Properties

Conductor 51
Order 4
Real no
Primitive yes
Minimal yes
Parity odd
Orbit label 51.f

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(51)
 
sage: chi = H[47]
 
pari: [g,chi] = znchar(Mod(47,51))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 51
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 4
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 51.f
Orbit index = 6

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{51}(38,\cdot)\) \(\chi_{51}(47,\cdot)\)

Values on generators

\((35,37)\) → \((-1,i)\)

Values

-11245781011131416
\(-1\)\(1\)\(1\)\(1\)\(-i\)\(-i\)\(1\)\(-i\)\(i\)\(1\)\(-i\)\(1\)
value at  e.g. 2

Related number fields

Field of values \(\Q(i)\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 51 }(47,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{51}(47,\cdot)) = \sum_{r\in \Z/51\Z} \chi_{51}(47,r) e\left(\frac{2r}{51}\right) = 4.3949222475+5.6289127226i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 51 }(47,·),\chi_{ 51 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{51}(47,\cdot),\chi_{51}(1,\cdot)) = \sum_{r\in \Z/51\Z} \chi_{51}(47,r) \chi_{51}(1,1-r) = 1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 51 }(47,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{51}(47,·)) = \sum_{r \in \Z/51\Z} \chi_{51}(47,r) e\left(\frac{1 r + 2 r^{-1}}{51}\right) = 0.0 \)