\(529\) 491.499i 0.929110i
\(530\) −2.93039 + 2.93039i −0.00552904 + 0.00552904i
\(531\) −41.1661 24.8746i −0.0775257 0.0468449i
\(532\) 363.686 + 363.686i 0.683620 + 0.683620i
\(533\) −261.110 261.110i −0.489887 0.489887i
\(534\) 641.011 + 178.627i 1.20039 + 0.334507i
\(535\) 2.67522i 0.00500041i
\(536\) 430.944 0.804000
\(537\) 97.7228 350.683i 0.181979 0.653042i
\(538\) 21.2230 21.2230i 0.0394479 0.0394479i
\(539\) −138.554 + 138.554i −0.257057 + 0.257057i
\(540\) 0.0581103 1.94229i 0.000107612 0.00359683i
\(541\) 418.241 + 418.241i 0.773089 + 0.773089i 0.978645 0.205556i \(-0.0659003\pi\)
−0.205556 + 0.978645i \(0.565900\pi\)
\(542\) −768.629 −1.41813
\(543\) 63.7857 + 113.069i 0.117469 + 0.208230i
\(544\) −569.918 68.9497i −1.04764 0.126746i
\(545\) 2.86591i 0.00525855i
\(546\) −213.215 377.952i −0.390504 0.692220i
\(547\) −486.262 486.262i −0.888962 0.888962i 0.105462 0.994423i \(-0.466368\pi\)
−0.994423 + 0.105462i \(0.966368\pi\)
\(548\) 458.888i 0.837387i
\(549\) −543.899 + 134.174i −0.990708 + 0.244396i
\(550\) 189.273 189.273i 0.344132 0.344132i
\(551\) 46.0641 + 46.0641i 0.0836008 + 0.0836008i
\(552\) −65.5258 + 36.9652i −0.118706 + 0.0669660i
\(553\) 244.304i 0.441779i
\(554\) −85.9566 85.9566i −0.155156 0.155156i
\(555\) −1.15043 + 4.12838i −0.00207285 + 0.00743852i
\(556\) −45.9832 45.9832i −0.0827036 0.0827036i
\(557\) 30.5161i 0.0547866i −0.999625 0.0273933i \(-0.991279\pi\)
0.999625 0.0273933i \(-0.00872065\pi\)
\(558\) 272.018 + 1102.68i 0.487488 + 1.97613i
\(559\) 112.251i 0.200806i
\(560\) 5.86278i 0.0104693i
\(561\) 199.714 82.8489i 0.355996 0.147681i
\(562\) 715.340 1.27285
\(563\) −948.258 −1.68430 −0.842148 0.539247i \(-0.818709\pi\)
−0.842148 + 0.539247i \(0.818709\pi\)
\(564\) 549.510 + 153.129i 0.974309 + 0.271505i
\(565\) −3.89334 −0.00689087
\(566\) −156.780 + 156.780i −0.276996 + 0.276996i
\(567\) 754.702 + 234.846i 1.33104 + 0.414190i
\(568\) −137.656 + 137.656i −0.242353 + 0.242353i
\(569\) 24.1937 0.0425197 0.0212598 0.999774i \(-0.493232\pi\)
0.0212598 + 0.999774i \(0.493232\pi\)
\(570\) −4.42478 + 2.49616i −0.00776277 + 0.00437924i
\(571\) −147.329 + 147.329i −0.258018 + 0.258018i −0.824248 0.566229i \(-0.808402\pi\)
0.566229 + 0.824248i \(0.308402\pi\)
\(572\) 41.8509 + 41.8509i 0.0731660 + 0.0731660i
\(573\) 78.8748 + 21.9796i 0.137652 + 0.0383587i
\(574\) 1550.48 2.70118
\(575\) 108.250 108.250i 0.188261 0.188261i
\(576\) 45.1344 + 27.2725i 0.0783584 + 0.0473481i
\(577\) 460.540 0.798164 0.399082 0.916915i \(-0.369329\pi\)
0.399082 + 0.916915i \(0.369329\pi\)
\(578\) 708.833 + 174.060i 1.22635 + 0.301141i
\(579\) −424.886 753.167i −0.733827 1.30081i
\(580\) 0.211568i 0.000364772i
\(581\) 594.049 594.049i 1.02246 1.02246i
\(582\) −619.315 + 349.376i −1.06412 + 0.600303i
\(583\) 162.573 + 162.573i 0.278856 + 0.278856i
\(584\) 84.6812 + 84.6812i 0.145002 + 0.145002i
\(585\) 1.55183 0.382818i 0.00265270 0.000654390i
\(586\) 553.622i 0.944747i
\(587\) −398.312 −0.678556 −0.339278 0.940686i \(-0.610183\pi\)
−0.339278 + 0.940686i \(0.610183\pi\)
\(588\) 317.691 + 88.5290i 0.540291 + 0.150560i
\(589\) 782.946 782.946i 1.32928 1.32928i
\(590\) 0.288778 0.288778i 0.000489454 0.000489454i
\(591\) 94.6150 53.3754i 0.160093 0.0903138i
\(592\) −662.910 662.910i −1.11978 1.11978i
\(593\) 455.426 0.768003 0.384001 0.923333i \(-0.374546\pi\)
0.384001 + 0.923333i \(0.374546\pi\)
\(594\) −288.967 8.64545i −0.486476 0.0145546i
\(595\) 0.602851 4.98299i 0.00101320 0.00837477i
\(596\) 220.792i 0.370457i
\(597\) 112.587 63.5141i 0.188588 0.106389i
\(598\) 64.1886 + 64.1886i 0.107339 + 0.107339i
\(599\) 578.376i 0.965569i 0.875739 + 0.482784i \(0.160375\pi\)
−0.875739 + 0.482784i \(0.839625\pi\)
\(600\) 295.853 + 82.4434i 0.493088 + 0.137406i
\(601\) 441.494 441.494i 0.734600 0.734600i −0.236928 0.971527i \(-0.576140\pi\)
0.971527 + 0.236928i \(0.0761404\pi\)
\(602\) 333.274 + 333.274i 0.553612 + 0.553612i
\(603\) 810.604 + 489.807i 1.34429 + 0.812284i
\(604\) 23.9727i 0.0396899i
\(605\) −2.20429 2.20429i −0.00364346 0.00364346i
\(606\) −1054.88 293.957i −1.74073 0.485078i
\(607\) 91.3692 + 91.3692i 0.150526 + 0.150526i 0.778353 0.627827i \(-0.216055\pi\)
−0.627827 + 0.778353i \(0.716055\pi\)
\(608\) 748.327i 1.23080i
\(609\) 82.8985 + 23.1008i 0.136122 + 0.0379324i
\(610\) 4.75663i 0.00779776i
\(611\) 469.223i 0.767958i
\(612\) −286.610 224.252i −0.468316 0.366425i
\(613\) −135.981 −0.221828 −0.110914 0.993830i \(-0.535378\pi\)
−0.110914 + 0.993830i \(0.535378\pi\)
\(614\) 229.698 0.374101
\(615\) −1.53300 + 5.50126i −0.00249269 + 0.00894514i
\(616\) 169.414 0.275022
\(617\) −150.969 + 150.969i −0.244683 + 0.244683i −0.818784 0.574101i \(-0.805352\pi\)
0.574101 + 0.818784i \(0.305352\pi\)
\(618\) −168.199 + 603.592i −0.272167 + 0.976686i
\(619\) −861.159 + 861.159i −1.39121 + 1.39121i −0.568588 + 0.822622i \(0.692510\pi\)
−0.822622 + 0.568588i \(0.807490\pi\)
\(620\) −3.59599 −0.00579998
\(621\) −165.268 4.94457i −0.266132 0.00796226i
\(622\) 646.127 646.127i 1.03879 1.03879i
\(623\) −605.995 605.995i −0.972704 0.972704i
\(624\) −93.8562 + 336.808i −0.150411 + 0.539756i
\(625\) −624.931 −0.999890
\(626\) −115.900 + 115.900i −0.185144 + 0.185144i
\(627\) 138.483 + 245.479i 0.220866 + 0.391513i
\(628\) −68.3758 −0.108879
\(629\) 495.266 + 631.596i 0.787387 + 1.00413i
\(630\) −3.47081 + 5.74400i −0.00550922 + 0.00911745i
\(631\) 26.1221i 0.0413980i 0.999786 + 0.0206990i \(0.00658916\pi\)
−0.999786 + 0.0206990i \(0.993411\pi\)
\(632\) 72.4977 72.4977i 0.114711 0.114711i
\(633\) 165.663 + 293.659i 0.261711 + 0.463917i
\(634\) −310.491 310.491i −0.489733 0.489733i
\(635\) −2.69809 2.69809i −0.00424896 0.00424896i
\(636\) 103.876 372.765i 0.163327 0.586108i
\(637\) 271.274i 0.425862i
\(638\) −31.4763 −0.0493359
\(639\) −415.390 + 102.472i −0.650063 + 0.160363i
\(640\) 2.57340 2.57340i 0.00402093 0.00402093i
\(641\) −478.801 + 478.801i −0.746959 + 0.746959i −0.973907 0.226948i \(-0.927125\pi\)
0.226948 + 0.973907i \(0.427125\pi\)
\(642\) −329.145 583.454i −0.512687 0.908806i
\(643\) 13.1640 + 13.1640i 0.0204727 + 0.0204727i 0.717269 0.696796i \(-0.245392\pi\)
−0.696796 + 0.717269i \(0.745392\pi\)
\(644\) −142.131 −0.220700
\(645\) −1.51201 + 0.852975i −0.00234420 + 0.00132244i
\(646\) −114.274 + 944.553i −0.176894 + 1.46216i
\(647\) 775.698i 1.19892i 0.800406 + 0.599458i \(0.204617\pi\)
−0.800406 + 0.599458i \(0.795383\pi\)
\(648\) −154.269 293.651i −0.238069 0.453164i
\(649\) −16.0209 16.0209i −0.0246855 0.0246855i
\(650\) 370.576i 0.570117i
\(651\) 392.642 1409.02i 0.603137 2.16439i
\(652\) 50.0198 50.0198i 0.0767175 0.0767175i
\(653\) −378.601 378.601i −0.579787 0.579787i 0.355057 0.934845i \(-0.384461\pi\)
−0.934845 + 0.355057i \(0.884461\pi\)
\(654\) 352.607 + 625.043i 0.539155 + 0.955723i
\(655\) 5.86242i 0.00895026i
\(656\) −883.359 883.359i −1.34658 1.34658i
\(657\) 63.0371 + 255.533i 0.0959468 + 0.388939i
\(658\) −1393.13 1393.13i −2.11722 2.11722i
\(659\) 393.519i 0.597146i 0.954387 + 0.298573i \(0.0965106\pi\)
−0.954387 + 0.298573i \(0.903489\pi\)
\(660\) 0.245711 0.881748i 0.000372290 0.00133598i
\(661\) 198.424i 0.300188i −0.988672 0.150094i \(-0.952042\pi\)
0.988672 0.150094i \(-0.0479577\pi\)
\(662\) 83.2694i 0.125785i
\(663\) 114.405 276.614i 0.172556 0.417216i
\(664\) −352.571 −0.530980
\(665\) 6.54288 0.00983892
\(666\) −257.031 1041.93i −0.385933 1.56445i
\(667\) −18.0021 −0.0269897
\(668\) −399.169 + 399.169i −0.597559 + 0.597559i
\(669\) −691.619 192.729i −1.03381 0.288086i
\(670\) −5.68634 + 5.68634i −0.00848707 + 0.00848707i
\(671\) −263.889 −0.393278
\(672\) −485.717 860.998i −0.722794 1.28125i
\(673\) 316.549 316.549i 0.470355 0.470355i −0.431674 0.902029i \(-0.642077\pi\)
0.902029 + 0.431674i \(0.142077\pi\)
\(674\) −814.070 814.070i −1.20782 1.20782i
\(675\) 462.793 + 491.339i 0.685619 + 0.727910i
\(676\) −320.032 −0.473419
\(677\) 351.749 351.749i 0.519570 0.519570i −0.397871 0.917441i \(-0.630251\pi\)
0.917441 + 0.397871i \(0.130251\pi\)
\(678\) 849.121 479.017i 1.25239 0.706515i
\(679\) 915.775 1.34871
\(680\) −1.65761 + 1.29982i −0.00243766 + 0.00191149i
\(681\) −17.6918 + 9.98050i −0.0259791 + 0.0146557i
\(682\) 534.999i 0.784456i
\(683\) −751.652 + 751.652i −1.10051 + 1.10051i −0.106166 + 0.994348i \(0.533858\pi\)
−0.994348 + 0.106166i \(0.966142\pi\)
\(684\) 245.332 406.012i 0.358673 0.593584i
\(685\) 4.12781 + 4.12781i 0.00602600 + 0.00602600i
\(686\) 48.4730 + 48.4730i 0.0706603 + 0.0706603i
\(687\) 185.089 + 51.5776i 0.269416 + 0.0750766i
\(688\) 379.755i 0.551969i
\(689\) 318.301 0.461975
\(690\) 0.376858 1.35238i 0.000546171 0.00195996i
\(691\) 676.031 676.031i 0.978337 0.978337i −0.0214328 0.999770i \(-0.506823\pi\)
0.999770 + 0.0214328i \(0.00682281\pi\)
\(692\) −410.008 + 410.008i −0.592497 + 0.592497i
\(693\) 318.667 + 192.554i 0.459836 + 0.277856i
\(694\) −719.915 719.915i −1.03734 1.03734i
\(695\) −0.827259 −0.00119030
\(696\) −17.7451 31.4555i −0.0254958 0.0451947i
\(697\) 659.966 + 841.632i 0.946866 + 1.20751i
\(698\) 11.7458i 0.0168278i
\(699\) 244.817 + 433.970i 0.350238 + 0.620844i
\(700\) 410.278 + 410.278i 0.586111 + 0.586111i
\(701\) 776.727i 1.10803i −0.832508 0.554014i \(-0.813096\pi\)
0.832508 0.554014i \(-0.186904\pi\)
\(702\) −291.347 + 274.420i −0.415024 + 0.390912i
\(703\) −739.809 + 739.809i −1.05236 + 1.05236i
\(704\) 17.5652 + 17.5652i 0.0249506 + 0.0249506i
\(705\) 6.32040 3.56555i 0.00896511 0.00505751i
\(706\) 965.047i 1.36692i
\(707\) 997.258 + 997.258i 1.41055 + 1.41055i
\(708\) −10.2365 + 36.7344i −0.0144584 + 0.0518847i
\(709\) −368.649 368.649i −0.519956 0.519956i 0.397602 0.917558i \(-0.369843\pi\)
−0.917558 + 0.397602i \(0.869843\pi\)
\(710\) 3.63277i 0.00511658i
\(711\) 218.768 53.9676i 0.307691 0.0759038i
\(712\) 359.661i 0.505141i
\(713\) 305.980i 0.429145i
\(714\) 481.603 + 1160.94i 0.674514 + 1.62597i
\(715\) 0.752918 0.00105303
\(716\) −288.630 −0.403115
\(717\) 462.198 + 128.798i 0.644628 + 0.179635i
\(718\) −194.889 −0.271433
\(719\) 485.521 485.521i 0.675273 0.675273i −0.283654 0.958927i \(-0.591547\pi\)
0.958927 + 0.283654i \(0.0915466\pi\)
\(720\) 5.24998 1.29511i 0.00729164 0.00179877i
\(721\) 570.620 570.620i 0.791428 0.791428i
\(722\) −328.507 −0.454995
\(723\) 315.719 178.107i 0.436679 0.246345i
\(724\) 72.7801 72.7801i 0.100525 0.100525i
\(725\) 51.9653 + 51.9653i 0.0716763 + 0.0716763i
\(726\) 751.952 + 209.542i 1.03575 + 0.288625i
\(727\) −756.846 −1.04105 −0.520527 0.853845i \(-0.674264\pi\)
−0.520527 + 0.853845i \(0.674264\pi\)
\(728\) 165.847 165.847i 0.227812 0.227812i
\(729\) 43.5821 727.696i 0.0597834 0.998211i
\(730\) −2.23475 −0.00306130
\(731\) −39.0490 + 322.767i −0.0534186 + 0.441542i
\(732\) 218.231 + 386.843i 0.298130 + 0.528474i
\(733\) 385.816i 0.526353i 0.964748 + 0.263176i \(0.0847701\pi\)
−0.964748 + 0.263176i \(0.915230\pi\)
\(734\) 572.232 572.232i 0.779607 0.779607i
\(735\) 3.65405 2.06137i 0.00497149 0.00280458i
\(736\) 146.226 + 146.226i 0.198676 + 0.198676i
\(737\) 315.468 + 315.468i 0.428043 + 0.428043i
\(738\) −342.506 1388.42i −0.464101 1.88132i
\(739\) 1032.78i 1.39754i 0.715347 + 0.698770i \(0.246269\pi\)
−0.715347 + 0.698770i \(0.753731\pi\)
\(740\) 3.39787 0.00459171
\(741\) 375.879 + 104.744i 0.507258 + 0.141355i
\(742\) −945.041 + 945.041i −1.27364 + 1.27364i
\(743\) 805.346 805.346i 1.08391 1.08391i 0.0877707 0.996141i \(-0.472026\pi\)
0.996141 0.0877707i \(-0.0279743\pi\)
\(744\) −534.646 + 301.612i −0.718611 + 0.405392i
\(745\) 1.98608 + 1.98608i 0.00266588 + 0.00266588i
\(746\) 1127.83 1.51184
\(747\) −663.185 400.729i −0.887798 0.536451i
\(748\) −105.780 134.898i −0.141417 0.180344i
\(749\) 862.747i 1.15187i
\(750\) −9.98346 + 5.63200i −0.0133113 + 0.00750933i
\(751\) 115.715 + 115.715i 0.154082 + 0.154082i 0.779938 0.625856i \(-0.215250\pi\)
−0.625856 + 0.779938i \(0.715250\pi\)
\(752\) 1587.42i 2.11094i
\(753\) −507.638 141.460i −0.674154 0.187862i
\(754\) −30.8137 + 30.8137i −0.0408669 + 0.0408669i
\(755\) −0.215640 0.215640i −0.000285616 0.000285616i
\(756\) 18.7403 626.381i 0.0247888 0.828546i
\(757\) 229.198i 0.302772i −0.988475 0.151386i \(-0.951626\pi\)
0.988475 0.151386i \(-0.0483736\pi\)
\(758\) 554.214 + 554.214i 0.731153 + 0.731153i
\(759\) −75.0274 20.9074i −0.0988503 0.0275460i
\(760\) −1.94161 1.94161i −0.00255476 0.00255476i
\(761\) 1423.20i 1.87017i −0.354424 0.935085i \(-0.615323\pi\)
0.354424 0.935085i \(-0.384677\pi\)
\(762\) 920.402 + 256.483i 1.20788 + 0.336591i
\(763\) 924.244i 1.21133i
\(764\) 64.9180i 0.0849712i
\(765\) −4.59532 + 0.560922i −0.00600696 + 0.000733232i
\(766\) 709.218 0.925872
\(767\) −31.3672 −0.0408960
\(768\) −263.504 + 945.597i −0.343104 + 1.23125i
\(769\) 1003.32 1.30470 0.652351 0.757917i \(-0.273783\pi\)
0.652351 + 0.757917i \(0.273783\pi\)
\(770\) −2.23543 + 2.23543i −0.00290315 + 0.00290315i
\(771\) 100.940 362.229i 0.130921 0.469817i
\(772\) −484.799 + 484.799i −0.627978 + 0.627978i
\(773\) −942.731 −1.21957 −0.609787 0.792565i \(-0.708745\pi\)
−0.609787 + 0.792565i \(0.708745\pi\)
\(774\) 224.818 372.061i 0.290462 0.480698i
\(775\) 883.249 883.249i 1.13968 1.13968i
\(776\) −271.758 271.758i −0.350204 0.350204i
\(777\) −371.009 + 1331.39i −0.477490 + 1.71350i
\(778\) 1018.21 1.30875
\(779\) −985.831 + 985.831i −1.26551 + 1.26551i
\(780\) −0.622647 1.10372i −0.000798266 0.00141503i
\(781\) −201.539 −0.258053
\(782\) −162.239 206.898i −0.207467 0.264576i
\(783\) 2.37363 79.3367i 0.00303146 0.101324i
\(784\) 917.746i 1.17059i
\(785\) −0.615056 + 0.615056i −0.000783511 + 0.000783511i
\(786\) 721.283 + 1278.57i 0.917663 + 1.62668i
\(787\) 538.253 + 538.253i 0.683930 + 0.683930i 0.960883 0.276953i \(-0.0893247\pi\)
−0.276953 + 0.960883i \(0.589325\pi\)
\(788\) −60.9018 60.9018i −0.0772866 0.0772866i
\(789\) 167.594 601.421i 0.212413 0.762257i
\(790\) 1.91322i 0.00242180i
\(791\) −1255.59 −1.58734
\(792\) −37.4241 151.706i −0.0472527 0.191548i
\(793\) −258.334 + 258.334i −0.325768 + 0.325768i
\(794\) 1327.91 1327.91i 1.67243 1.67243i
\(795\) −2.41872 4.28750i −0.00304241 0.00539308i
\(796\) −72.4701 72.4701i −0.0910428 0.0910428i
\(797\) −1413.34 −1.77332 −0.886661 0.462421i \(-0.846981\pi\)
−0.886661 + 0.462421i \(0.846981\pi\)
\(798\) −1426.97 + 805.003i −1.78819 + 1.00878i
\(799\) 163.230 1349.21i 0.204293 1.68862i
\(800\) 844.195i 1.05524i
\(801\) −408.787 + 676.520i −0.510346 + 0.844595i
\(802\) −744.499 744.499i −0.928303 0.928303i
\(803\) 123.980i 0.154396i
\(804\) 201.568 723.338i 0.250707 0.899675i
\(805\) −1.27850 + 1.27850i −0.00158820 + 0.00158820i
\(806\) 523.736 + 523.736i 0.649797 + 0.649797i
\(807\) 17.5172 + 31.0516i 0.0217066 + 0.0384779i
\(808\) 591.877i 0.732521i
\(809\) 327.290 + 327.290i 0.404561 + 0.404561i 0.879837 0.475276i \(-0.157652\pi\)
−0.475276 + 0.879837i \(0.657652\pi\)
\(810\) 5.91033 + 1.83915i 0.00729670 + 0.00227056i
\(811\) −436.722 436.722i −0.538498 0.538498i 0.384589 0.923088i \(-0.374343\pi\)
−0.923088 + 0.384589i \(0.874343\pi\)
\(812\) 68.2297i 0.0840267i
\(813\) 245.086 879.505i 0.301459 1.08180i
\(814\) 505.523i 0.621036i
\(815\) 0.899880i 0.00110415i
\(816\) 387.042 935.812i 0.474316 1.14683i
\(817\) −423.807 −0.518736
\(818\) −241.514 −0.295249
\(819\) 500.459 123.457i 0.611061 0.150742i
\(820\) 4.52782 0.00552173
\(821\) 156.578 156.578i 0.190716 0.190716i −0.605290 0.796005i \(-0.706943\pi\)
0.796005 + 0.605290i \(0.206943\pi\)
\(822\) −1408.12 392.393i −1.71304 0.477364i
\(823\) 221.300 221.300i 0.268895 0.268895i −0.559760 0.828655i \(-0.689107\pi\)
0.828655 + 0.559760i \(0.189107\pi\)
\(824\) −338.666 −0.411002
\(825\) 156.224 + 276.927i 0.189362 + 0.335669i
\(826\) 93.1297 93.1297i 0.112748 0.112748i
\(827\) −431.211 431.211i −0.521415 0.521415i 0.396583 0.917999i \(-0.370196\pi\)
−0.917999 + 0.396583i \(0.870196\pi\)
\(828\) 31.3972 + 127.275i 0.0379194 + 0.153714i
\(829\) −846.071 −1.02059 −0.510296 0.859999i \(-0.670464\pi\)
−0.510296 + 0.859999i \(0.670464\pi\)
\(830\) 4.65220 4.65220i 0.00560506 0.00560506i
\(831\) 125.764 70.9477i 0.151341 0.0853763i
\(832\) 34.3909 0.0413353
\(833\) 94.3689 780.025i 0.113288 0.936405i
\(834\) 180.422 101.782i 0.216333 0.122041i
\(835\) 7.18124i 0.00860029i
\(836\) 158.010 158.010i 0.189007 0.189007i
\(837\) −1348.48 40.3443i −1.61108 0.0482011i
\(838\) −20.8039 20.8039i −0.0248257 0.0248257i
\(839\) 746.151 + 746.151i 0.889333 + 0.889333i 0.994459 0.105126i \(-0.0335245\pi\)
−0.105126 + 0.994459i \(0.533524\pi\)
\(840\) −3.49420 0.973707i −0.00415976 0.00115917i
\(841\) 832.358i 0.989724i
\(842\) 543.657 0.645673
\(843\) −228.094 + 818.529i −0.270575 + 0.970972i
\(844\) 189.023 189.023i 0.223961 0.223961i
\(845\) −2.87876 + 2.87876i −0.00340682 + 0.00340682i
\(846\) −939.766 + 1555.26i −1.11083 + 1.83837i
\(847\) −710.876 710.876i −0.839286 0.839286i
\(848\) 1076.84 1.26986
\(849\) −129.404 229.386i −0.152420 0.270184i
\(850\) −128.913 + 1065.56i −0.151663 + 1.25360i
\(851\) 289.122i 0.339744i
\(852\) 166.669 + 295.443i 0.195621 + 0.346764i
\(853\) −308.095 308.095i −0.361190 0.361190i 0.503061 0.864251i \(-0.332207\pi\)
−0.864251 + 0.503061i \(0.832207\pi\)
\(854\) 1534.00i 1.79625i
\(855\) −1.44535 5.85899i −0.00169046 0.00685262i
\(856\) 256.022 256.022i 0.299091 0.299091i
\(857\) 531.097 + 531.097i 0.619717 + 0.619717i 0.945459 0.325742i \(-0.105614\pi\)
−0.325742 + 0.945459i \(0.605614\pi\)
\(858\) −164.208 + 92.6353i −0.191385 + 0.107967i
\(859\) 1037.60i 1.20791i 0.797017 + 0.603956i \(0.206410\pi\)
−0.797017 + 0.603956i \(0.793590\pi\)
\(860\) 0.973252 + 0.973252i 0.00113169 + 0.00113169i
\(861\) −494.388 + 1774.14i −0.574202 + 2.06055i
\(862\) 1419.04 + 1419.04i 1.64622 + 1.64622i
\(863\) 1270.43i 1.47210i −0.676925 0.736052i \(-0.736688\pi\)
0.676925 0.736052i \(-0.263312\pi\)
\(864\) −663.706 + 625.146i −0.768179 + 0.723548i
\(865\) 7.37624i 0.00852744i
\(866\) 129.535i 0.149578i
\(867\) −425.187 + 755.582i −0.490412 + 0.871491i
\(868\) −1159.69 −1.33605
\(869\) 106.142 0.122143
\(870\) 0.649206 + 0.180910i 0.000746214 + 0.000207943i
\(871\) 617.653 0.709131
\(872\) −274.272 + 274.272i −0.314532 + 0.314532i
\(873\) −202.298 820.055i −0.231728 0.939353i
\(874\) 242.347 242.347i 0.277285 0.277285i
\(875\) 14.7624 0.0168714
\(876\) 181.746 102.529i 0.207472 0.117042i
\(877\) −38.0693 + 38.0693i −0.0434085 + 0.0434085i −0.728478 0.685069i \(-0.759772\pi\)
0.685069 + 0.728478i \(0.259772\pi\)
\(878\) 1149.83 + 1149.83i 1.30960 + 1.30960i
\(879\) −633.482 176.529i −0.720685 0.200829i
\(880\) 2.54719 0.00289454
\(881\) 354.173 354.173i 0.402013 0.402013i −0.476929 0.878942i \(-0.658250\pi\)
0.878942 + 0.476929i \(0.158250\pi\)
\(882\) −543.312 + 899.151i −0.616000 + 1.01945i
\(883\) 1084.70 1.22843 0.614215 0.789139i \(-0.289473\pi\)
0.614215 + 0.789139i \(0.289473\pi\)
\(884\) −235.611 28.5046i −0.266528 0.0322451i
\(885\) 0.238354 + 0.422514i 0.000269327 + 0.000477417i
\(886\) 1807.02i 2.03952i
\(887\) −109.008 + 109.008i −0.122895 + 0.122895i −0.765880 0.642984i \(-0.777696\pi\)
0.642984 + 0.765880i \(0.277696\pi\)
\(888\) 505.190 284.994i 0.568908 0.320939i
\(889\) −870.124 870.124i −0.978767 0.978767i
\(890\) −4.74575 4.74575i −0.00533230 0.00533230i
\(891\) 102.033 327.894i 0.114515 0.368007i
\(892\) 569.238i 0.638159i
\(893\) 1771.57 1.98384
\(894\) −677.512 188.798i −0.757844 0.211184i
\(895\) −2.59630 + 2.59630i −0.00290089 + 0.00290089i
\(896\) 829.910 829.910i 0.926239 0.926239i
\(897\) −93.9152 + 52.9806i −0.104699 + 0.0590643i
\(898\) −525.220 525.220i −0.584878 0.584878i
\(899\) −146.885 −0.163388
\(900\) 276.762 458.026i 0.307513 0.508918i
\(901\) −915.247 110.728i −1.01581 0.122895i
\(902\) 673.633i 0.746822i
\(903\) −487.618 + 275.081i −0.539998 + 0.304630i
\(904\) 372.598 + 372.598i 0.412166 + 0.412166i
\(905\) 1.30935i 0.00144679i
\(906\) 73.5614 + 20.4989i 0.0811936 + 0.0226257i
\(907\) −660.017 + 660.017i −0.727693 + 0.727693i −0.970160 0.242467i \(-0.922043\pi\)
0.242467 + 0.970160i \(0.422043\pi\)
\(908\) 11.3878 + 11.3878i 0.0125417 + 0.0125417i
\(909\) 672.722 1113.32i 0.740069 1.22477i
\(910\) 4.37673i 0.00480960i
\(911\) −101.875 101.875i −0.111828 0.111828i 0.648979 0.760807i \(-0.275196\pi\)
−0.760807 + 0.648979i \(0.775196\pi\)
\(912\) 1271.63 + 354.358i 1.39433 + 0.388550i
\(913\) −258.096 258.096i −0.282690 0.282690i
\(914\) 1739.28i 1.90293i
\(915\) 5.44278 + 1.51671i 0.00594840 + 0.00165760i
\(916\) 152.338i 0.166307i
\(917\) 1890.61i 2.06173i
\(918\) 933.207 687.720i 1.01657 0.749151i
\(919\) 164.434 0.178927 0.0894634 0.995990i \(-0.471485\pi\)
0.0894634 + 0.995990i \(0.471485\pi\)
\(920\) 0.758796 0.000824778
\(921\) −73.2418 + 262.832i −0.0795243 + 0.285377i
\(922\) 1044.23 1.13257
\(923\) −197.297 + 197.297i −0.213756 + 0.213756i
\(924\) 79.2409 284.360i 0.0857586 0.307749i
\(925\) −834.586 + 834.586i −0.902255 + 0.902255i
\(926\) −2188.81 −2.36373
\(927\) −637.029 384.924i −0.687194 0.415237i
\(928\) −70.1953 + 70.1953i −0.0756415 + 0.0756415i
\(929\) 230.277 + 230.277i 0.247876 + 0.247876i 0.820099 0.572222i \(-0.193919\pi\)
−0.572222 + 0.820099i \(0.693919\pi\)
\(930\) 3.07491 11.0345i 0.00330636 0.0118650i
\(931\) 1024.21 1.10011
\(932\) 279.338 279.338i 0.299719 0.299719i
\(933\) 533.307 + 945.356i 0.571604 + 1.01324i
\(934\) 1887.70 2.02110
\(935\) −2.16495 0.261920i −0.00231546 0.000280128i
\(936\) −185.149 111.876i −0.197808 0.119526i
\(937\) 1116.40i 1.19147i −0.803183 0.595733i \(-0.796862\pi\)
0.803183 0.595733i \(-0.203138\pi\)
\(938\) −1833.82 + 1833.82i −1.95503 + 1.95503i
\(939\) −95.6627 169.575i −0.101877 0.180591i
\(940\) −4.06832 4.06832i −0.00432800 0.00432800i
\(941\) −1117.63 1117.63i −1.18770 1.18770i −0.977701 0.210003i \(-0.932652\pi\)
−0.210003 0.977701i \(-0.567348\pi\)
\(942\) 58.4678 209.815i 0.0620677 0.222733i
\(943\) 385.269i 0.408557i
\(944\) −106.118 −0.112413
\(945\) −5.46587 5.80302i −0.00578399 0.00614076i
\(946\) 144.797 144.797i 0.153062 0.153062i
\(947\) −1056.51 + 1056.51i −1.11564 + 1.11564i −0.123264 + 0.992374i \(0.539336\pi\)
−0.992374 + 0.123264i \(0.960664\pi\)
\(948\) −87.7773 155.597i −0.0925921 0.164132i
\(949\) 121.370 + 121.370i 0.127892 + 0.127892i
\(950\) −1399.13 −1.47276
\(951\) 454.283 256.276i 0.477690 0.269480i
\(952\) −534.573 + 419.186i −0.561527 + 0.440321i
\(953\) 753.109i 0.790251i 0.918627 + 0.395126i \(0.129299\pi\)
−0.918627 + 0.395126i \(0.870701\pi\)
\(954\) 1055.02 + 637.498i 1.10590 + 0.668237i
\(955\) −0.583953 0.583953i −0.000611469 0.000611469i
\(956\) 380.413i 0.397921i
\(957\) 10.0366 36.0168i 0.0104875 0.0376351i
\(958\) 1141.57 1141.57i 1.19162 1.19162i
\(959\) 1331.20 + 1331.20i 1.38812 + 1.38812i
\(960\) −0.261331 0.463244i −0.000272220 0.000482546i
\(961\) 1535.60i 1.59791i
\(962\) −494.881 494.881i −0.514429 0.514429i
\(963\) 772.569 190.584i 0.802253 0.197907i
\(964\) −203.222 203.222i −0.210811 0.210811i
\(965\) 8.72176i 0.00903809i
\(966\) 121.535 436.136i 0.125813 0.451487i
\(967\) 473.999i 0.490174i 0.969501 + 0.245087i \(0.0788166\pi\)
−0.969501 + 0.245087i \(0.921183\pi\)
\(968\) 421.908i 0.435855i
\(969\) −1044.37 431.940i −1.07778 0.445758i
\(970\) 7.17174 0.00739355
\(971\) 994.798 1.02451 0.512254 0.858834i \(-0.328811\pi\)
0.512254 + 0.858834i \(0.328811\pi\)
\(972\) −565.049 + 121.588i −0.581326 + 0.125091i
\(973\) −266.788 −0.274191
\(974\) 144.885 144.885i 0.148752 0.148752i
\(975\) 424.032 + 118.162i 0.434905 + 0.121192i
\(976\) −873.969 + 873.969i −0.895460 + 0.895460i
\(977\) −12.3001 −0.0125897 −0.00629484 0.999980i \(-0.502004\pi\)
−0.00629484 + 0.999980i \(0.502004\pi\)
\(978\) 110.717 + 196.260i 0.113207 + 0.200675i
\(979\) −263.286 + 263.286i −0.268933 + 0.268933i
\(980\) −2.35204 2.35204i −0.00240004 0.00240004i
\(981\) −827.639 + 204.169i −0.843668 + 0.208123i
\(982\) −539.742 −0.549635
\(983\) −327.122 + 327.122i −0.332779 + 0.332779i −0.853641 0.520862i \(-0.825611\pi\)
0.520862 + 0.853641i \(0.325611\pi\)
\(984\) 673.190 379.768i 0.684136 0.385943i
\(985\) −1.09565 −0.00111234
\(986\) 99.3212 77.8828i 0.100731 0.0789886i
\(987\) 2038.31 1149.87i 2.06515 1.16502i
\(988\) 309.367i 0.313125i
\(989\) 82.8134 82.8134i 0.0837345 0.0837345i
\(990\) 2.49558 + 1.50796i 0.00252079 + 0.00152319i
\(991\) 1169.11 + 1169.11i 1.17972 + 1.17972i 0.979815 + 0.199908i \(0.0640645\pi\)
0.199908 + 0.979815i \(0.435936\pi\)
\(992\) 1193.10 + 1193.10i 1.20272 + 1.20272i
\(993\) −95.2811 26.5514i −0.0959527 0.0267386i
\(994\) 1171.55i 1.17863i
\(995\) −1.30377 −0.00131032
\(996\) −164.910 + 591.789i −0.165573 + 0.594166i
\(997\) −277.371 + 277.371i −0.278205 + 0.278205i −0.832392 0.554187i \(-0.813029\pi\)
0.554187 + 0.832392i \(0.313029\pi\)
\(998\) −457.330 + 457.330i −0.458247 + 0.458247i
\(999\) 1274.18 + 38.1216i 1.27546 + 0.0381597i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.3.f.a.47.8 yes 20
3.2 odd 2 inner 51.3.f.a.47.3 yes 20
17.4 even 4 inner 51.3.f.a.38.3 20
51.38 odd 4 inner 51.3.f.a.38.8 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.3.f.a.38.3 20 17.4 even 4 inner
51.3.f.a.38.8 yes 20 51.38 odd 4 inner
51.3.f.a.47.3 yes 20 3.2 odd 2 inner
51.3.f.a.47.8 yes 20 1.1 even 1 trivial