Properties

Label 51.3.f.a.38.6
Level $51$
Weight $3$
Character 51.38
Analytic conductor $1.390$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,3,Mod(38,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.38"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 51.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38964934824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 62 x^{18} + 1545 x^{16} + 20120 x^{14} + 149608 x^{12} + 655792 x^{10} + 1690896 x^{8} + \cdots + 36864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 38.6
Root \(-0.791600i\) of defining polynomial
Character \(\chi\) \(=\) 51.38
Dual form 51.3.f.a.47.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.208400 q^{2} +(-0.709732 + 2.91484i) q^{3} -3.95657 q^{4} +(5.25648 + 5.25648i) q^{5} +(-0.147908 + 0.607451i) q^{6} +(2.40158 + 2.40158i) q^{7} -1.65815 q^{8} +(-7.99256 - 4.13751i) q^{9} +(1.09545 + 1.09545i) q^{10} +(11.4695 - 11.4695i) q^{11} +(2.80810 - 11.5328i) q^{12} -8.12160 q^{13} +(0.500488 + 0.500488i) q^{14} +(-19.0525 + 11.5911i) q^{15} +15.4807 q^{16} +(13.5788 + 10.2282i) q^{17} +(-1.66565 - 0.862255i) q^{18} -24.0029i q^{19} +(-20.7976 - 20.7976i) q^{20} +(-8.70468 + 5.29573i) q^{21} +(2.39024 - 2.39024i) q^{22} +(-5.74247 + 5.74247i) q^{23} +(1.17684 - 4.83323i) q^{24} +30.2612i q^{25} -1.69254 q^{26} +(17.7327 - 20.3605i) q^{27} +(-9.50201 - 9.50201i) q^{28} +(11.7489 + 11.7489i) q^{29} +(-3.97053 + 2.41558i) q^{30} +(5.33493 - 5.33493i) q^{31} +9.85876 q^{32} +(25.2915 + 41.5720i) q^{33} +(2.82983 + 2.13154i) q^{34} +25.2477i q^{35} +(31.6231 + 16.3703i) q^{36} +(-42.7533 + 42.7533i) q^{37} -5.00220i q^{38} +(5.76415 - 23.6731i) q^{39} +(-8.71602 - 8.71602i) q^{40} +(8.11856 - 8.11856i) q^{41} +(-1.81405 + 1.10363i) q^{42} +2.45499i q^{43} +(-45.3799 + 45.3799i) q^{44} +(-20.2640 - 63.7615i) q^{45} +(-1.19673 + 1.19673i) q^{46} -64.4496i q^{47} +(-10.9872 + 45.1238i) q^{48} -37.4649i q^{49} +6.30643i q^{50} +(-39.4507 + 32.3209i) q^{51} +32.1337 q^{52} -9.84366 q^{53} +(3.69550 - 4.24312i) q^{54} +120.578 q^{55} +(-3.98217 - 3.98217i) q^{56} +(69.9646 + 17.0356i) q^{57} +(2.44846 + 2.44846i) q^{58} -73.8881 q^{59} +(75.3825 - 45.8610i) q^{60} +(-55.3702 - 55.3702i) q^{61} +(1.11180 - 1.11180i) q^{62} +(-9.25821 - 29.1313i) q^{63} -59.8683 q^{64} +(-42.6910 - 42.6910i) q^{65} +(5.27074 + 8.66359i) q^{66} +27.1997 q^{67} +(-53.7256 - 40.4684i) q^{68} +(-12.6628 - 20.8140i) q^{69} +5.26161i q^{70} +(6.71855 + 6.71855i) q^{71} +(13.2528 + 6.86059i) q^{72} +(-1.60189 + 1.60189i) q^{73} +(-8.90977 + 8.90977i) q^{74} +(-88.2065 - 21.4773i) q^{75} +94.9692i q^{76} +55.0898 q^{77} +(1.20125 - 4.93347i) q^{78} +(-64.8910 - 64.8910i) q^{79} +(81.3741 + 81.3741i) q^{80} +(46.7621 + 66.1385i) q^{81} +(1.69190 - 1.69190i) q^{82} +64.2751 q^{83} +(34.4407 - 20.9529i) q^{84} +(17.6128 + 125.141i) q^{85} +0.511620i q^{86} +(-42.5846 + 25.9075i) q^{87} +(-19.0181 + 19.0181i) q^{88} +142.221i q^{89} +(-4.22302 - 13.2879i) q^{90} +(-19.5046 - 19.5046i) q^{91} +(22.7205 - 22.7205i) q^{92} +(11.7641 + 19.3368i) q^{93} -13.4313i q^{94} +(126.171 - 126.171i) q^{95} +(-6.99708 + 28.7367i) q^{96} +(48.5370 - 48.5370i) q^{97} -7.80767i q^{98} +(-139.126 + 44.2156i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3} + 24 q^{4} - 2 q^{6} - 4 q^{7} - 16 q^{10} - 42 q^{12} - 12 q^{13} - 64 q^{16} - 4 q^{18} + 88 q^{21} - 40 q^{22} - 82 q^{24} + 54 q^{27} - 160 q^{28} + 48 q^{31} + 264 q^{33} + 152 q^{34}+ \cdots - 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.208400 0.104200 0.0520999 0.998642i \(-0.483409\pi\)
0.0520999 + 0.998642i \(0.483409\pi\)
\(3\) −0.709732 + 2.91484i −0.236577 + 0.971613i
\(4\) −3.95657 −0.989142
\(5\) 5.25648 + 5.25648i 1.05130 + 1.05130i 0.998611 + 0.0526852i \(0.0167780\pi\)
0.0526852 + 0.998611i \(0.483222\pi\)
\(6\) −0.147908 + 0.607451i −0.0246513 + 0.101242i
\(7\) 2.40158 + 2.40158i 0.343082 + 0.343082i 0.857525 0.514442i \(-0.172001\pi\)
−0.514442 + 0.857525i \(0.672001\pi\)
\(8\) −1.65815 −0.207268
\(9\) −7.99256 4.13751i −0.888062 0.459723i
\(10\) 1.09545 + 1.09545i 0.109545 + 0.109545i
\(11\) 11.4695 11.4695i 1.04268 1.04268i 0.0436344 0.999048i \(-0.486106\pi\)
0.999048 0.0436344i \(-0.0138937\pi\)
\(12\) 2.80810 11.5328i 0.234009 0.961063i
\(13\) −8.12160 −0.624738 −0.312369 0.949961i \(-0.601123\pi\)
−0.312369 + 0.949961i \(0.601123\pi\)
\(14\) 0.500488 + 0.500488i 0.0357491 + 0.0357491i
\(15\) −19.0525 + 11.5911i −1.27017 + 0.772740i
\(16\) 15.4807 0.967545
\(17\) 13.5788 + 10.2282i 0.798755 + 0.601656i
\(18\) −1.66565 0.862255i −0.0925360 0.0479031i
\(19\) 24.0029i 1.26331i −0.775249 0.631656i \(-0.782376\pi\)
0.775249 0.631656i \(-0.217624\pi\)
\(20\) −20.7976 20.7976i −1.03988 1.03988i
\(21\) −8.70468 + 5.29573i −0.414509 + 0.252178i
\(22\) 2.39024 2.39024i 0.108647 0.108647i
\(23\) −5.74247 + 5.74247i −0.249673 + 0.249673i −0.820836 0.571164i \(-0.806492\pi\)
0.571164 + 0.820836i \(0.306492\pi\)
\(24\) 1.17684 4.83323i 0.0490350 0.201385i
\(25\) 30.2612i 1.21045i
\(26\) −1.69254 −0.0650976
\(27\) 17.7327 20.3605i 0.656768 0.754093i
\(28\) −9.50201 9.50201i −0.339357 0.339357i
\(29\) 11.7489 + 11.7489i 0.405133 + 0.405133i 0.880037 0.474904i \(-0.157517\pi\)
−0.474904 + 0.880037i \(0.657517\pi\)
\(30\) −3.97053 + 2.41558i −0.132351 + 0.0805194i
\(31\) 5.33493 5.33493i 0.172094 0.172094i −0.615805 0.787899i \(-0.711169\pi\)
0.787899 + 0.615805i \(0.211169\pi\)
\(32\) 9.85876 0.308086
\(33\) 25.2915 + 41.5720i 0.766408 + 1.25976i
\(34\) 2.82983 + 2.13154i 0.0832302 + 0.0626925i
\(35\) 25.2477i 0.721363i
\(36\) 31.6231 + 16.3703i 0.878420 + 0.454731i
\(37\) −42.7533 + 42.7533i −1.15549 + 1.15549i −0.170060 + 0.985434i \(0.554396\pi\)
−0.985434 + 0.170060i \(0.945604\pi\)
\(38\) 5.00220i 0.131637i
\(39\) 5.76415 23.6731i 0.147799 0.607004i
\(40\) −8.71602 8.71602i −0.217900 0.217900i
\(41\) 8.11856 8.11856i 0.198014 0.198014i −0.601134 0.799148i \(-0.705284\pi\)
0.799148 + 0.601134i \(0.205284\pi\)
\(42\) −1.81405 + 1.10363i −0.0431917 + 0.0262769i
\(43\) 2.45499i 0.0570929i 0.999592 + 0.0285464i \(0.00908785\pi\)
−0.999592 + 0.0285464i \(0.990912\pi\)
\(44\) −45.3799 + 45.3799i −1.03136 + 1.03136i
\(45\) −20.2640 63.7615i −0.450312 1.41692i
\(46\) −1.19673 + 1.19673i −0.0260158 + 0.0260158i
\(47\) 64.4496i 1.37127i −0.727947 0.685634i \(-0.759525\pi\)
0.727947 0.685634i \(-0.240475\pi\)
\(48\) −10.9872 + 45.1238i −0.228899 + 0.940079i
\(49\) 37.4649i 0.764589i
\(50\) 6.30643i 0.126129i
\(51\) −39.4507 + 32.3209i −0.773544 + 0.633743i
\(52\) 32.1337 0.617955
\(53\) −9.84366 −0.185729 −0.0928647 0.995679i \(-0.529602\pi\)
−0.0928647 + 0.995679i \(0.529602\pi\)
\(54\) 3.69550 4.24312i 0.0684351 0.0785764i
\(55\) 120.578 2.19234
\(56\) −3.98217 3.98217i −0.0711101 0.0711101i
\(57\) 69.9646 + 17.0356i 1.22745 + 0.298871i
\(58\) 2.44846 + 2.44846i 0.0422148 + 0.0422148i
\(59\) −73.8881 −1.25234 −0.626170 0.779686i \(-0.715378\pi\)
−0.626170 + 0.779686i \(0.715378\pi\)
\(60\) 75.3825 45.8610i 1.25637 0.764350i
\(61\) −55.3702 55.3702i −0.907709 0.907709i 0.0883785 0.996087i \(-0.471832\pi\)
−0.996087 + 0.0883785i \(0.971832\pi\)
\(62\) 1.11180 1.11180i 0.0179322 0.0179322i
\(63\) −9.25821 29.1313i −0.146956 0.462401i
\(64\) −59.8683 −0.935442
\(65\) −42.6910 42.6910i −0.656785 0.656785i
\(66\) 5.27074 + 8.66359i 0.0798596 + 0.131267i
\(67\) 27.1997 0.405965 0.202983 0.979182i \(-0.434937\pi\)
0.202983 + 0.979182i \(0.434937\pi\)
\(68\) −53.7256 40.4684i −0.790083 0.595124i
\(69\) −12.6628 20.8140i −0.183518 0.301652i
\(70\) 5.26161i 0.0751659i
\(71\) 6.71855 + 6.71855i 0.0946275 + 0.0946275i 0.752836 0.658208i \(-0.228685\pi\)
−0.658208 + 0.752836i \(0.728685\pi\)
\(72\) 13.2528 + 6.86059i 0.184067 + 0.0952860i
\(73\) −1.60189 + 1.60189i −0.0219437 + 0.0219437i −0.717993 0.696050i \(-0.754939\pi\)
0.696050 + 0.717993i \(0.254939\pi\)
\(74\) −8.90977 + 8.90977i −0.120402 + 0.120402i
\(75\) −88.2065 21.4773i −1.17609 0.286364i
\(76\) 94.9692i 1.24959i
\(77\) 55.0898 0.715452
\(78\) 1.20125 4.93347i 0.0154006 0.0632497i
\(79\) −64.8910 64.8910i −0.821405 0.821405i 0.164904 0.986310i \(-0.447268\pi\)
−0.986310 + 0.164904i \(0.947268\pi\)
\(80\) 81.3741 + 81.3741i 1.01718 + 1.01718i
\(81\) 46.7621 + 66.1385i 0.577310 + 0.816525i
\(82\) 1.69190 1.69190i 0.0206330 0.0206330i
\(83\) 64.2751 0.774399 0.387200 0.921996i \(-0.373442\pi\)
0.387200 + 0.921996i \(0.373442\pi\)
\(84\) 34.4407 20.9529i 0.410008 0.249440i
\(85\) 17.6128 + 125.141i 0.207210 + 1.47225i
\(86\) 0.511620i 0.00594907i
\(87\) −42.5846 + 25.9075i −0.489478 + 0.297787i
\(88\) −19.0181 + 19.0181i −0.216115 + 0.216115i
\(89\) 142.221i 1.59799i 0.601337 + 0.798996i \(0.294635\pi\)
−0.601337 + 0.798996i \(0.705365\pi\)
\(90\) −4.22302 13.2879i −0.0469224 0.147643i
\(91\) −19.5046 19.5046i −0.214337 0.214337i
\(92\) 22.7205 22.7205i 0.246962 0.246962i
\(93\) 11.7641 + 19.3368i 0.126495 + 0.207923i
\(94\) 13.4313i 0.142886i
\(95\) 126.171 126.171i 1.32811 1.32811i
\(96\) −6.99708 + 28.7367i −0.0728862 + 0.299341i
\(97\) 48.5370 48.5370i 0.500381 0.500381i −0.411175 0.911556i \(-0.634881\pi\)
0.911556 + 0.411175i \(0.134881\pi\)
\(98\) 7.80767i 0.0796701i
\(99\) −139.126 + 44.2156i −1.40531 + 0.446622i
\(100\) 119.731i 1.19731i
\(101\) 41.2075i 0.407995i 0.978971 + 0.203997i \(0.0653934\pi\)
−0.978971 + 0.203997i \(0.934607\pi\)
\(102\) −8.22152 + 6.73566i −0.0806032 + 0.0660359i
\(103\) −42.8144 −0.415674 −0.207837 0.978163i \(-0.566642\pi\)
−0.207837 + 0.978163i \(0.566642\pi\)
\(104\) 13.4668 0.129488
\(105\) −73.5929 17.9191i −0.700885 0.170658i
\(106\) −2.05141 −0.0193530
\(107\) 49.4125 + 49.4125i 0.461799 + 0.461799i 0.899245 0.437446i \(-0.144117\pi\)
−0.437446 + 0.899245i \(0.644117\pi\)
\(108\) −70.1608 + 80.5578i −0.649637 + 0.745905i
\(109\) 99.6210 + 99.6210i 0.913954 + 0.913954i 0.996581 0.0826264i \(-0.0263308\pi\)
−0.0826264 + 0.996581i \(0.526331\pi\)
\(110\) 25.1285 0.228441
\(111\) −94.2755 154.962i −0.849329 1.39606i
\(112\) 37.1781 + 37.1781i 0.331948 + 0.331948i
\(113\) 42.2935 42.2935i 0.374279 0.374279i −0.494754 0.869033i \(-0.664742\pi\)
0.869033 + 0.494754i \(0.164742\pi\)
\(114\) 14.5806 + 3.55022i 0.127900 + 0.0311423i
\(115\) −60.3704 −0.524960
\(116\) −46.4852 46.4852i −0.400734 0.400734i
\(117\) 64.9124 + 33.6032i 0.554806 + 0.287206i
\(118\) −15.3983 −0.130494
\(119\) 8.04693 + 57.1743i 0.0676212 + 0.480456i
\(120\) 31.5918 19.2197i 0.263265 0.160165i
\(121\) 142.099i 1.17437i
\(122\) −11.5391 11.5391i −0.0945831 0.0945831i
\(123\) 17.9023 + 29.4263i 0.145547 + 0.239238i
\(124\) −21.1080 + 21.1080i −0.170226 + 0.170226i
\(125\) −27.6554 + 27.6554i −0.221243 + 0.221243i
\(126\) −1.92941 6.07095i −0.0153128 0.0481822i
\(127\) 73.4454i 0.578310i 0.957282 + 0.289155i \(0.0933743\pi\)
−0.957282 + 0.289155i \(0.906626\pi\)
\(128\) −51.9116 −0.405559
\(129\) −7.15591 1.74239i −0.0554722 0.0135069i
\(130\) −8.89680 8.89680i −0.0684369 0.0684369i
\(131\) −135.680 135.680i −1.03573 1.03573i −0.999338 0.0363881i \(-0.988415\pi\)
−0.0363881 0.999338i \(-0.511585\pi\)
\(132\) −100.067 164.483i −0.758087 1.24608i
\(133\) 57.6448 57.6448i 0.433420 0.433420i
\(134\) 5.66840 0.0423015
\(135\) 200.236 13.8128i 1.48323 0.102317i
\(136\) −22.5157 16.9598i −0.165557 0.124704i
\(137\) 187.183i 1.36630i −0.730279 0.683149i \(-0.760610\pi\)
0.730279 0.683149i \(-0.239390\pi\)
\(138\) −2.63891 4.33763i −0.0191226 0.0314321i
\(139\) −10.4696 + 10.4696i −0.0753212 + 0.0753212i −0.743764 0.668443i \(-0.766961\pi\)
0.668443 + 0.743764i \(0.266961\pi\)
\(140\) 99.8942i 0.713530i
\(141\) 187.860 + 45.7419i 1.33234 + 0.324411i
\(142\) 1.40014 + 1.40014i 0.00986017 + 0.00986017i
\(143\) −93.1507 + 93.1507i −0.651403 + 0.651403i
\(144\) −123.731 64.0516i −0.859240 0.444803i
\(145\) 123.515i 0.851830i
\(146\) −0.333833 + 0.333833i −0.00228653 + 0.00228653i
\(147\) 109.204 + 26.5900i 0.742884 + 0.180884i
\(148\) 169.156 169.156i 1.14295 1.14295i
\(149\) 235.010i 1.57725i 0.614875 + 0.788624i \(0.289206\pi\)
−0.614875 + 0.788624i \(0.710794\pi\)
\(150\) −18.3822 4.47587i −0.122548 0.0298391i
\(151\) 158.973i 1.05280i 0.850236 + 0.526402i \(0.176459\pi\)
−0.850236 + 0.526402i \(0.823541\pi\)
\(152\) 39.8004i 0.261844i
\(153\) −66.2107 137.932i −0.432749 0.901514i
\(154\) 11.4807 0.0745500
\(155\) 56.0859 0.361844
\(156\) −22.8063 + 93.6644i −0.146194 + 0.600413i
\(157\) −96.4573 −0.614377 −0.307189 0.951649i \(-0.599388\pi\)
−0.307189 + 0.951649i \(0.599388\pi\)
\(158\) −13.5233 13.5233i −0.0855903 0.0855903i
\(159\) 6.98635 28.6927i 0.0439393 0.180457i
\(160\) 51.8224 + 51.8224i 0.323890 + 0.323890i
\(161\) −27.5820 −0.171317
\(162\) 9.74521 + 13.7833i 0.0601556 + 0.0850818i
\(163\) −146.948 146.948i −0.901524 0.901524i 0.0940437 0.995568i \(-0.470021\pi\)
−0.995568 + 0.0940437i \(0.970021\pi\)
\(164\) −32.1216 + 32.1216i −0.195864 + 0.195864i
\(165\) −85.5783 + 351.467i −0.518657 + 2.13010i
\(166\) 13.3949 0.0806923
\(167\) 180.063 + 180.063i 1.07822 + 1.07822i 0.996669 + 0.0815525i \(0.0259878\pi\)
0.0815525 + 0.996669i \(0.474012\pi\)
\(168\) 14.4336 8.78110i 0.0859145 0.0522685i
\(169\) −103.040 −0.609702
\(170\) 3.67051 + 26.0794i 0.0215912 + 0.153408i
\(171\) −99.3122 + 191.845i −0.580773 + 1.12190i
\(172\) 9.71336i 0.0564730i
\(173\) −58.9172 58.9172i −0.340562 0.340562i 0.516017 0.856579i \(-0.327414\pi\)
−0.856579 + 0.516017i \(0.827414\pi\)
\(174\) −8.87461 + 5.39911i −0.0510035 + 0.0310294i
\(175\) −72.6746 + 72.6746i −0.415283 + 0.415283i
\(176\) 177.556 177.556i 1.00884 1.00884i
\(177\) 52.4407 215.372i 0.296275 1.21679i
\(178\) 29.6389i 0.166511i
\(179\) 98.2385 0.548819 0.274409 0.961613i \(-0.411518\pi\)
0.274409 + 0.961613i \(0.411518\pi\)
\(180\) 80.1760 + 252.277i 0.445422 + 1.40154i
\(181\) −36.6158 36.6158i −0.202297 0.202297i 0.598686 0.800984i \(-0.295690\pi\)
−0.800984 + 0.598686i \(0.795690\pi\)
\(182\) −4.06476 4.06476i −0.0223338 0.0223338i
\(183\) 200.693 122.097i 1.09668 0.667198i
\(184\) 9.52186 9.52186i 0.0517492 0.0517492i
\(185\) −449.463 −2.42953
\(186\) 2.45163 + 4.02979i 0.0131808 + 0.0216655i
\(187\) 273.054 38.4307i 1.46018 0.205512i
\(188\) 254.999i 1.35638i
\(189\) 91.4838 6.31079i 0.484041 0.0333904i
\(190\) 26.2940 26.2940i 0.138389 0.138389i
\(191\) 162.394i 0.850228i −0.905140 0.425114i \(-0.860234\pi\)
0.905140 0.425114i \(-0.139766\pi\)
\(192\) 42.4904 174.506i 0.221304 0.908888i
\(193\) −30.4810 30.4810i −0.157933 0.157933i 0.623717 0.781650i \(-0.285622\pi\)
−0.781650 + 0.623717i \(0.785622\pi\)
\(194\) 10.1151 10.1151i 0.0521397 0.0521397i
\(195\) 154.737 94.1382i 0.793521 0.482760i
\(196\) 148.232i 0.756287i
\(197\) −91.4122 + 91.4122i −0.464021 + 0.464021i −0.899971 0.435950i \(-0.856412\pi\)
0.435950 + 0.899971i \(0.356412\pi\)
\(198\) −28.9938 + 9.21451i −0.146433 + 0.0465379i
\(199\) −33.8948 + 33.8948i −0.170326 + 0.170326i −0.787122 0.616797i \(-0.788430\pi\)
0.616797 + 0.787122i \(0.288430\pi\)
\(200\) 50.1775i 0.250888i
\(201\) −19.3045 + 79.2826i −0.0960421 + 0.394441i
\(202\) 8.58763i 0.0425130i
\(203\) 56.4316i 0.277988i
\(204\) 156.090 127.880i 0.765145 0.626862i
\(205\) 85.3501 0.416342
\(206\) −8.92251 −0.0433132
\(207\) 69.6565 22.1375i 0.336505 0.106945i
\(208\) −125.728 −0.604462
\(209\) −275.301 275.301i −1.31723 1.31723i
\(210\) −15.3367 3.73433i −0.0730321 0.0177825i
\(211\) 46.7481 + 46.7481i 0.221555 + 0.221555i 0.809153 0.587598i \(-0.199926\pi\)
−0.587598 + 0.809153i \(0.699926\pi\)
\(212\) 38.9471 0.183713
\(213\) −24.3519 + 14.8151i −0.114328 + 0.0695545i
\(214\) 10.2975 + 10.2975i 0.0481194 + 0.0481194i
\(215\) −12.9046 + 12.9046i −0.0600216 + 0.0600216i
\(216\) −29.4035 + 33.7607i −0.136127 + 0.156300i
\(217\) 25.6245 0.118085
\(218\) 20.7610 + 20.7610i 0.0952339 + 0.0952339i
\(219\) −3.53233 5.80615i −0.0161294 0.0265121i
\(220\) −477.077 −2.16853
\(221\) −110.282 83.0689i −0.499013 0.375878i
\(222\) −19.6470 32.2941i −0.0884999 0.145469i
\(223\) 174.588i 0.782907i 0.920198 + 0.391454i \(0.128028\pi\)
−0.920198 + 0.391454i \(0.871972\pi\)
\(224\) 23.6766 + 23.6766i 0.105699 + 0.105699i
\(225\) 125.206 241.865i 0.556471 1.07495i
\(226\) 8.81395 8.81395i 0.0389998 0.0389998i
\(227\) −134.151 + 134.151i −0.590974 + 0.590974i −0.937895 0.346921i \(-0.887227\pi\)
0.346921 + 0.937895i \(0.387227\pi\)
\(228\) −276.820 67.4027i −1.21412 0.295626i
\(229\) 304.733i 1.33071i −0.746527 0.665355i \(-0.768280\pi\)
0.746527 0.665355i \(-0.231720\pi\)
\(230\) −12.5812 −0.0547007
\(231\) −39.0990 + 160.578i −0.169260 + 0.695142i
\(232\) −19.4813 19.4813i −0.0839713 0.0839713i
\(233\) −33.4180 33.4180i −0.143425 0.143425i 0.631749 0.775173i \(-0.282338\pi\)
−0.775173 + 0.631749i \(0.782338\pi\)
\(234\) 13.5277 + 7.00289i 0.0578108 + 0.0299269i
\(235\) 338.778 338.778i 1.44161 1.44161i
\(236\) 292.343 1.23874
\(237\) 235.202 143.092i 0.992414 0.603762i
\(238\) 1.67698 + 11.9151i 0.00704612 + 0.0500635i
\(239\) 107.386i 0.449314i −0.974438 0.224657i \(-0.927874\pi\)
0.974438 0.224657i \(-0.0721262\pi\)
\(240\) −294.946 + 179.439i −1.22894 + 0.747661i
\(241\) 311.851 311.851i 1.29399 1.29399i 0.361691 0.932298i \(-0.382200\pi\)
0.932298 0.361691i \(-0.117800\pi\)
\(242\) 29.6134i 0.122369i
\(243\) −225.972 + 89.3633i −0.929925 + 0.367750i
\(244\) 219.076 + 219.076i 0.897853 + 0.897853i
\(245\) 196.933 196.933i 0.803810 0.803810i
\(246\) 3.73083 + 6.13243i 0.0151660 + 0.0249286i
\(247\) 194.942i 0.789239i
\(248\) −8.84609 + 8.84609i −0.0356697 + 0.0356697i
\(249\) −45.6181 + 187.352i −0.183205 + 0.752416i
\(250\) −5.76338 + 5.76338i −0.0230535 + 0.0230535i
\(251\) 68.1607i 0.271557i −0.990739 0.135778i \(-0.956646\pi\)
0.990739 0.135778i \(-0.0433535\pi\)
\(252\) 36.6308 + 115.260i 0.145360 + 0.457381i
\(253\) 131.727i 0.520658i
\(254\) 15.3060i 0.0602598i
\(255\) −377.266 37.4780i −1.47948 0.146973i
\(256\) 228.655 0.893183
\(257\) 96.8926 0.377014 0.188507 0.982072i \(-0.439635\pi\)
0.188507 + 0.982072i \(0.439635\pi\)
\(258\) −1.49129 0.363113i −0.00578019 0.00140741i
\(259\) −205.350 −0.792859
\(260\) 168.910 + 168.910i 0.649654 + 0.649654i
\(261\) −45.2925 142.514i −0.173535 0.546033i
\(262\) −28.2757 28.2757i −0.107922 0.107922i
\(263\) 313.842 1.19332 0.596658 0.802496i \(-0.296495\pi\)
0.596658 + 0.802496i \(0.296495\pi\)
\(264\) −41.9370 68.9325i −0.158852 0.261108i
\(265\) −51.7430 51.7430i −0.195257 0.195257i
\(266\) 12.0132 12.0132i 0.0451623 0.0451623i
\(267\) −414.552 100.939i −1.55263 0.378048i
\(268\) −107.617 −0.401557
\(269\) 77.5856 + 77.5856i 0.288422 + 0.288422i 0.836456 0.548034i \(-0.184623\pi\)
−0.548034 + 0.836456i \(0.684623\pi\)
\(270\) 41.7292 2.87859i 0.154553 0.0106614i
\(271\) −428.668 −1.58180 −0.790900 0.611946i \(-0.790387\pi\)
−0.790900 + 0.611946i \(0.790387\pi\)
\(272\) 210.210 + 158.339i 0.772832 + 0.582129i
\(273\) 70.6959 43.0098i 0.258959 0.157545i
\(274\) 39.0089i 0.142368i
\(275\) 347.081 + 347.081i 1.26211 + 1.26211i
\(276\) 50.1011 + 82.3520i 0.181526 + 0.298377i
\(277\) −253.924 + 253.924i −0.916694 + 0.916694i −0.996787 0.0800938i \(-0.974478\pi\)
0.0800938 + 0.996787i \(0.474478\pi\)
\(278\) −2.18187 + 2.18187i −0.00784846 + 0.00784846i
\(279\) −64.7130 + 20.5664i −0.231946 + 0.0737148i
\(280\) 41.8644i 0.149516i
\(281\) −291.576 −1.03764 −0.518818 0.854885i \(-0.673628\pi\)
−0.518818 + 0.854885i \(0.673628\pi\)
\(282\) 39.1500 + 9.53260i 0.138830 + 0.0338035i
\(283\) 317.214 + 317.214i 1.12090 + 1.12090i 0.991607 + 0.129291i \(0.0412702\pi\)
0.129291 + 0.991607i \(0.458730\pi\)
\(284\) −26.5824 26.5824i −0.0936000 0.0936000i
\(285\) 278.220 + 457.315i 0.976211 + 1.60461i
\(286\) −19.4126 + 19.4126i −0.0678761 + 0.0678761i
\(287\) 38.9947 0.135870
\(288\) −78.7968 40.7907i −0.273600 0.141634i
\(289\) 79.7697 + 277.773i 0.276020 + 0.961152i
\(290\) 25.7406i 0.0887606i
\(291\) 107.029 + 175.926i 0.367798 + 0.604556i
\(292\) 6.33798 6.33798i 0.0217054 0.0217054i
\(293\) 322.630i 1.10113i 0.834794 + 0.550563i \(0.185587\pi\)
−0.834794 + 0.550563i \(0.814413\pi\)
\(294\) 22.7581 + 5.54135i 0.0774084 + 0.0188481i
\(295\) −388.391 388.391i −1.31658 1.31658i
\(296\) 70.8912 70.8912i 0.239497 0.239497i
\(297\) −30.1392 436.910i −0.101479 1.47108i
\(298\) 48.9760i 0.164349i
\(299\) 46.6380 46.6380i 0.155980 0.155980i
\(300\) 348.995 + 84.9766i 1.16332 + 0.283255i
\(301\) −5.89586 + 5.89586i −0.0195876 + 0.0195876i
\(302\) 33.1300i 0.109702i
\(303\) −120.113 29.2463i −0.396413 0.0965223i
\(304\) 371.582i 1.22231i
\(305\) 582.105i 1.90854i
\(306\) −13.7983 28.7449i −0.0450924 0.0939377i
\(307\) −274.964 −0.895649 −0.447825 0.894121i \(-0.647801\pi\)
−0.447825 + 0.894121i \(0.647801\pi\)
\(308\) −217.967 −0.707684
\(309\) 30.3868 124.797i 0.0983390 0.403874i
\(310\) 11.6883 0.0377041
\(311\) 192.999 + 192.999i 0.620576 + 0.620576i 0.945679 0.325103i \(-0.105399\pi\)
−0.325103 + 0.945679i \(0.605399\pi\)
\(312\) −9.55781 + 39.2535i −0.0306340 + 0.125813i
\(313\) 187.331 + 187.331i 0.598501 + 0.598501i 0.939913 0.341413i \(-0.110905\pi\)
−0.341413 + 0.939913i \(0.610905\pi\)
\(314\) −20.1017 −0.0640180
\(315\) 104.462 201.794i 0.331627 0.640615i
\(316\) 256.746 + 256.746i 0.812487 + 0.812487i
\(317\) −304.768 + 304.768i −0.961412 + 0.961412i −0.999283 0.0378706i \(-0.987943\pi\)
0.0378706 + 0.999283i \(0.487943\pi\)
\(318\) 1.45595 5.97954i 0.00457847 0.0188036i
\(319\) 269.507 0.844850
\(320\) −314.697 314.697i −0.983427 0.983427i
\(321\) −179.099 + 108.960i −0.557940 + 0.339438i
\(322\) −5.74807 −0.0178512
\(323\) 245.506 325.932i 0.760079 1.00908i
\(324\) −185.017 261.682i −0.571042 0.807660i
\(325\) 245.769i 0.756213i
\(326\) −30.6240 30.6240i −0.0939387 0.0939387i
\(327\) −361.083 + 219.675i −1.10423 + 0.671789i
\(328\) −13.4618 + 13.4618i −0.0410419 + 0.0410419i
\(329\) 154.781 154.781i 0.470458 0.470458i
\(330\) −17.8345 + 73.2455i −0.0540439 + 0.221956i
\(331\) 311.214i 0.940223i 0.882607 + 0.470111i \(0.155786\pi\)
−0.882607 + 0.470111i \(0.844214\pi\)
\(332\) −254.309 −0.765991
\(333\) 518.600 164.816i 1.55736 0.494944i
\(334\) 37.5251 + 37.5251i 0.112351 + 0.112351i
\(335\) 142.975 + 142.975i 0.426790 + 0.426790i
\(336\) −134.755 + 81.9818i −0.401056 + 0.243993i
\(337\) 213.957 213.957i 0.634887 0.634887i −0.314402 0.949290i \(-0.601804\pi\)
0.949290 + 0.314402i \(0.101804\pi\)
\(338\) −21.4734 −0.0635309
\(339\) 93.2616 + 153.296i 0.275108 + 0.452200i
\(340\) −69.6863 495.129i −0.204960 1.45626i
\(341\) 122.378i 0.358879i
\(342\) −20.6966 + 39.9804i −0.0605165 + 0.116902i
\(343\) 207.652 207.652i 0.605399 0.605399i
\(344\) 4.07074i 0.0118336i
\(345\) 42.8468 175.970i 0.124194 0.510058i
\(346\) −12.2783 12.2783i −0.0354865 0.0354865i
\(347\) −435.384 + 435.384i −1.25471 + 1.25471i −0.301124 + 0.953585i \(0.597362\pi\)
−0.953585 + 0.301124i \(0.902638\pi\)
\(348\) 168.489 102.505i 0.484163 0.294554i
\(349\) 120.847i 0.346267i 0.984898 + 0.173133i \(0.0553892\pi\)
−0.984898 + 0.173133i \(0.944611\pi\)
\(350\) −15.1454 + 15.1454i −0.0432725 + 0.0432725i
\(351\) −144.018 + 165.360i −0.410308 + 0.471111i
\(352\) 113.075 113.075i 0.321236 0.321236i
\(353\) 25.6098i 0.0725491i −0.999342 0.0362745i \(-0.988451\pi\)
0.999342 0.0362745i \(-0.0115491\pi\)
\(354\) 10.9286 44.8834i 0.0308718 0.126789i
\(355\) 70.6319i 0.198963i
\(356\) 562.708i 1.58064i
\(357\) −172.365 17.1229i −0.482815 0.0479634i
\(358\) 20.4729 0.0571868
\(359\) −326.176 −0.908568 −0.454284 0.890857i \(-0.650105\pi\)
−0.454284 + 0.890857i \(0.650105\pi\)
\(360\) 33.6007 + 105.726i 0.0933354 + 0.293683i
\(361\) −215.140 −0.595955
\(362\) −7.63072 7.63072i −0.0210793 0.0210793i
\(363\) 414.195 + 100.852i 1.14103 + 0.277829i
\(364\) 77.1714 + 77.1714i 0.212009 + 0.212009i
\(365\) −16.8406 −0.0461386
\(366\) 41.8244 25.4450i 0.114274 0.0695219i
\(367\) −291.432 291.432i −0.794092 0.794092i 0.188065 0.982157i \(-0.439778\pi\)
−0.982157 + 0.188065i \(0.939778\pi\)
\(368\) −88.8976 + 88.8976i −0.241569 + 0.241569i
\(369\) −98.4786 + 31.2975i −0.266880 + 0.0848170i
\(370\) −93.6681 −0.253157
\(371\) −23.6403 23.6403i −0.0637205 0.0637205i
\(372\) −46.5454 76.5074i −0.125122 0.205665i
\(373\) −151.514 −0.406204 −0.203102 0.979158i \(-0.565102\pi\)
−0.203102 + 0.979158i \(0.565102\pi\)
\(374\) 56.9044 8.00894i 0.152151 0.0214143i
\(375\) −60.9831 100.239i −0.162622 0.267304i
\(376\) 106.867i 0.284220i
\(377\) −95.4195 95.4195i −0.253102 0.253102i
\(378\) 19.0652 1.31517i 0.0504370 0.00347928i
\(379\) 19.0727 19.0727i 0.0503238 0.0503238i −0.681497 0.731821i \(-0.738671\pi\)
0.731821 + 0.681497i \(0.238671\pi\)
\(380\) −499.204 + 499.204i −1.31369 + 1.31369i
\(381\) −214.081 52.1265i −0.561893 0.136815i
\(382\) 33.8428i 0.0885937i
\(383\) 375.569 0.980597 0.490299 0.871555i \(-0.336888\pi\)
0.490299 + 0.871555i \(0.336888\pi\)
\(384\) 36.8433 151.314i 0.0959461 0.394047i
\(385\) 289.578 + 289.578i 0.752152 + 0.752152i
\(386\) −6.35223 6.35223i −0.0164565 0.0164565i
\(387\) 10.1576 19.6217i 0.0262469 0.0507021i
\(388\) −192.040 + 192.040i −0.494949 + 0.494949i
\(389\) 699.064 1.79708 0.898540 0.438891i \(-0.144629\pi\)
0.898540 + 0.438891i \(0.144629\pi\)
\(390\) 32.2471 19.6184i 0.0826848 0.0503035i
\(391\) −136.711 + 19.2412i −0.349644 + 0.0492103i
\(392\) 62.1222i 0.158475i
\(393\) 491.782 299.189i 1.25135 0.761295i
\(394\) −19.0503 + 19.0503i −0.0483509 + 0.0483509i
\(395\) 682.197i 1.72708i
\(396\) 550.461 174.942i 1.39005 0.441773i
\(397\) 77.1209 + 77.1209i 0.194259 + 0.194259i 0.797534 0.603274i \(-0.206138\pi\)
−0.603274 + 0.797534i \(0.706138\pi\)
\(398\) −7.06367 + 7.06367i −0.0177479 + 0.0177479i
\(399\) 127.113 + 208.938i 0.318579 + 0.523654i
\(400\) 468.465i 1.17116i
\(401\) −414.092 + 414.092i −1.03265 + 1.03265i −0.0332009 + 0.999449i \(0.510570\pi\)
−0.999449 + 0.0332009i \(0.989430\pi\)
\(402\) −4.02304 + 16.5225i −0.0100076 + 0.0411007i
\(403\) −43.3281 + 43.3281i −0.107514 + 0.107514i
\(404\) 163.040i 0.403565i
\(405\) −101.852 + 593.460i −0.251486 + 1.46533i
\(406\) 11.7603i 0.0289663i
\(407\) 980.717i 2.40962i
\(408\) 65.4151 53.5927i 0.160331 0.131355i
\(409\) −187.440 −0.458289 −0.229144 0.973392i \(-0.573593\pi\)
−0.229144 + 0.973392i \(0.573593\pi\)
\(410\) 17.7869 0.0433828
\(411\) 545.608 + 132.850i 1.32751 + 0.323235i
\(412\) 169.398 0.411161
\(413\) −177.448 177.448i −0.429656 0.429656i
\(414\) 14.5164 4.61346i 0.0350638 0.0111436i
\(415\) 337.861 + 337.861i 0.814123 + 0.814123i
\(416\) −80.0689 −0.192473
\(417\) −23.0867 37.9480i −0.0553638 0.0910023i
\(418\) −57.3727 57.3727i −0.137255 0.137255i
\(419\) 136.575 136.575i 0.325955 0.325955i −0.525091 0.851046i \(-0.675969\pi\)
0.851046 + 0.525091i \(0.175969\pi\)
\(420\) 291.176 + 70.8981i 0.693275 + 0.168805i
\(421\) −43.5185 −0.103369 −0.0516846 0.998663i \(-0.516459\pi\)
−0.0516846 + 0.998663i \(0.516459\pi\)
\(422\) 9.74228 + 9.74228i 0.0230860 + 0.0230860i
\(423\) −266.660 + 515.117i −0.630403 + 1.21777i
\(424\) 16.3222 0.0384958
\(425\) −309.516 + 410.912i −0.728273 + 0.966852i
\(426\) −5.07492 + 3.08747i −0.0119130 + 0.00724757i
\(427\) 265.952i 0.622838i
\(428\) −195.504 195.504i −0.456785 0.456785i
\(429\) −205.407 337.631i −0.478804 0.787019i
\(430\) −2.68932 + 2.68932i −0.00625424 + 0.00625424i
\(431\) 383.047 383.047i 0.888741 0.888741i −0.105661 0.994402i \(-0.533696\pi\)
0.994402 + 0.105661i \(0.0336959\pi\)
\(432\) 274.516 315.195i 0.635453 0.729619i
\(433\) 546.173i 1.26137i −0.776039 0.630685i \(-0.782774\pi\)
0.776039 0.630685i \(-0.217226\pi\)
\(434\) 5.34013 0.0123045
\(435\) −360.027 87.6628i −0.827649 0.201524i
\(436\) −394.157 394.157i −0.904031 0.904031i
\(437\) 137.836 + 137.836i 0.315414 + 0.315414i
\(438\) −0.736137 1.21000i −0.00168068 0.00276256i
\(439\) 176.803 176.803i 0.402740 0.402740i −0.476458 0.879197i \(-0.658079\pi\)
0.879197 + 0.476458i \(0.158079\pi\)
\(440\) −199.937 −0.454402
\(441\) −155.011 + 299.440i −0.351499 + 0.679003i
\(442\) −22.9827 17.3115i −0.0519971 0.0391664i
\(443\) 44.3558i 0.100126i 0.998746 + 0.0500630i \(0.0159422\pi\)
−0.998746 + 0.0500630i \(0.984058\pi\)
\(444\) 373.008 + 613.119i 0.840107 + 1.38090i
\(445\) −747.583 + 747.583i −1.67996 + 1.67996i
\(446\) 36.3842i 0.0815788i
\(447\) −685.016 166.794i −1.53247 0.373141i
\(448\) −143.778 143.778i −0.320934 0.320934i
\(449\) 104.094 104.094i 0.231835 0.231835i −0.581623 0.813458i \(-0.697582\pi\)
0.813458 + 0.581623i \(0.197582\pi\)
\(450\) 26.0929 50.4045i 0.0579842 0.112010i
\(451\) 186.232i 0.412930i
\(452\) −167.337 + 167.337i −0.370215 + 0.370215i
\(453\) −463.382 112.828i −1.02292 0.249069i
\(454\) −27.9570 + 27.9570i −0.0615794 + 0.0615794i
\(455\) 205.052i 0.450663i
\(456\) −116.012 28.2476i −0.254411 0.0619464i
\(457\) 52.3160i 0.114477i −0.998361 0.0572385i \(-0.981770\pi\)
0.998361 0.0572385i \(-0.0182295\pi\)
\(458\) 63.5062i 0.138660i
\(459\) 449.040 95.0989i 0.978301 0.207187i
\(460\) 238.860 0.519260
\(461\) 291.344 0.631983 0.315991 0.948762i \(-0.397663\pi\)
0.315991 + 0.948762i \(0.397663\pi\)
\(462\) −8.14821 + 33.4644i −0.0176368 + 0.0724337i
\(463\) 711.561 1.53685 0.768425 0.639940i \(-0.221041\pi\)
0.768425 + 0.639940i \(0.221041\pi\)
\(464\) 181.881 + 181.881i 0.391985 + 0.391985i
\(465\) −39.8059 + 163.481i −0.0856041 + 0.351573i
\(466\) −6.96430 6.96430i −0.0149449 0.0149449i
\(467\) −378.114 −0.809666 −0.404833 0.914391i \(-0.632670\pi\)
−0.404833 + 0.914391i \(0.632670\pi\)
\(468\) −256.830 132.953i −0.548783 0.284088i
\(469\) 65.3221 + 65.3221i 0.139279 + 0.139279i
\(470\) 70.6012 70.6012i 0.150215 0.150215i
\(471\) 68.4588 281.157i 0.145348 0.596937i
\(472\) 122.517 0.259571
\(473\) 28.1576 + 28.1576i 0.0595297 + 0.0595297i
\(474\) 49.0160 29.8202i 0.103409 0.0629119i
\(475\) 726.357 1.52917
\(476\) −31.8382 226.214i −0.0668870 0.475240i
\(477\) 78.6760 + 40.7282i 0.164939 + 0.0853840i
\(478\) 22.3792i 0.0468185i
\(479\) −152.051 152.051i −0.317434 0.317434i 0.530347 0.847781i \(-0.322062\pi\)
−0.847781 + 0.530347i \(0.822062\pi\)
\(480\) −187.834 + 114.274i −0.391321 + 0.238071i
\(481\) 347.225 347.225i 0.721881 0.721881i
\(482\) 64.9897 64.9897i 0.134833 0.134833i
\(483\) 19.5758 80.3970i 0.0405296 0.166453i
\(484\) 562.224i 1.16162i
\(485\) 510.268 1.05210
\(486\) −47.0924 + 18.6233i −0.0968980 + 0.0383195i
\(487\) −329.746 329.746i −0.677097 0.677097i 0.282245 0.959342i \(-0.408921\pi\)
−0.959342 + 0.282245i \(0.908921\pi\)
\(488\) 91.8120 + 91.8120i 0.188139 + 0.188139i
\(489\) 532.625 324.037i 1.08921 0.662652i
\(490\) 41.0409 41.0409i 0.0837568 0.0837568i
\(491\) −432.522 −0.880900 −0.440450 0.897777i \(-0.645181\pi\)
−0.440450 + 0.897777i \(0.645181\pi\)
\(492\) −70.8316 116.427i −0.143967 0.236640i
\(493\) 39.3667 + 279.705i 0.0798514 + 0.567353i
\(494\) 40.6259i 0.0822386i
\(495\) −963.731 498.894i −1.94693 1.00787i
\(496\) 82.5885 82.5885i 0.166509 0.166509i
\(497\) 32.2702i 0.0649300i
\(498\) −9.50680 + 39.0440i −0.0190900 + 0.0784016i
\(499\) 29.1588 + 29.1588i 0.0584344 + 0.0584344i 0.735720 0.677286i \(-0.236844\pi\)
−0.677286 + 0.735720i \(0.736844\pi\)
\(500\) 109.421 109.421i 0.218841 0.218841i
\(501\) −652.651 + 397.058i −1.30270 + 0.792531i
\(502\) 14.2047i 0.0282962i
\(503\) 537.457 537.457i 1.06850 1.06850i 0.0710294 0.997474i \(-0.477372\pi\)
0.997474 0.0710294i \(-0.0226284\pi\)
\(504\) 15.3515 + 48.3040i 0.0304593 + 0.0958412i
\(505\) −216.606 + 216.606i −0.428924 + 0.428924i
\(506\) 27.4518i 0.0542525i
\(507\) 73.1305 300.344i 0.144242 0.592394i
\(508\) 290.592i 0.572031i
\(509\) 56.9404i 0.111867i −0.998434 0.0559336i \(-0.982186\pi\)
0.998434 0.0559336i \(-0.0178135\pi\)
\(510\) −78.6222 7.81041i −0.154161 0.0153145i
\(511\) −7.69411 −0.0150570
\(512\) 255.298 0.498629
\(513\) −488.711 425.637i −0.952654 0.829702i
\(514\) 20.1924 0.0392848
\(515\) −225.053 225.053i −0.436997 0.436997i
\(516\) 28.3129 + 6.89388i 0.0548699 + 0.0133602i
\(517\) −739.204 739.204i −1.42980 1.42980i
\(518\) −42.7950 −0.0826158
\(519\) 213.550 129.919i 0.411463 0.250325i
\(520\) 70.7880 + 70.7880i 0.136131 + 0.136131i
\(521\) 526.193 526.193i 1.00997 1.00997i 0.0100166 0.999950i \(-0.496812\pi\)
0.999950 0.0100166i \(-0.00318845\pi\)
\(522\) −9.43895 29.7000i −0.0180823 0.0568965i
\(523\) −917.253 −1.75383 −0.876915 0.480645i \(-0.840403\pi\)
−0.876915 + 0.480645i \(0.840403\pi\)
\(524\) 536.828 + 536.828i 1.02448 + 1.02448i
\(525\) −160.255 263.414i −0.305248 0.501741i
\(526\) 65.4046 0.124343
\(527\) 127.009 17.8757i 0.241003 0.0339197i
\(528\) 391.530 + 643.565i 0.741534 + 1.21887i
\(529\) 463.048i 0.875327i
\(530\) −10.7832 10.7832i −0.0203457 0.0203457i
\(531\) 590.555 + 305.712i 1.11216 + 0.575730i
\(532\) −228.076 + 228.076i −0.428714 + 0.428714i
\(533\) −65.9356 + 65.9356i −0.123707 + 0.123707i
\(534\) −86.3925 21.0356i −0.161784 0.0393926i
\(535\) 519.471i 0.970974i
\(536\) −45.1010 −0.0841437
\(537\) −69.7230 + 286.349i −0.129838 + 0.533239i
\(538\) 16.1688 + 16.1688i 0.0300536 + 0.0300536i
\(539\) −429.703 429.703i −0.797223 0.797223i
\(540\) −792.249 + 54.6514i −1.46713 + 0.101206i
\(541\) 118.414 118.414i 0.218879 0.218879i −0.589147 0.808026i \(-0.700536\pi\)
0.808026 + 0.589147i \(0.200536\pi\)
\(542\) −89.3342 −0.164823
\(543\) 132.716 80.7417i 0.244413 0.148696i
\(544\) 133.871 + 100.837i 0.246086 + 0.185362i
\(545\) 1047.31i 1.92167i
\(546\) 14.7330 8.96323i 0.0269835 0.0164162i
\(547\) 50.1729 50.1729i 0.0917238 0.0917238i −0.659756 0.751480i \(-0.729340\pi\)
0.751480 + 0.659756i \(0.229340\pi\)
\(548\) 740.602i 1.35146i
\(549\) 213.455 + 671.645i 0.388807 + 1.22340i
\(550\) 72.3316 + 72.3316i 0.131512 + 0.131512i
\(551\) 282.007 282.007i 0.511809 0.511809i
\(552\) 20.9967 + 34.5126i 0.0380375 + 0.0625229i
\(553\) 311.682i 0.563619i
\(554\) −52.9177 + 52.9177i −0.0955193 + 0.0955193i
\(555\) 318.998 1310.11i 0.574772 2.36056i
\(556\) 41.4239 41.4239i 0.0745034 0.0745034i
\(557\) 423.368i 0.760085i 0.924969 + 0.380043i \(0.124091\pi\)
−0.924969 + 0.380043i \(0.875909\pi\)
\(558\) −13.4862 + 4.28604i −0.0241688 + 0.00768107i
\(559\) 19.9385i 0.0356681i
\(560\) 390.852i 0.697951i
\(561\) −81.7761 + 823.185i −0.145768 + 1.46735i
\(562\) −60.7643 −0.108121
\(563\) −48.4445 −0.0860471 −0.0430236 0.999074i \(-0.513699\pi\)
−0.0430236 + 0.999074i \(0.513699\pi\)
\(564\) −743.281 180.981i −1.31787 0.320888i
\(565\) 444.630 0.786955
\(566\) 66.1073 + 66.1073i 0.116797 + 0.116797i
\(567\) −46.5340 + 271.140i −0.0820706 + 0.478200i
\(568\) −11.1403 11.1403i −0.0196133 0.0196133i
\(569\) 732.102 1.28665 0.643323 0.765595i \(-0.277555\pi\)
0.643323 + 0.765595i \(0.277555\pi\)
\(570\) 57.9810 + 95.3043i 0.101721 + 0.167201i
\(571\) 309.245 + 309.245i 0.541584 + 0.541584i 0.923993 0.382409i \(-0.124905\pi\)
−0.382409 + 0.923993i \(0.624905\pi\)
\(572\) 368.557 368.557i 0.644330 0.644330i
\(573\) 473.351 + 115.256i 0.826093 + 0.201145i
\(574\) 8.12648 0.0141576
\(575\) −173.774 173.774i −0.302216 0.302216i
\(576\) 478.501 + 247.706i 0.830731 + 0.430044i
\(577\) 791.867 1.37239 0.686193 0.727419i \(-0.259281\pi\)
0.686193 + 0.727419i \(0.259281\pi\)
\(578\) 16.6240 + 57.8878i 0.0287612 + 0.100152i
\(579\) 110.480 67.2138i 0.190813 0.116086i
\(580\) 488.697i 0.842581i
\(581\) 154.362 + 154.362i 0.265683 + 0.265683i
\(582\) 22.3049 + 36.6629i 0.0383245 + 0.0629946i
\(583\) −112.902 + 112.902i −0.193657 + 0.193657i
\(584\) 2.65616 2.65616i 0.00454823 0.00454823i
\(585\) 164.576 + 517.845i 0.281327 + 0.885205i
\(586\) 67.2360i 0.114737i
\(587\) −914.776 −1.55839 −0.779196 0.626780i \(-0.784372\pi\)
−0.779196 + 0.626780i \(0.784372\pi\)
\(588\) −432.073 105.205i −0.734818 0.178920i
\(589\) −128.054 128.054i −0.217409 0.217409i
\(590\) −80.9406 80.9406i −0.137188 0.137188i
\(591\) −201.574 331.330i −0.341072 0.560626i
\(592\) −661.851 + 661.851i −1.11799 + 1.11799i
\(593\) −476.612 −0.803730 −0.401865 0.915699i \(-0.631638\pi\)
−0.401865 + 0.915699i \(0.631638\pi\)
\(594\) −6.28100 91.0520i −0.0105741 0.153286i
\(595\) −258.237 + 342.834i −0.434012 + 0.576192i
\(596\) 929.833i 1.56012i
\(597\) −74.7417 122.854i −0.125195 0.205786i
\(598\) 9.71935 9.71935i 0.0162531 0.0162531i
\(599\) 338.504i 0.565116i 0.959250 + 0.282558i \(0.0911829\pi\)
−0.959250 + 0.282558i \(0.908817\pi\)
\(600\) 146.259 + 35.6126i 0.243766 + 0.0593543i
\(601\) −475.300 475.300i −0.790848 0.790848i 0.190784 0.981632i \(-0.438897\pi\)
−0.981632 + 0.190784i \(0.938897\pi\)
\(602\) −1.22870 + 1.22870i −0.00204102 + 0.00204102i
\(603\) −217.395 112.539i −0.360522 0.186631i
\(604\) 628.989i 1.04137i
\(605\) 746.940 746.940i 1.23461 1.23461i
\(606\) −25.0315 6.09491i −0.0413062 0.0100576i
\(607\) 39.2266 39.2266i 0.0646237 0.0646237i −0.674056 0.738680i \(-0.735449\pi\)
0.738680 + 0.674056i \(0.235449\pi\)
\(608\) 236.639i 0.389209i
\(609\) −164.489 40.0513i −0.270097 0.0657657i
\(610\) 121.311i 0.198870i
\(611\) 523.433i 0.856683i
\(612\) 261.967 + 545.736i 0.428051 + 0.891726i
\(613\) 610.766 0.996355 0.498178 0.867075i \(-0.334003\pi\)
0.498178 + 0.867075i \(0.334003\pi\)
\(614\) −57.3025 −0.0933265
\(615\) −60.5757 + 248.782i −0.0984970 + 0.404523i
\(616\) −91.3469 −0.148290
\(617\) 489.618 + 489.618i 0.793546 + 0.793546i 0.982069 0.188523i \(-0.0603699\pi\)
−0.188523 + 0.982069i \(0.560370\pi\)
\(618\) 6.33259 26.0077i 0.0102469 0.0420836i
\(619\) −144.357 144.357i −0.233209 0.233209i 0.580822 0.814031i \(-0.302731\pi\)
−0.814031 + 0.580822i \(0.802731\pi\)
\(620\) −221.908 −0.357916
\(621\) 15.0899 + 218.749i 0.0242993 + 0.352253i
\(622\) 40.2210 + 40.2210i 0.0646639 + 0.0646639i
\(623\) −341.555 + 341.555i −0.548243 + 0.548243i
\(624\) 89.2333 366.477i 0.143002 0.587303i
\(625\) 465.790 0.745264
\(626\) 39.0397 + 39.0397i 0.0623637 + 0.0623637i
\(627\) 997.849 607.069i 1.59147 0.968212i
\(628\) 381.640 0.607707
\(629\) −1017.83 + 143.253i −1.61817 + 0.227747i
\(630\) 21.7699 42.0538i 0.0345555 0.0667520i
\(631\) 138.795i 0.219960i 0.993934 + 0.109980i \(0.0350787\pi\)
−0.993934 + 0.109980i \(0.964921\pi\)
\(632\) 107.599 + 107.599i 0.170251 + 0.170251i
\(633\) −169.442 + 103.084i −0.267680 + 0.162851i
\(634\) −63.5135 + 63.5135i −0.100179 + 0.100179i
\(635\) −386.064 + 386.064i −0.607975 + 0.607975i
\(636\) −27.6420 + 113.525i −0.0434623 + 0.178498i
\(637\) 304.274i 0.477668i
\(638\) 56.1652 0.0880333
\(639\) −25.9004 81.4965i −0.0405327 0.127538i
\(640\) −272.872 272.872i −0.426363 0.426363i
\(641\) −222.717 222.717i −0.347453 0.347453i 0.511707 0.859160i \(-0.329013\pi\)
−0.859160 + 0.511707i \(0.829013\pi\)
\(642\) −37.3242 + 22.7072i −0.0581373 + 0.0353694i
\(643\) −417.674 + 417.674i −0.649570 + 0.649570i −0.952889 0.303319i \(-0.901905\pi\)
0.303319 + 0.952889i \(0.401905\pi\)
\(644\) 109.130 0.169456
\(645\) −28.4561 46.7737i −0.0441180 0.0725174i
\(646\) 51.1633 67.9241i 0.0792001 0.105146i
\(647\) 790.271i 1.22144i −0.791847 0.610720i \(-0.790880\pi\)
0.791847 0.610720i \(-0.209120\pi\)
\(648\) −77.5384 109.667i −0.119658 0.169240i
\(649\) −847.459 + 847.459i −1.30579 + 1.30579i
\(650\) 51.2182i 0.0787973i
\(651\) −18.1865 + 74.6912i −0.0279362 + 0.114733i
\(652\) 581.412 + 581.412i 0.891736 + 0.891736i
\(653\) 263.332 263.332i 0.403265 0.403265i −0.476117 0.879382i \(-0.657956\pi\)
0.879382 + 0.476117i \(0.157956\pi\)
\(654\) −75.2497 + 45.7802i −0.115061 + 0.0700003i
\(655\) 1426.40i 2.17771i
\(656\) 125.681 125.681i 0.191587 0.191587i
\(657\) 19.4310 6.17537i 0.0295753 0.00939934i
\(658\) 32.2562 32.2562i 0.0490216 0.0490216i
\(659\) 237.290i 0.360076i 0.983660 + 0.180038i \(0.0576221\pi\)
−0.983660 + 0.180038i \(0.942378\pi\)
\(660\) 338.597 1390.60i 0.513025 2.10697i
\(661\) 808.638i 1.22336i 0.791107 + 0.611678i \(0.209505\pi\)
−0.791107 + 0.611678i \(0.790495\pi\)
\(662\) 64.8568i 0.0979711i
\(663\) 320.403 262.497i 0.483262 0.395923i
\(664\) −106.578 −0.160508
\(665\) 606.018 0.911305
\(666\) 108.076 34.3476i 0.162276 0.0515730i
\(667\) −134.935 −0.202301
\(668\) −712.432 712.432i −1.06651 1.06651i
\(669\) −508.897 123.911i −0.760683 0.185218i
\(670\) 29.7958 + 29.7958i 0.0444714 + 0.0444714i
\(671\) −1270.14 −1.89290
\(672\) −85.8174 + 52.2094i −0.127704 + 0.0776925i
\(673\) −761.037 761.037i −1.13081 1.13081i −0.990042 0.140771i \(-0.955042\pi\)
−0.140771 0.990042i \(-0.544958\pi\)
\(674\) 44.5886 44.5886i 0.0661552 0.0661552i
\(675\) 616.133 + 536.614i 0.912790 + 0.794983i
\(676\) 407.684 0.603082
\(677\) −674.888 674.888i −0.996880 0.996880i 0.00311505 0.999995i \(-0.499008\pi\)
−0.999995 + 0.00311505i \(0.999008\pi\)
\(678\) 19.4357 + 31.9468i 0.0286662 + 0.0471191i
\(679\) 233.131 0.343344
\(680\) −29.2046 207.502i −0.0429480 0.305150i
\(681\) −295.817 486.240i −0.434387 0.714009i
\(682\) 25.5035i 0.0373952i
\(683\) −281.976 281.976i −0.412849 0.412849i 0.469881 0.882730i \(-0.344297\pi\)
−0.882730 + 0.469881i \(0.844297\pi\)
\(684\) 392.936 759.047i 0.574467 1.10972i
\(685\) 983.923 983.923i 1.43638 1.43638i
\(686\) 43.2746 43.2746i 0.0630825 0.0630825i
\(687\) 888.247 + 216.279i 1.29294 + 0.314816i
\(688\) 38.0051i 0.0552400i
\(689\) 79.9462 0.116032
\(690\) 8.92925 36.6721i 0.0129409 0.0531479i
\(691\) −83.8802 83.8802i −0.121390 0.121390i 0.643802 0.765192i \(-0.277356\pi\)
−0.765192 + 0.643802i \(0.777356\pi\)
\(692\) 233.110 + 233.110i 0.336864 + 0.336864i
\(693\) −440.308 227.934i −0.635366 0.328909i
\(694\) −90.7339 + 90.7339i −0.130740 + 0.130740i
\(695\) −110.067 −0.158370
\(696\) 70.6115 42.9584i 0.101453 0.0617219i
\(697\) 193.278 27.2027i 0.277300 0.0390283i
\(698\) 25.1845i 0.0360810i
\(699\) 121.126 73.6902i 0.173284 0.105422i
\(700\) 287.542 287.542i 0.410774 0.410774i
\(701\) 439.507i 0.626972i 0.949593 + 0.313486i \(0.101497\pi\)
−0.949593 + 0.313486i \(0.898503\pi\)
\(702\) −30.0133 + 34.4609i −0.0427540 + 0.0490896i
\(703\) 1026.20 + 1026.20i 1.45975 + 1.45975i
\(704\) −686.660 + 686.660i −0.975369 + 0.975369i
\(705\) 747.041 + 1227.92i 1.05963 + 1.74174i
\(706\) 5.33708i 0.00755960i
\(707\) −98.9629 + 98.9629i −0.139976 + 0.139976i
\(708\) −207.485 + 852.133i −0.293058 + 1.20358i
\(709\) 542.109 542.109i 0.764611 0.764611i −0.212541 0.977152i \(-0.568174\pi\)
0.977152 + 0.212541i \(0.0681740\pi\)
\(710\) 14.7197i 0.0207319i
\(711\) 250.158 + 787.132i 0.351840 + 1.10708i
\(712\) 235.824i 0.331213i
\(713\) 61.2713i 0.0859345i
\(714\) −35.9208 3.56842i −0.0503093 0.00499778i
\(715\) −979.289 −1.36964
\(716\) −388.688 −0.542860
\(717\) 313.013 + 76.2153i 0.436559 + 0.106298i
\(718\) −67.9750 −0.0946726
\(719\) 93.0554 + 93.0554i 0.129423 + 0.129423i 0.768851 0.639428i \(-0.220829\pi\)
−0.639428 + 0.768851i \(0.720829\pi\)
\(720\) −313.702 987.074i −0.435697 1.37094i
\(721\) −102.822 102.822i −0.142610 0.142610i
\(722\) −44.8351 −0.0620985
\(723\) 687.665 + 1130.33i 0.951128 + 1.56338i
\(724\) 144.873 + 144.873i 0.200101 + 0.200101i
\(725\) −355.535 + 355.535i −0.490393 + 0.490393i
\(726\) 86.3182 + 21.0176i 0.118896 + 0.0289498i
\(727\) −331.684 −0.456236 −0.228118 0.973634i \(-0.573257\pi\)
−0.228118 + 0.973634i \(0.573257\pi\)
\(728\) 32.3415 + 32.3415i 0.0444252 + 0.0444252i
\(729\) −100.100 722.095i −0.137312 0.990528i
\(730\) −3.50957 −0.00480763
\(731\) −25.1101 + 33.3360i −0.0343503 + 0.0456033i
\(732\) −794.057 + 483.086i −1.08478 + 0.659954i
\(733\) 288.501i 0.393589i 0.980445 + 0.196795i \(0.0630533\pi\)
−0.980445 + 0.196795i \(0.936947\pi\)
\(734\) −60.7343 60.7343i −0.0827442 0.0827442i
\(735\) 434.259 + 713.799i 0.590829 + 0.971155i
\(736\) −56.6137 + 56.6137i −0.0769207 + 0.0769207i
\(737\) 311.967 311.967i 0.423292 0.423292i
\(738\) −20.5229 + 6.52239i −0.0278088 + 0.00883792i
\(739\) 778.144i 1.05297i −0.850185 0.526484i \(-0.823510\pi\)
0.850185 0.526484i \(-0.176490\pi\)
\(740\) 1778.33 2.40315
\(741\) −568.224 138.356i −0.766834 0.186716i
\(742\) −4.92663 4.92663i −0.00663966 0.00663966i
\(743\) 757.612 + 757.612i 1.01967 + 1.01967i 0.999803 + 0.0198633i \(0.00632311\pi\)
0.0198633 + 0.999803i \(0.493677\pi\)
\(744\) −19.5066 32.0633i −0.0262185 0.0430958i
\(745\) −1235.33 + 1235.33i −1.65816 + 1.65816i
\(746\) −31.5755 −0.0423264
\(747\) −513.723 265.939i −0.687715 0.356009i
\(748\) −1080.36 + 152.054i −1.44433 + 0.203280i
\(749\) 237.336i 0.316870i
\(750\) −12.7089 20.8898i −0.0169452 0.0278530i
\(751\) 421.711 421.711i 0.561533 0.561533i −0.368210 0.929743i \(-0.620029\pi\)
0.929743 + 0.368210i \(0.120029\pi\)
\(752\) 997.726i 1.32676i
\(753\) 198.678 + 48.3758i 0.263848 + 0.0642441i
\(754\) −19.8854 19.8854i −0.0263732 0.0263732i
\(755\) −835.641 + 835.641i −1.10681 + 1.10681i
\(756\) −361.962 + 24.9691i −0.478786 + 0.0330279i
\(757\) 797.793i 1.05389i 0.849900 + 0.526944i \(0.176662\pi\)
−0.849900 + 0.526944i \(0.823338\pi\)
\(758\) 3.97475 3.97475i 0.00524374 0.00524374i
\(759\) −383.962 93.4905i −0.505878 0.123176i
\(760\) −209.210 + 209.210i −0.275276 + 0.275276i
\(761\) 81.3949i 0.106958i −0.998569 0.0534789i \(-0.982969\pi\)
0.998569 0.0534789i \(-0.0170310\pi\)
\(762\) −44.6145 10.8632i −0.0585492 0.0142561i
\(763\) 478.495i 0.627123i
\(764\) 642.522i 0.840997i
\(765\) 377.000 1073.07i 0.492811 1.40271i
\(766\) 78.2684 0.102178
\(767\) 600.089 0.782385
\(768\) −162.284 + 666.492i −0.211307 + 0.867828i
\(769\) −412.662 −0.536621 −0.268310 0.963332i \(-0.586465\pi\)
−0.268310 + 0.963332i \(0.586465\pi\)
\(770\) 60.3481 + 60.3481i 0.0783741 + 0.0783741i
\(771\) −68.7678 + 282.426i −0.0891929 + 0.366312i
\(772\) 120.600 + 120.600i 0.156218 + 0.156218i
\(773\) 915.455 1.18429 0.592144 0.805832i \(-0.298282\pi\)
0.592144 + 0.805832i \(0.298282\pi\)
\(774\) 2.11683 4.08916i 0.00273492 0.00528315i
\(775\) 161.441 + 161.441i 0.208311 + 0.208311i
\(776\) −80.4815 + 80.4815i −0.103713 + 0.103713i
\(777\) 145.744 598.563i 0.187572 0.770352i
\(778\) 145.685 0.187256
\(779\) −194.869 194.869i −0.250153 0.250153i
\(780\) −612.226 + 372.465i −0.784905 + 0.477519i
\(781\) 154.117 0.197333
\(782\) −28.4905 + 4.00986i −0.0364329 + 0.00512770i
\(783\) 447.552 30.8733i 0.571586 0.0394295i
\(784\) 579.983i 0.739774i
\(785\) −507.026 507.026i −0.645893 0.645893i
\(786\) 102.487 62.3509i 0.130391 0.0793268i
\(787\) 603.765 603.765i 0.767172 0.767172i −0.210435 0.977608i \(-0.567488\pi\)
0.977608 + 0.210435i \(0.0674881\pi\)
\(788\) 361.679 361.679i 0.458983 0.458983i
\(789\) −222.744 + 914.798i −0.282311 + 1.15944i
\(790\) 142.170i 0.179962i
\(791\) 203.142 0.256817
\(792\) 230.691 73.3159i 0.291277 0.0925706i
\(793\) 449.695 + 449.695i 0.567080 + 0.567080i
\(794\) 16.0720 + 16.0720i 0.0202418 + 0.0202418i
\(795\) 187.546 114.099i 0.235907 0.143521i
\(796\) 134.107 134.107i 0.168476 0.168476i
\(797\) 1418.96 1.78037 0.890187 0.455595i \(-0.150573\pi\)
0.890187 + 0.455595i \(0.150573\pi\)
\(798\) 26.4903 + 43.5426i 0.0331959 + 0.0545646i
\(799\) 659.200 875.150i 0.825031 1.09531i
\(800\) 298.338i 0.372923i
\(801\) 588.441 1136.71i 0.734633 1.41912i
\(802\) −86.2968 + 86.2968i −0.107602 + 0.107602i
\(803\) 36.7457i 0.0457605i
\(804\) 76.3794 313.687i 0.0949993 0.390158i
\(805\) −144.984 144.984i −0.180104 0.180104i
\(806\) −9.02957 + 9.02957i −0.0112029 + 0.0112029i
\(807\) −281.215 + 171.085i −0.348469 + 0.212001i
\(808\) 68.3281i 0.0845644i
\(809\) −831.666 + 831.666i −1.02802 + 1.02802i −0.0284212 + 0.999596i \(0.509048\pi\)
−0.999596 + 0.0284212i \(0.990952\pi\)
\(810\) −21.2259 + 123.677i −0.0262048 + 0.152688i
\(811\) −987.345 + 987.345i −1.21744 + 1.21744i −0.248916 + 0.968525i \(0.580074\pi\)
−0.968525 + 0.248916i \(0.919926\pi\)
\(812\) 223.276i 0.274970i
\(813\) 304.239 1249.50i 0.374218 1.53690i
\(814\) 204.381i 0.251083i
\(815\) 1544.86i 1.89554i
\(816\) −610.726 + 500.350i −0.748439 + 0.613174i
\(817\) 58.9270 0.0721261
\(818\) −39.0625 −0.0477536
\(819\) 75.1915 + 236.593i 0.0918089 + 0.288880i
\(820\) −337.694 −0.411821
\(821\) 382.463 + 382.463i 0.465850 + 0.465850i 0.900567 0.434717i \(-0.143152\pi\)
−0.434717 + 0.900567i \(0.643152\pi\)
\(822\) 113.704 + 27.6858i 0.138327 + 0.0336810i
\(823\) −423.539 423.539i −0.514629 0.514629i 0.401313 0.915941i \(-0.368554\pi\)
−0.915941 + 0.401313i \(0.868554\pi\)
\(824\) 70.9926 0.0861561
\(825\) −1258.02 + 765.350i −1.52487 + 0.927697i
\(826\) −36.9801 36.9801i −0.0447701 0.0447701i
\(827\) −200.991 + 200.991i −0.243036 + 0.243036i −0.818105 0.575069i \(-0.804975\pi\)
0.575069 + 0.818105i \(0.304975\pi\)
\(828\) −275.601 + 87.5887i −0.332851 + 0.105783i
\(829\) 11.6848 0.0140950 0.00704751 0.999975i \(-0.497757\pi\)
0.00704751 + 0.999975i \(0.497757\pi\)
\(830\) 70.4102 + 70.4102i 0.0848315 + 0.0848315i
\(831\) −559.930 920.366i −0.673802 1.10754i
\(832\) 486.226 0.584407
\(833\) 383.196 508.729i 0.460020 0.610719i
\(834\) −4.81126 7.90835i −0.00576890 0.00948243i
\(835\) 1893.00i 2.26706i
\(836\) 1089.25 + 1089.25i 1.30293 + 1.30293i
\(837\) −14.0190 203.225i −0.0167491 0.242801i
\(838\) 28.4622 28.4622i 0.0339645 0.0339645i
\(839\) 153.284 153.284i 0.182699 0.182699i −0.609832 0.792531i \(-0.708763\pi\)
0.792531 + 0.609832i \(0.208763\pi\)
\(840\) 122.028 + 29.7125i 0.145271 + 0.0353720i
\(841\) 564.928i 0.671734i
\(842\) −9.06923 −0.0107711
\(843\) 206.940 849.896i 0.245481 1.00818i
\(844\) −184.962 184.962i −0.219149 0.219149i
\(845\) −541.626 541.626i −0.640978 0.640978i
\(846\) −55.5719 + 107.350i −0.0656879 + 0.126892i
\(847\) 341.261 341.261i 0.402906 0.402906i
\(848\) −152.387 −0.179702
\(849\) −1149.76 + 699.491i −1.35426 + 0.823900i
\(850\) −64.5031 + 85.6339i −0.0758860 + 0.100746i
\(851\) 491.019i 0.576990i
\(852\) 96.3498 58.6170i 0.113087 0.0687994i
\(853\) 311.919 311.919i 0.365673 0.365673i −0.500223 0.865896i \(-0.666749\pi\)
0.865896 + 0.500223i \(0.166749\pi\)
\(854\) 55.4242i 0.0648996i
\(855\) −1530.46 + 486.396i −1.79001 + 0.568884i
\(856\) −81.9331 81.9331i −0.0957162 0.0957162i
\(857\) 803.544 803.544i 0.937625 0.937625i −0.0605412 0.998166i \(-0.519283\pi\)
0.998166 + 0.0605412i \(0.0192826\pi\)
\(858\) −42.8068 70.3622i −0.0498914 0.0820072i
\(859\) 1489.02i 1.73344i −0.498796 0.866720i \(-0.666224\pi\)
0.498796 0.866720i \(-0.333776\pi\)
\(860\) 51.0581 51.0581i 0.0593699 0.0593699i
\(861\) −27.6758 + 113.663i −0.0321437 + 0.132013i
\(862\) 79.8270 79.8270i 0.0926067 0.0926067i
\(863\) 340.663i 0.394743i 0.980329 + 0.197372i \(0.0632406\pi\)
−0.980329 + 0.197372i \(0.936759\pi\)
\(864\) 174.823 200.729i 0.202341 0.232326i
\(865\) 619.394i 0.716063i
\(866\) 113.822i 0.131435i
\(867\) −866.278 + 35.3716i −0.999167 + 0.0407977i
\(868\) −101.385 −0.116803
\(869\) −1488.54 −1.71293
\(870\) −75.0296 18.2689i −0.0862409 0.0209987i
\(871\) −220.905 −0.253622
\(872\) −165.186 165.186i −0.189434 0.189434i
\(873\) −588.757 + 187.113i −0.674407 + 0.214333i
\(874\) 28.7250 + 28.7250i 0.0328661 + 0.0328661i
\(875\) −132.833 −0.151809
\(876\) 13.9759 + 22.9724i 0.0159542 + 0.0262243i
\(877\) 586.686 + 586.686i 0.668969 + 0.668969i 0.957477 0.288508i \(-0.0931593\pi\)
−0.288508 + 0.957477i \(0.593159\pi\)
\(878\) 36.8456 36.8456i 0.0419654 0.0419654i
\(879\) −940.414 228.981i −1.06987 0.260501i
\(880\) 1866.64 2.12118
\(881\) 552.994 + 552.994i 0.627689 + 0.627689i 0.947486 0.319797i \(-0.103615\pi\)
−0.319797 + 0.947486i \(0.603615\pi\)
\(882\) −32.3043 + 62.4032i −0.0366261 + 0.0707520i
\(883\) 61.7667 0.0699510 0.0349755 0.999388i \(-0.488865\pi\)
0.0349755 + 0.999388i \(0.488865\pi\)
\(884\) 436.338 + 328.668i 0.493595 + 0.371796i
\(885\) 1407.75 856.444i 1.59068 0.967734i
\(886\) 9.24374i 0.0104331i
\(887\) −278.018 278.018i −0.313436 0.313436i 0.532803 0.846239i \(-0.321139\pi\)
−0.846239 + 0.532803i \(0.821139\pi\)
\(888\) 156.323 + 256.950i 0.176039 + 0.289358i
\(889\) −176.385 + 176.385i −0.198408 + 0.198408i
\(890\) −155.796 + 155.796i −0.175052 + 0.175052i
\(891\) 1294.91 + 222.238i 1.45333 + 0.249426i
\(892\) 690.771i 0.774407i
\(893\) −1546.98 −1.73234
\(894\) −142.757 34.7598i −0.159684 0.0388812i
\(895\) 516.389 + 516.389i 0.576971 + 0.576971i
\(896\) −124.670 124.670i −0.139140 0.139140i
\(897\) 102.842 + 169.043i 0.114651 + 0.188453i
\(898\) 21.6931 21.6931i 0.0241571 0.0241571i
\(899\) 125.359 0.139442
\(900\) −495.386 + 956.954i −0.550429 + 1.06328i
\(901\) −133.665 100.682i −0.148352 0.111745i
\(902\) 38.8106i 0.0430273i
\(903\) −13.0010 21.3699i −0.0143976 0.0236655i
\(904\) −70.1288 + 70.1288i −0.0775761 + 0.0775761i
\(905\) 384.940i 0.425349i
\(906\) −96.5686 23.5134i −0.106588 0.0259530i
\(907\) −134.894 134.894i −0.148726 0.148726i 0.628823 0.777549i \(-0.283537\pi\)
−0.777549 + 0.628823i \(0.783537\pi\)
\(908\) 530.778 530.778i 0.584557 0.584557i
\(909\) 170.496 329.353i 0.187565 0.362325i
\(910\) 42.7327i 0.0469590i
\(911\) −529.607 + 529.607i −0.581347 + 0.581347i −0.935273 0.353926i \(-0.884846\pi\)
0.353926 + 0.935273i \(0.384846\pi\)
\(912\) 1083.10 + 263.724i 1.18761 + 0.289171i
\(913\) 737.204 737.204i 0.807452 0.807452i
\(914\) 10.9026i 0.0119285i
\(915\) 1696.74 + 413.138i 1.85436 + 0.451517i
\(916\) 1205.70i 1.31626i
\(917\) 651.692i 0.710679i
\(918\) 93.5799 19.8186i 0.101939 0.0215889i
\(919\) −427.922 −0.465639 −0.232820 0.972520i \(-0.574795\pi\)
−0.232820 + 0.972520i \(0.574795\pi\)
\(920\) 100.103 0.108808
\(921\) 195.151 801.477i 0.211890 0.870224i
\(922\) 60.7160 0.0658525
\(923\) −54.5654 54.5654i −0.0591174 0.0591174i
\(924\) 154.698 635.337i 0.167422 0.687594i
\(925\) −1293.77 1293.77i −1.39866 1.39866i
\(926\) 148.289 0.160139
\(927\) 342.197 + 177.145i 0.369144 + 0.191095i
\(928\) 115.829 + 115.829i 0.124816 + 0.124816i
\(929\) 872.431 872.431i 0.939107 0.939107i −0.0591421 0.998250i \(-0.518837\pi\)
0.998250 + 0.0591421i \(0.0188365\pi\)
\(930\) −8.29554 + 34.0694i −0.00891994 + 0.0366338i
\(931\) −899.266 −0.965914
\(932\) 132.221 + 132.221i 0.141868 + 0.141868i
\(933\) −699.539 + 425.584i −0.749774 + 0.456145i
\(934\) −78.7989 −0.0843671
\(935\) 1637.32 + 1233.29i 1.75114 + 1.31903i
\(936\) −107.634 55.7190i −0.114994 0.0595288i
\(937\) 855.452i 0.912969i 0.889731 + 0.456485i \(0.150892\pi\)
−0.889731 + 0.456485i \(0.849108\pi\)
\(938\) 13.6131 + 13.6131i 0.0145129 + 0.0145129i
\(939\) −678.993 + 413.084i −0.723102 + 0.439919i
\(940\) −1340.40 + 1340.40i −1.42596 + 1.42596i
\(941\) −701.925 + 701.925i −0.745936 + 0.745936i −0.973713 0.227778i \(-0.926854\pi\)
0.227778 + 0.973713i \(0.426854\pi\)
\(942\) 14.2668 58.5931i 0.0151452 0.0622007i
\(943\) 93.2411i 0.0988771i
\(944\) −1143.84 −1.21170
\(945\) 514.056 + 447.711i 0.543974 + 0.473768i
\(946\) 5.86803 + 5.86803i 0.00620299 + 0.00620299i
\(947\) 392.939 + 392.939i 0.414930 + 0.414930i 0.883452 0.468522i \(-0.155213\pi\)
−0.468522 + 0.883452i \(0.655213\pi\)
\(948\) −930.593 + 566.152i −0.981638 + 0.597207i
\(949\) 13.0099 13.0099i 0.0137090 0.0137090i
\(950\) 151.373 0.159340
\(951\) −672.045 1104.65i −0.706672 1.16157i
\(952\) −13.3430 94.8034i −0.0140157 0.0995834i
\(953\) 1366.13i 1.43350i 0.697328 + 0.716752i \(0.254372\pi\)
−0.697328 + 0.716752i \(0.745628\pi\)
\(954\) 16.3961 + 8.48774i 0.0171866 + 0.00889700i
\(955\) 853.619 853.619i 0.893842 0.893842i
\(956\) 424.881i 0.444436i
\(957\) −191.278 + 785.570i −0.199872 + 0.820867i
\(958\) −31.6874 31.6874i −0.0330766 0.0330766i
\(959\) 449.534 449.534i 0.468753 0.468753i
\(960\) 1140.64 693.940i 1.18817 0.722854i
\(961\) 904.077i 0.940767i
\(962\) 72.3615 72.3615i 0.0752199 0.0752199i
\(963\) −190.488 599.376i −0.197807 0.622405i
\(964\) −1233.86 + 1233.86i −1.27994 + 1.27994i
\(965\) 320.445i 0.332068i
\(966\) 4.07959 16.7547i 0.00422318 0.0173444i
\(967\) 332.446i 0.343791i 0.985115 + 0.171896i \(0.0549892\pi\)
−0.985115 + 0.171896i \(0.945011\pi\)
\(968\) 235.621i 0.243410i
\(969\) 775.795 + 946.933i 0.800614 + 0.977227i
\(970\) 106.340 0.109629
\(971\) −284.514 −0.293011 −0.146506 0.989210i \(-0.546803\pi\)
−0.146506 + 0.989210i \(0.546803\pi\)
\(972\) 894.073 353.572i 0.919828 0.363757i
\(973\) −50.2873 −0.0516828
\(974\) −68.7190 68.7190i −0.0705534 0.0705534i
\(975\) 716.378 + 174.430i 0.734746 + 0.178903i
\(976\) −857.171 857.171i −0.878249 0.878249i
\(977\) 843.372 0.863226 0.431613 0.902059i \(-0.357945\pi\)
0.431613 + 0.902059i \(0.357945\pi\)
\(978\) 110.999 67.5292i 0.113496 0.0690483i
\(979\) 1631.21 + 1631.21i 1.66620 + 1.66620i
\(980\) −779.180 + 779.180i −0.795082 + 0.795082i
\(981\) −384.045 1208.41i −0.391483 1.23181i
\(982\) −90.1374 −0.0917896
\(983\) −84.6921 84.6921i −0.0861568 0.0861568i 0.662715 0.748872i \(-0.269404\pi\)
−0.748872 + 0.662715i \(0.769404\pi\)
\(984\) −29.6846 48.7931i −0.0301673 0.0495865i
\(985\) −961.013 −0.975647
\(986\) 8.20402 + 58.2905i 0.00832050 + 0.0591181i
\(987\) 341.308 + 561.013i 0.345803 + 0.568402i
\(988\) 771.301i 0.780670i
\(989\) −14.0977 14.0977i −0.0142545 0.0142545i
\(990\) −200.841 103.969i −0.202870 0.105020i
\(991\) 581.980 581.980i 0.587265 0.587265i −0.349625 0.936890i \(-0.613691\pi\)
0.936890 + 0.349625i \(0.113691\pi\)
\(992\) 52.5958 52.5958i 0.0530199 0.0530199i
\(993\) −907.137 220.878i −0.913532 0.222435i
\(994\) 6.72511i 0.00676570i
\(995\) −356.335 −0.358126
\(996\) 180.491 741.270i 0.181216 0.744247i
\(997\) 829.581 + 829.581i 0.832078 + 0.832078i 0.987801 0.155723i \(-0.0497707\pi\)
−0.155723 + 0.987801i \(0.549771\pi\)
\(998\) 6.07668 + 6.07668i 0.00608885 + 0.00608885i
\(999\) 112.346 + 1628.61i 0.112458 + 1.63024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.3.f.a.38.6 yes 20
3.2 odd 2 inner 51.3.f.a.38.5 20
17.13 even 4 inner 51.3.f.a.47.5 yes 20
51.47 odd 4 inner 51.3.f.a.47.6 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.3.f.a.38.5 20 3.2 odd 2 inner
51.3.f.a.38.6 yes 20 1.1 even 1 trivial
51.3.f.a.47.5 yes 20 17.13 even 4 inner
51.3.f.a.47.6 yes 20 51.47 odd 4 inner