Properties

Label 51.3.f
Level $51$
Weight $3$
Character orbit 51.f
Rep. character $\chi_{51}(38,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $20$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 51.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 51 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(51, [\chi])\).

Total New Old
Modular forms 28 28 0
Cusp forms 20 20 0
Eisenstein series 8 8 0

Trace form

\( 20 q - 6 q^{3} + 24 q^{4} - 2 q^{6} - 4 q^{7} - 16 q^{10} - 42 q^{12} - 12 q^{13} - 64 q^{16} - 4 q^{18} + 88 q^{21} - 40 q^{22} - 82 q^{24} + 54 q^{27} - 160 q^{28} + 48 q^{31} + 264 q^{33} + 152 q^{34}+ \cdots - 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(51, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
51.3.f.a 51.f 51.f $20$ $1.390$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 51.3.f.a \(0\) \(-6\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{1}q^{2}-\beta _{11}q^{3}+(1-\beta _{2})q^{4}-\beta _{9}q^{5}+\cdots\)