L(s) = 1 | + 2.52·2-s + (−0.805 + 2.88i)3-s + 2.37·4-s + (0.0213 − 0.0213i)5-s + (−2.03 + 7.29i)6-s + (6.89 − 6.89i)7-s − 4.09·8-s + (−7.70 − 4.65i)9-s + (0.0540 − 0.0540i)10-s + (−2.99 − 2.99i)11-s + (−1.91 + 6.87i)12-s − 5.86·13-s + (17.4 − 17.4i)14-s + (0.0446 + 0.0790i)15-s − 19.8·16-s + (16.8 + 2.04i)17-s + ⋯ |
L(s) = 1 | + 1.26·2-s + (−0.268 + 0.963i)3-s + 0.594·4-s + (0.00427 − 0.00427i)5-s + (−0.338 + 1.21i)6-s + (0.985 − 0.985i)7-s − 0.511·8-s + (−0.855 − 0.517i)9-s + (0.00540 − 0.00540i)10-s + (−0.272 − 0.272i)11-s + (−0.159 + 0.572i)12-s − 0.451·13-s + (1.24 − 1.24i)14-s + (0.00297 + 0.00527i)15-s − 1.24·16-s + (0.992 + 0.120i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 - 0.493i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.869 - 0.493i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.73613 + 0.457873i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.73613 + 0.457873i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.805 - 2.88i)T \) |
| 17 | \( 1 + (-16.8 - 2.04i)T \) |
good | 2 | \( 1 - 2.52T + 4T^{2} \) |
| 5 | \( 1 + (-0.0213 + 0.0213i)T - 25iT^{2} \) |
| 7 | \( 1 + (-6.89 + 6.89i)T - 49iT^{2} \) |
| 11 | \( 1 + (2.99 + 2.99i)T + 121iT^{2} \) |
| 13 | \( 1 + 5.86T + 169T^{2} \) |
| 19 | \( 1 - 22.1iT - 361T^{2} \) |
| 23 | \( 1 + (4.33 + 4.33i)T + 529iT^{2} \) |
| 29 | \( 1 + (-2.07 + 2.07i)T - 841iT^{2} \) |
| 31 | \( 1 + (35.3 + 35.3i)T + 961iT^{2} \) |
| 37 | \( 1 + (-33.3 - 33.3i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-44.4 - 44.4i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 - 19.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 79.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 54.2T + 2.80e3T^{2} \) |
| 59 | \( 1 - 5.34T + 3.48e3T^{2} \) |
| 61 | \( 1 + (-44.0 + 44.0i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 + 105.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-33.6 + 33.6i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (20.6 + 20.6i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (17.7 - 17.7i)T - 6.24e3iT^{2} \) |
| 83 | \( 1 - 86.0T + 6.88e3T^{2} \) |
| 89 | \( 1 + 87.8iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-66.3 - 66.3i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.78254295430305112615209473031, −14.54733322955754588056491778884, −13.28867409972293700851177399613, −11.90929597458660061478229518439, −10.94695757833709233790681908737, −9.686486466364852417171202833341, −7.88792826784850141018445744988, −5.83809176189052225788018959512, −4.72763732362370038806786776821, −3.59500975303000650118074296160,
2.51244201856209923316347503053, 4.91807852425720733246080296183, 5.86027199102656255771101699214, 7.46908301775449932290660790071, 8.917699613802840851301460153687, 11.15053788768110086711133536969, 12.16938282390929469609823900742, 12.73779514810839212700465415441, 14.10913201662343332469837946545, 14.66841096691873385050614918984