Properties

Label 51.3.f.a.38.5
Level $51$
Weight $3$
Character 51.38
Analytic conductor $1.390$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,3,Mod(38,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.38"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 51.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38964934824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 62 x^{18} + 1545 x^{16} + 20120 x^{14} + 149608 x^{12} + 655792 x^{10} + 1690896 x^{8} + \cdots + 36864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 38.5
Root \(-1.20840i\) of defining polynomial
Character \(\chi\) \(=\) 51.38
Dual form 51.3.f.a.47.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.208400 q^{2} +(-2.91484 + 0.709732i) q^{3} -3.95657 q^{4} +(-5.25648 - 5.25648i) q^{5} +(0.607451 - 0.147908i) q^{6} +(2.40158 + 2.40158i) q^{7} +1.65815 q^{8} +(7.99256 - 4.13751i) q^{9} +(1.09545 + 1.09545i) q^{10} +(-11.4695 + 11.4695i) q^{11} +(11.5328 - 2.80810i) q^{12} -8.12160 q^{13} +(-0.500488 - 0.500488i) q^{14} +(19.0525 + 11.5911i) q^{15} +15.4807 q^{16} +(-13.5788 - 10.2282i) q^{17} +(-1.66565 + 0.862255i) q^{18} -24.0029i q^{19} +(20.7976 + 20.7976i) q^{20} +(-8.70468 - 5.29573i) q^{21} +(2.39024 - 2.39024i) q^{22} +(5.74247 - 5.74247i) q^{23} +(-4.83323 + 1.17684i) q^{24} +30.2612i q^{25} +1.69254 q^{26} +(-20.3605 + 17.7327i) q^{27} +(-9.50201 - 9.50201i) q^{28} +(-11.7489 - 11.7489i) q^{29} +(-3.97053 - 2.41558i) q^{30} +(5.33493 - 5.33493i) q^{31} -9.85876 q^{32} +(25.2915 - 41.5720i) q^{33} +(2.82983 + 2.13154i) q^{34} -25.2477i q^{35} +(-31.6231 + 16.3703i) q^{36} +(-42.7533 + 42.7533i) q^{37} +5.00220i q^{38} +(23.6731 - 5.76415i) q^{39} +(-8.71602 - 8.71602i) q^{40} +(-8.11856 + 8.11856i) q^{41} +(1.81405 + 1.10363i) q^{42} +2.45499i q^{43} +(45.3799 - 45.3799i) q^{44} +(-63.7615 - 20.2640i) q^{45} +(-1.19673 + 1.19673i) q^{46} +64.4496i q^{47} +(-45.1238 + 10.9872i) q^{48} -37.4649i q^{49} -6.30643i q^{50} +(46.8394 + 20.1761i) q^{51} +32.1337 q^{52} +9.84366 q^{53} +(4.24312 - 3.69550i) q^{54} +120.578 q^{55} +(3.98217 + 3.98217i) q^{56} +(17.0356 + 69.9646i) q^{57} +(2.44846 + 2.44846i) q^{58} +73.8881 q^{59} +(-75.3825 - 45.8610i) q^{60} +(-55.3702 - 55.3702i) q^{61} +(-1.11180 + 1.11180i) q^{62} +(29.1313 + 9.25821i) q^{63} -59.8683 q^{64} +(42.6910 + 42.6910i) q^{65} +(-5.27074 + 8.66359i) q^{66} +27.1997 q^{67} +(53.7256 + 40.4684i) q^{68} +(-12.6628 + 20.8140i) q^{69} +5.26161i q^{70} +(-6.71855 - 6.71855i) q^{71} +(13.2528 - 6.86059i) q^{72} +(-1.60189 + 1.60189i) q^{73} +(8.90977 - 8.90977i) q^{74} +(-21.4773 - 88.2065i) q^{75} +94.9692i q^{76} -55.0898 q^{77} +(-4.93347 + 1.20125i) q^{78} +(-64.8910 - 64.8910i) q^{79} +(-81.3741 - 81.3741i) q^{80} +(46.7621 - 66.1385i) q^{81} +(1.69190 - 1.69190i) q^{82} -64.2751 q^{83} +(34.4407 + 20.9529i) q^{84} +(17.6128 + 125.141i) q^{85} -0.511620i q^{86} +(42.5846 + 25.9075i) q^{87} +(-19.0181 + 19.0181i) q^{88} -142.221i q^{89} +(13.2879 + 4.22302i) q^{90} +(-19.5046 - 19.5046i) q^{91} +(-22.7205 + 22.7205i) q^{92} +(-11.7641 + 19.3368i) q^{93} -13.4313i q^{94} +(-126.171 + 126.171i) q^{95} +(28.7367 - 6.99708i) q^{96} +(48.5370 - 48.5370i) q^{97} +7.80767i q^{98} +(-44.2156 + 139.126i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3} + 24 q^{4} - 2 q^{6} - 4 q^{7} - 16 q^{10} - 42 q^{12} - 12 q^{13} - 64 q^{16} - 4 q^{18} + 88 q^{21} - 40 q^{22} - 82 q^{24} + 54 q^{27} - 160 q^{28} + 48 q^{31} + 264 q^{33} + 152 q^{34}+ \cdots - 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.208400 −0.104200 −0.0520999 0.998642i \(-0.516591\pi\)
−0.0520999 + 0.998642i \(0.516591\pi\)
\(3\) −2.91484 + 0.709732i −0.971613 + 0.236577i
\(4\) −3.95657 −0.989142
\(5\) −5.25648 5.25648i −1.05130 1.05130i −0.998611 0.0526852i \(-0.983222\pi\)
−0.0526852 0.998611i \(-0.516778\pi\)
\(6\) 0.607451 0.147908i 0.101242 0.0246513i
\(7\) 2.40158 + 2.40158i 0.343082 + 0.343082i 0.857525 0.514442i \(-0.172001\pi\)
−0.514442 + 0.857525i \(0.672001\pi\)
\(8\) 1.65815 0.207268
\(9\) 7.99256 4.13751i 0.888062 0.459723i
\(10\) 1.09545 + 1.09545i 0.109545 + 0.109545i
\(11\) −11.4695 + 11.4695i −1.04268 + 1.04268i −0.0436344 + 0.999048i \(0.513894\pi\)
−0.999048 + 0.0436344i \(0.986106\pi\)
\(12\) 11.5328 2.80810i 0.961063 0.234009i
\(13\) −8.12160 −0.624738 −0.312369 0.949961i \(-0.601123\pi\)
−0.312369 + 0.949961i \(0.601123\pi\)
\(14\) −0.500488 0.500488i −0.0357491 0.0357491i
\(15\) 19.0525 + 11.5911i 1.27017 + 0.772740i
\(16\) 15.4807 0.967545
\(17\) −13.5788 10.2282i −0.798755 0.601656i
\(18\) −1.66565 + 0.862255i −0.0925360 + 0.0479031i
\(19\) 24.0029i 1.26331i −0.775249 0.631656i \(-0.782376\pi\)
0.775249 0.631656i \(-0.217624\pi\)
\(20\) 20.7976 + 20.7976i 1.03988 + 1.03988i
\(21\) −8.70468 5.29573i −0.414509 0.252178i
\(22\) 2.39024 2.39024i 0.108647 0.108647i
\(23\) 5.74247 5.74247i 0.249673 0.249673i −0.571164 0.820836i \(-0.693508\pi\)
0.820836 + 0.571164i \(0.193508\pi\)
\(24\) −4.83323 + 1.17684i −0.201385 + 0.0490350i
\(25\) 30.2612i 1.21045i
\(26\) 1.69254 0.0650976
\(27\) −20.3605 + 17.7327i −0.754093 + 0.656768i
\(28\) −9.50201 9.50201i −0.339357 0.339357i
\(29\) −11.7489 11.7489i −0.405133 0.405133i 0.474904 0.880037i \(-0.342483\pi\)
−0.880037 + 0.474904i \(0.842483\pi\)
\(30\) −3.97053 2.41558i −0.132351 0.0805194i
\(31\) 5.33493 5.33493i 0.172094 0.172094i −0.615805 0.787899i \(-0.711169\pi\)
0.787899 + 0.615805i \(0.211169\pi\)
\(32\) −9.85876 −0.308086
\(33\) 25.2915 41.5720i 0.766408 1.25976i
\(34\) 2.82983 + 2.13154i 0.0832302 + 0.0626925i
\(35\) 25.2477i 0.721363i
\(36\) −31.6231 + 16.3703i −0.878420 + 0.454731i
\(37\) −42.7533 + 42.7533i −1.15549 + 1.15549i −0.170060 + 0.985434i \(0.554396\pi\)
−0.985434 + 0.170060i \(0.945604\pi\)
\(38\) 5.00220i 0.131637i
\(39\) 23.6731 5.76415i 0.607004 0.147799i
\(40\) −8.71602 8.71602i −0.217900 0.217900i
\(41\) −8.11856 + 8.11856i −0.198014 + 0.198014i −0.799148 0.601134i \(-0.794716\pi\)
0.601134 + 0.799148i \(0.294716\pi\)
\(42\) 1.81405 + 1.10363i 0.0431917 + 0.0262769i
\(43\) 2.45499i 0.0570929i 0.999592 + 0.0285464i \(0.00908785\pi\)
−0.999592 + 0.0285464i \(0.990912\pi\)
\(44\) 45.3799 45.3799i 1.03136 1.03136i
\(45\) −63.7615 20.2640i −1.41692 0.450312i
\(46\) −1.19673 + 1.19673i −0.0260158 + 0.0260158i
\(47\) 64.4496i 1.37127i 0.727947 + 0.685634i \(0.240475\pi\)
−0.727947 + 0.685634i \(0.759525\pi\)
\(48\) −45.1238 + 10.9872i −0.940079 + 0.228899i
\(49\) 37.4649i 0.764589i
\(50\) 6.30643i 0.126129i
\(51\) 46.8394 + 20.1761i 0.918419 + 0.395609i
\(52\) 32.1337 0.617955
\(53\) 9.84366 0.185729 0.0928647 0.995679i \(-0.470398\pi\)
0.0928647 + 0.995679i \(0.470398\pi\)
\(54\) 4.24312 3.69550i 0.0785764 0.0684351i
\(55\) 120.578 2.19234
\(56\) 3.98217 + 3.98217i 0.0711101 + 0.0711101i
\(57\) 17.0356 + 69.9646i 0.298871 + 1.22745i
\(58\) 2.44846 + 2.44846i 0.0422148 + 0.0422148i
\(59\) 73.8881 1.25234 0.626170 0.779686i \(-0.284622\pi\)
0.626170 + 0.779686i \(0.284622\pi\)
\(60\) −75.3825 45.8610i −1.25637 0.764350i
\(61\) −55.3702 55.3702i −0.907709 0.907709i 0.0883785 0.996087i \(-0.471832\pi\)
−0.996087 + 0.0883785i \(0.971832\pi\)
\(62\) −1.11180 + 1.11180i −0.0179322 + 0.0179322i
\(63\) 29.1313 + 9.25821i 0.462401 + 0.146956i
\(64\) −59.8683 −0.935442
\(65\) 42.6910 + 42.6910i 0.656785 + 0.656785i
\(66\) −5.27074 + 8.66359i −0.0798596 + 0.131267i
\(67\) 27.1997 0.405965 0.202983 0.979182i \(-0.434937\pi\)
0.202983 + 0.979182i \(0.434937\pi\)
\(68\) 53.7256 + 40.4684i 0.790083 + 0.595124i
\(69\) −12.6628 + 20.8140i −0.183518 + 0.301652i
\(70\) 5.26161i 0.0751659i
\(71\) −6.71855 6.71855i −0.0946275 0.0946275i 0.658208 0.752836i \(-0.271315\pi\)
−0.752836 + 0.658208i \(0.771315\pi\)
\(72\) 13.2528 6.86059i 0.184067 0.0952860i
\(73\) −1.60189 + 1.60189i −0.0219437 + 0.0219437i −0.717993 0.696050i \(-0.754939\pi\)
0.696050 + 0.717993i \(0.254939\pi\)
\(74\) 8.90977 8.90977i 0.120402 0.120402i
\(75\) −21.4773 88.2065i −0.286364 1.17609i
\(76\) 94.9692i 1.24959i
\(77\) −55.0898 −0.715452
\(78\) −4.93347 + 1.20125i −0.0632497 + 0.0154006i
\(79\) −64.8910 64.8910i −0.821405 0.821405i 0.164904 0.986310i \(-0.447268\pi\)
−0.986310 + 0.164904i \(0.947268\pi\)
\(80\) −81.3741 81.3741i −1.01718 1.01718i
\(81\) 46.7621 66.1385i 0.577310 0.816525i
\(82\) 1.69190 1.69190i 0.0206330 0.0206330i
\(83\) −64.2751 −0.774399 −0.387200 0.921996i \(-0.626558\pi\)
−0.387200 + 0.921996i \(0.626558\pi\)
\(84\) 34.4407 + 20.9529i 0.410008 + 0.249440i
\(85\) 17.6128 + 125.141i 0.207210 + 1.47225i
\(86\) 0.511620i 0.00594907i
\(87\) 42.5846 + 25.9075i 0.489478 + 0.297787i
\(88\) −19.0181 + 19.0181i −0.216115 + 0.216115i
\(89\) 142.221i 1.59799i −0.601337 0.798996i \(-0.705365\pi\)
0.601337 0.798996i \(-0.294635\pi\)
\(90\) 13.2879 + 4.22302i 0.147643 + 0.0469224i
\(91\) −19.5046 19.5046i −0.214337 0.214337i
\(92\) −22.7205 + 22.7205i −0.246962 + 0.246962i
\(93\) −11.7641 + 19.3368i −0.126495 + 0.207923i
\(94\) 13.4313i 0.142886i
\(95\) −126.171 + 126.171i −1.32811 + 1.32811i
\(96\) 28.7367 6.99708i 0.299341 0.0728862i
\(97\) 48.5370 48.5370i 0.500381 0.500381i −0.411175 0.911556i \(-0.634881\pi\)
0.911556 + 0.411175i \(0.134881\pi\)
\(98\) 7.80767i 0.0796701i
\(99\) −44.2156 + 139.126i −0.446622 + 1.40531i
\(100\) 119.731i 1.19731i
\(101\) 41.2075i 0.407995i −0.978971 0.203997i \(-0.934607\pi\)
0.978971 0.203997i \(-0.0653934\pi\)
\(102\) −9.76131 4.20469i −0.0956991 0.0412224i
\(103\) −42.8144 −0.415674 −0.207837 0.978163i \(-0.566642\pi\)
−0.207837 + 0.978163i \(0.566642\pi\)
\(104\) −13.4668 −0.129488
\(105\) 17.9191 + 73.5929i 0.170658 + 0.700885i
\(106\) −2.05141 −0.0193530
\(107\) −49.4125 49.4125i −0.461799 0.461799i 0.437446 0.899245i \(-0.355883\pi\)
−0.899245 + 0.437446i \(0.855883\pi\)
\(108\) 80.5578 70.1608i 0.745905 0.649637i
\(109\) 99.6210 + 99.6210i 0.913954 + 0.913954i 0.996581 0.0826264i \(-0.0263308\pi\)
−0.0826264 + 0.996581i \(0.526331\pi\)
\(110\) −25.1285 −0.228441
\(111\) 94.2755 154.962i 0.849329 1.39606i
\(112\) 37.1781 + 37.1781i 0.331948 + 0.331948i
\(113\) −42.2935 + 42.2935i −0.374279 + 0.374279i −0.869033 0.494754i \(-0.835258\pi\)
0.494754 + 0.869033i \(0.335258\pi\)
\(114\) −3.55022 14.5806i −0.0311423 0.127900i
\(115\) −60.3704 −0.524960
\(116\) 46.4852 + 46.4852i 0.400734 + 0.400734i
\(117\) −64.9124 + 33.6032i −0.554806 + 0.287206i
\(118\) −15.3983 −0.130494
\(119\) −8.04693 57.1743i −0.0676212 0.480456i
\(120\) 31.5918 + 19.2197i 0.263265 + 0.160165i
\(121\) 142.099i 1.17437i
\(122\) 11.5391 + 11.5391i 0.0945831 + 0.0945831i
\(123\) 17.9023 29.4263i 0.145547 0.239238i
\(124\) −21.1080 + 21.1080i −0.170226 + 0.170226i
\(125\) 27.6554 27.6554i 0.221243 0.221243i
\(126\) −6.07095 1.92941i −0.0481822 0.0153128i
\(127\) 73.4454i 0.578310i 0.957282 + 0.289155i \(0.0933743\pi\)
−0.957282 + 0.289155i \(0.906626\pi\)
\(128\) 51.9116 0.405559
\(129\) −1.74239 7.15591i −0.0135069 0.0554722i
\(130\) −8.89680 8.89680i −0.0684369 0.0684369i
\(131\) 135.680 + 135.680i 1.03573 + 1.03573i 0.999338 + 0.0363881i \(0.0115852\pi\)
0.0363881 + 0.999338i \(0.488415\pi\)
\(132\) −100.067 + 164.483i −0.758087 + 1.24608i
\(133\) 57.6448 57.6448i 0.433420 0.433420i
\(134\) −5.66840 −0.0423015
\(135\) 200.236 + 13.8128i 1.48323 + 0.102317i
\(136\) −22.5157 16.9598i −0.165557 0.124704i
\(137\) 187.183i 1.36630i 0.730279 + 0.683149i \(0.239390\pi\)
−0.730279 + 0.683149i \(0.760610\pi\)
\(138\) 2.63891 4.33763i 0.0191226 0.0314321i
\(139\) −10.4696 + 10.4696i −0.0753212 + 0.0753212i −0.743764 0.668443i \(-0.766961\pi\)
0.668443 + 0.743764i \(0.266961\pi\)
\(140\) 99.8942i 0.713530i
\(141\) −45.7419 187.860i −0.324411 1.33234i
\(142\) 1.40014 + 1.40014i 0.00986017 + 0.00986017i
\(143\) 93.1507 93.1507i 0.651403 0.651403i
\(144\) 123.731 64.0516i 0.859240 0.444803i
\(145\) 123.515i 0.851830i
\(146\) 0.333833 0.333833i 0.00228653 0.00228653i
\(147\) 26.5900 + 109.204i 0.180884 + 0.742884i
\(148\) 169.156 169.156i 1.14295 1.14295i
\(149\) 235.010i 1.57725i −0.614875 0.788624i \(-0.710794\pi\)
0.614875 0.788624i \(-0.289206\pi\)
\(150\) 4.47587 + 18.3822i 0.0298391 + 0.122548i
\(151\) 158.973i 1.05280i 0.850236 + 0.526402i \(0.176459\pi\)
−0.850236 + 0.526402i \(0.823541\pi\)
\(152\) 39.8004i 0.261844i
\(153\) −150.849 25.5666i −0.985940 0.167102i
\(154\) 11.4807 0.0745500
\(155\) −56.0859 −0.361844
\(156\) −93.6644 + 22.8063i −0.600413 + 0.146194i
\(157\) −96.4573 −0.614377 −0.307189 0.951649i \(-0.599388\pi\)
−0.307189 + 0.951649i \(0.599388\pi\)
\(158\) 13.5233 + 13.5233i 0.0855903 + 0.0855903i
\(159\) −28.6927 + 6.98635i −0.180457 + 0.0439393i
\(160\) 51.8224 + 51.8224i 0.323890 + 0.323890i
\(161\) 27.5820 0.171317
\(162\) −9.74521 + 13.7833i −0.0601556 + 0.0850818i
\(163\) −146.948 146.948i −0.901524 0.901524i 0.0940437 0.995568i \(-0.470021\pi\)
−0.995568 + 0.0940437i \(0.970021\pi\)
\(164\) 32.1216 32.1216i 0.195864 0.195864i
\(165\) −351.467 + 85.5783i −2.13010 + 0.518657i
\(166\) 13.3949 0.0806923
\(167\) −180.063 180.063i −1.07822 1.07822i −0.996669 0.0815525i \(-0.974012\pi\)
−0.0815525 0.996669i \(-0.525988\pi\)
\(168\) −14.4336 8.78110i −0.0859145 0.0522685i
\(169\) −103.040 −0.609702
\(170\) −3.67051 26.0794i −0.0215912 0.153408i
\(171\) −99.3122 191.845i −0.580773 1.12190i
\(172\) 9.71336i 0.0564730i
\(173\) 58.9172 + 58.9172i 0.340562 + 0.340562i 0.856579 0.516017i \(-0.172586\pi\)
−0.516017 + 0.856579i \(0.672586\pi\)
\(174\) −8.87461 5.39911i −0.0510035 0.0310294i
\(175\) −72.6746 + 72.6746i −0.415283 + 0.415283i
\(176\) −177.556 + 177.556i −1.00884 + 1.00884i
\(177\) −215.372 + 52.4407i −1.21679 + 0.296275i
\(178\) 29.6389i 0.166511i
\(179\) −98.2385 −0.548819 −0.274409 0.961613i \(-0.588482\pi\)
−0.274409 + 0.961613i \(0.588482\pi\)
\(180\) 252.277 + 80.1760i 1.40154 + 0.445422i
\(181\) −36.6158 36.6158i −0.202297 0.202297i 0.598686 0.800984i \(-0.295690\pi\)
−0.800984 + 0.598686i \(0.795690\pi\)
\(182\) 4.06476 + 4.06476i 0.0223338 + 0.0223338i
\(183\) 200.693 + 122.097i 1.09668 + 0.667198i
\(184\) 9.52186 9.52186i 0.0517492 0.0517492i
\(185\) 449.463 2.42953
\(186\) 2.45163 4.02979i 0.0131808 0.0216655i
\(187\) 273.054 38.4307i 1.46018 0.205512i
\(188\) 254.999i 1.35638i
\(189\) −91.4838 6.31079i −0.484041 0.0333904i
\(190\) 26.2940 26.2940i 0.138389 0.138389i
\(191\) 162.394i 0.850228i 0.905140 + 0.425114i \(0.139766\pi\)
−0.905140 + 0.425114i \(0.860234\pi\)
\(192\) 174.506 42.4904i 0.908888 0.221304i
\(193\) −30.4810 30.4810i −0.157933 0.157933i 0.623717 0.781650i \(-0.285622\pi\)
−0.781650 + 0.623717i \(0.785622\pi\)
\(194\) −10.1151 + 10.1151i −0.0521397 + 0.0521397i
\(195\) −154.737 94.1382i −0.793521 0.482760i
\(196\) 148.232i 0.756287i
\(197\) 91.4122 91.4122i 0.464021 0.464021i −0.435950 0.899971i \(-0.643588\pi\)
0.899971 + 0.435950i \(0.143588\pi\)
\(198\) 9.21451 28.9938i 0.0465379 0.146433i
\(199\) −33.8948 + 33.8948i −0.170326 + 0.170326i −0.787122 0.616797i \(-0.788430\pi\)
0.616797 + 0.787122i \(0.288430\pi\)
\(200\) 50.1775i 0.250888i
\(201\) −79.2826 + 19.3045i −0.394441 + 0.0960421i
\(202\) 8.58763i 0.0425130i
\(203\) 56.4316i 0.277988i
\(204\) −185.323 79.8281i −0.908447 0.391314i
\(205\) 85.3501 0.416342
\(206\) 8.92251 0.0433132
\(207\) 22.1375 69.6565i 0.106945 0.336505i
\(208\) −125.728 −0.604462
\(209\) 275.301 + 275.301i 1.31723 + 1.31723i
\(210\) −3.73433 15.3367i −0.0177825 0.0730321i
\(211\) 46.7481 + 46.7481i 0.221555 + 0.221555i 0.809153 0.587598i \(-0.199926\pi\)
−0.587598 + 0.809153i \(0.699926\pi\)
\(212\) −38.9471 −0.183713
\(213\) 24.3519 + 14.8151i 0.114328 + 0.0695545i
\(214\) 10.2975 + 10.2975i 0.0481194 + 0.0481194i
\(215\) 12.9046 12.9046i 0.0600216 0.0600216i
\(216\) −33.7607 + 29.4035i −0.156300 + 0.136127i
\(217\) 25.6245 0.118085
\(218\) −20.7610 20.7610i −0.0952339 0.0952339i
\(219\) 3.53233 5.80615i 0.0161294 0.0265121i
\(220\) −477.077 −2.16853
\(221\) 110.282 + 83.0689i 0.499013 + 0.375878i
\(222\) −19.6470 + 32.2941i −0.0884999 + 0.145469i
\(223\) 174.588i 0.782907i 0.920198 + 0.391454i \(0.128028\pi\)
−0.920198 + 0.391454i \(0.871972\pi\)
\(224\) −23.6766 23.6766i −0.105699 0.105699i
\(225\) 125.206 + 241.865i 0.556471 + 1.07495i
\(226\) 8.81395 8.81395i 0.0389998 0.0389998i
\(227\) 134.151 134.151i 0.590974 0.590974i −0.346921 0.937895i \(-0.612773\pi\)
0.937895 + 0.346921i \(0.112773\pi\)
\(228\) −67.4027 276.820i −0.295626 1.21412i
\(229\) 304.733i 1.33071i −0.746527 0.665355i \(-0.768280\pi\)
0.746527 0.665355i \(-0.231720\pi\)
\(230\) 12.5812 0.0547007
\(231\) 160.578 39.0990i 0.695142 0.169260i
\(232\) −19.4813 19.4813i −0.0839713 0.0839713i
\(233\) 33.4180 + 33.4180i 0.143425 + 0.143425i 0.775173 0.631749i \(-0.217662\pi\)
−0.631749 + 0.775173i \(0.717662\pi\)
\(234\) 13.5277 7.00289i 0.0578108 0.0299269i
\(235\) 338.778 338.778i 1.44161 1.44161i
\(236\) −292.343 −1.23874
\(237\) 235.202 + 143.092i 0.992414 + 0.603762i
\(238\) 1.67698 + 11.9151i 0.00704612 + 0.0500635i
\(239\) 107.386i 0.449314i 0.974438 + 0.224657i \(0.0721262\pi\)
−0.974438 + 0.224657i \(0.927874\pi\)
\(240\) 294.946 + 179.439i 1.22894 + 0.747661i
\(241\) 311.851 311.851i 1.29399 1.29399i 0.361691 0.932298i \(-0.382200\pi\)
0.932298 0.361691i \(-0.117800\pi\)
\(242\) 29.6134i 0.122369i
\(243\) −89.3633 + 225.972i −0.367750 + 0.929925i
\(244\) 219.076 + 219.076i 0.897853 + 0.897853i
\(245\) −196.933 + 196.933i −0.803810 + 0.803810i
\(246\) −3.73083 + 6.13243i −0.0151660 + 0.0249286i
\(247\) 194.942i 0.789239i
\(248\) 8.84609 8.84609i 0.0356697 0.0356697i
\(249\) 187.352 45.6181i 0.752416 0.183205i
\(250\) −5.76338 + 5.76338i −0.0230535 + 0.0230535i
\(251\) 68.1607i 0.271557i 0.990739 + 0.135778i \(0.0433535\pi\)
−0.990739 + 0.135778i \(0.956646\pi\)
\(252\) −115.260 36.6308i −0.457381 0.145360i
\(253\) 131.727i 0.520658i
\(254\) 15.3060i 0.0602598i
\(255\) −140.155 352.265i −0.549628 1.38143i
\(256\) 228.655 0.893183
\(257\) −96.8926 −0.377014 −0.188507 0.982072i \(-0.560365\pi\)
−0.188507 + 0.982072i \(0.560365\pi\)
\(258\) 0.363113 + 1.49129i 0.00140741 + 0.00578019i
\(259\) −205.350 −0.792859
\(260\) −168.910 168.910i −0.649654 0.649654i
\(261\) −142.514 45.2925i −0.546033 0.173535i
\(262\) −28.2757 28.2757i −0.107922 0.107922i
\(263\) −313.842 −1.19332 −0.596658 0.802496i \(-0.703505\pi\)
−0.596658 + 0.802496i \(0.703505\pi\)
\(264\) 41.9370 68.9325i 0.158852 0.261108i
\(265\) −51.7430 51.7430i −0.195257 0.195257i
\(266\) −12.0132 + 12.0132i −0.0451623 + 0.0451623i
\(267\) 100.939 + 414.552i 0.378048 + 1.55263i
\(268\) −107.617 −0.401557
\(269\) −77.5856 77.5856i −0.288422 0.288422i 0.548034 0.836456i \(-0.315377\pi\)
−0.836456 + 0.548034i \(0.815377\pi\)
\(270\) −41.7292 2.87859i −0.154553 0.0106614i
\(271\) −428.668 −1.58180 −0.790900 0.611946i \(-0.790387\pi\)
−0.790900 + 0.611946i \(0.790387\pi\)
\(272\) −210.210 158.339i −0.772832 0.582129i
\(273\) 70.6959 + 43.0098i 0.258959 + 0.157545i
\(274\) 39.0089i 0.142368i
\(275\) −347.081 347.081i −1.26211 1.26211i
\(276\) 50.1011 82.3520i 0.181526 0.298377i
\(277\) −253.924 + 253.924i −0.916694 + 0.916694i −0.996787 0.0800938i \(-0.974478\pi\)
0.0800938 + 0.996787i \(0.474478\pi\)
\(278\) 2.18187 2.18187i 0.00784846 0.00784846i
\(279\) 20.5664 64.7130i 0.0737148 0.231946i
\(280\) 41.8644i 0.149516i
\(281\) 291.576 1.03764 0.518818 0.854885i \(-0.326372\pi\)
0.518818 + 0.854885i \(0.326372\pi\)
\(282\) 9.53260 + 39.1500i 0.0338035 + 0.138830i
\(283\) 317.214 + 317.214i 1.12090 + 1.12090i 0.991607 + 0.129291i \(0.0412702\pi\)
0.129291 + 0.991607i \(0.458730\pi\)
\(284\) 26.5824 + 26.5824i 0.0936000 + 0.0936000i
\(285\) 278.220 457.315i 0.976211 1.60461i
\(286\) −19.4126 + 19.4126i −0.0678761 + 0.0678761i
\(287\) −38.9947 −0.135870
\(288\) −78.7968 + 40.7907i −0.273600 + 0.141634i
\(289\) 79.7697 + 277.773i 0.276020 + 0.961152i
\(290\) 25.7406i 0.0887606i
\(291\) −107.029 + 175.926i −0.367798 + 0.604556i
\(292\) 6.33798 6.33798i 0.0217054 0.0217054i
\(293\) 322.630i 1.10113i −0.834794 0.550563i \(-0.814413\pi\)
0.834794 0.550563i \(-0.185587\pi\)
\(294\) −5.54135 22.7581i −0.0188481 0.0774084i
\(295\) −388.391 388.391i −1.31658 1.31658i
\(296\) −70.8912 + 70.8912i −0.239497 + 0.239497i
\(297\) 30.1392 436.910i 0.101479 1.47108i
\(298\) 48.9760i 0.164349i
\(299\) −46.6380 + 46.6380i −0.155980 + 0.155980i
\(300\) 84.9766 + 348.995i 0.283255 + 1.16332i
\(301\) −5.89586 + 5.89586i −0.0195876 + 0.0195876i
\(302\) 33.1300i 0.109702i
\(303\) 29.2463 + 120.113i 0.0965223 + 0.396413i
\(304\) 371.582i 1.22231i
\(305\) 582.105i 1.90854i
\(306\) 31.4368 + 5.32808i 0.102735 + 0.0174120i
\(307\) −274.964 −0.895649 −0.447825 0.894121i \(-0.647801\pi\)
−0.447825 + 0.894121i \(0.647801\pi\)
\(308\) 217.967 0.707684
\(309\) 124.797 30.3868i 0.403874 0.0983390i
\(310\) 11.6883 0.0377041
\(311\) −192.999 192.999i −0.620576 0.620576i 0.325103 0.945679i \(-0.394601\pi\)
−0.945679 + 0.325103i \(0.894601\pi\)
\(312\) 39.2535 9.55781i 0.125813 0.0306340i
\(313\) 187.331 + 187.331i 0.598501 + 0.598501i 0.939913 0.341413i \(-0.110905\pi\)
−0.341413 + 0.939913i \(0.610905\pi\)
\(314\) 20.1017 0.0640180
\(315\) −104.462 201.794i −0.331627 0.640615i
\(316\) 256.746 + 256.746i 0.812487 + 0.812487i
\(317\) 304.768 304.768i 0.961412 0.961412i −0.0378706 0.999283i \(-0.512057\pi\)
0.999283 + 0.0378706i \(0.0120575\pi\)
\(318\) 5.97954 1.45595i 0.0188036 0.00457847i
\(319\) 269.507 0.844850
\(320\) 314.697 + 314.697i 0.983427 + 0.983427i
\(321\) 179.099 + 108.960i 0.557940 + 0.339438i
\(322\) −5.74807 −0.0178512
\(323\) −245.506 + 325.932i −0.760079 + 1.00908i
\(324\) −185.017 + 261.682i −0.571042 + 0.807660i
\(325\) 245.769i 0.756213i
\(326\) 30.6240 + 30.6240i 0.0939387 + 0.0939387i
\(327\) −361.083 219.675i −1.10423 0.671789i
\(328\) −13.4618 + 13.4618i −0.0410419 + 0.0410419i
\(329\) −154.781 + 154.781i −0.470458 + 0.470458i
\(330\) 73.2455 17.8345i 0.221956 0.0540439i
\(331\) 311.214i 0.940223i 0.882607 + 0.470111i \(0.155786\pi\)
−0.882607 + 0.470111i \(0.844214\pi\)
\(332\) 254.309 0.765991
\(333\) −164.816 + 518.600i −0.494944 + 1.55736i
\(334\) 37.5251 + 37.5251i 0.112351 + 0.112351i
\(335\) −142.975 142.975i −0.426790 0.426790i
\(336\) −134.755 81.9818i −0.401056 0.243993i
\(337\) 213.957 213.957i 0.634887 0.634887i −0.314402 0.949290i \(-0.601804\pi\)
0.949290 + 0.314402i \(0.101804\pi\)
\(338\) 21.4734 0.0635309
\(339\) 93.2616 153.296i 0.275108 0.452200i
\(340\) −69.6863 495.129i −0.204960 1.45626i
\(341\) 122.378i 0.358879i
\(342\) 20.6966 + 39.9804i 0.0605165 + 0.116902i
\(343\) 207.652 207.652i 0.605399 0.605399i
\(344\) 4.07074i 0.0118336i
\(345\) 175.970 42.8468i 0.510058 0.124194i
\(346\) −12.2783 12.2783i −0.0354865 0.0354865i
\(347\) 435.384 435.384i 1.25471 1.25471i 0.301124 0.953585i \(-0.402638\pi\)
0.953585 0.301124i \(-0.0973617\pi\)
\(348\) −168.489 102.505i −0.484163 0.294554i
\(349\) 120.847i 0.346267i 0.984898 + 0.173133i \(0.0553892\pi\)
−0.984898 + 0.173133i \(0.944611\pi\)
\(350\) 15.1454 15.1454i 0.0432725 0.0432725i
\(351\) 165.360 144.018i 0.471111 0.410308i
\(352\) 113.075 113.075i 0.321236 0.321236i
\(353\) 25.6098i 0.0725491i 0.999342 + 0.0362745i \(0.0115491\pi\)
−0.999342 + 0.0362745i \(0.988451\pi\)
\(354\) 44.8834 10.9286i 0.126789 0.0308718i
\(355\) 70.6319i 0.198963i
\(356\) 562.708i 1.58064i
\(357\) 64.0339 + 160.943i 0.179367 + 0.450820i
\(358\) 20.4729 0.0571868
\(359\) 326.176 0.908568 0.454284 0.890857i \(-0.349895\pi\)
0.454284 + 0.890857i \(0.349895\pi\)
\(360\) −105.726 33.6007i −0.293683 0.0933354i
\(361\) −215.140 −0.595955
\(362\) 7.63072 + 7.63072i 0.0210793 + 0.0210793i
\(363\) 100.852 + 414.195i 0.277829 + 1.14103i
\(364\) 77.1714 + 77.1714i 0.212009 + 0.212009i
\(365\) 16.8406 0.0461386
\(366\) −41.8244 25.4450i −0.114274 0.0695219i
\(367\) −291.432 291.432i −0.794092 0.794092i 0.188065 0.982157i \(-0.439778\pi\)
−0.982157 + 0.188065i \(0.939778\pi\)
\(368\) 88.8976 88.8976i 0.241569 0.241569i
\(369\) −31.2975 + 98.4786i −0.0848170 + 0.266880i
\(370\) −93.6681 −0.253157
\(371\) 23.6403 + 23.6403i 0.0637205 + 0.0637205i
\(372\) 46.5454 76.5074i 0.125122 0.205665i
\(373\) −151.514 −0.406204 −0.203102 0.979158i \(-0.565102\pi\)
−0.203102 + 0.979158i \(0.565102\pi\)
\(374\) −56.9044 + 8.00894i −0.152151 + 0.0214143i
\(375\) −60.9831 + 100.239i −0.162622 + 0.267304i
\(376\) 106.867i 0.284220i
\(377\) 95.4195 + 95.4195i 0.253102 + 0.253102i
\(378\) 19.0652 + 1.31517i 0.0504370 + 0.00347928i
\(379\) 19.0727 19.0727i 0.0503238 0.0503238i −0.681497 0.731821i \(-0.738671\pi\)
0.731821 + 0.681497i \(0.238671\pi\)
\(380\) 499.204 499.204i 1.31369 1.31369i
\(381\) −52.1265 214.081i −0.136815 0.561893i
\(382\) 33.8428i 0.0885937i
\(383\) −375.569 −0.980597 −0.490299 0.871555i \(-0.663112\pi\)
−0.490299 + 0.871555i \(0.663112\pi\)
\(384\) −151.314 + 36.8433i −0.394047 + 0.0959461i
\(385\) 289.578 + 289.578i 0.752152 + 0.752152i
\(386\) 6.35223 + 6.35223i 0.0164565 + 0.0164565i
\(387\) 10.1576 + 19.6217i 0.0262469 + 0.0507021i
\(388\) −192.040 + 192.040i −0.494949 + 0.494949i
\(389\) −699.064 −1.79708 −0.898540 0.438891i \(-0.855371\pi\)
−0.898540 + 0.438891i \(0.855371\pi\)
\(390\) 32.2471 + 19.6184i 0.0826848 + 0.0503035i
\(391\) −136.711 + 19.2412i −0.349644 + 0.0492103i
\(392\) 62.1222i 0.158475i
\(393\) −491.782 299.189i −1.25135 0.761295i
\(394\) −19.0503 + 19.0503i −0.0483509 + 0.0483509i
\(395\) 682.197i 1.72708i
\(396\) 174.942 550.461i 0.441773 1.39005i
\(397\) 77.1209 + 77.1209i 0.194259 + 0.194259i 0.797534 0.603274i \(-0.206138\pi\)
−0.603274 + 0.797534i \(0.706138\pi\)
\(398\) 7.06367 7.06367i 0.0177479 0.0177479i
\(399\) −127.113 + 208.938i −0.318579 + 0.523654i
\(400\) 468.465i 1.17116i
\(401\) 414.092 414.092i 1.03265 1.03265i 0.0332009 0.999449i \(-0.489430\pi\)
0.999449 0.0332009i \(-0.0105701\pi\)
\(402\) 16.5225 4.02304i 0.0411007 0.0100076i
\(403\) −43.3281 + 43.3281i −0.107514 + 0.107514i
\(404\) 163.040i 0.403565i
\(405\) −593.460 + 101.852i −1.46533 + 0.251486i
\(406\) 11.7603i 0.0289663i
\(407\) 980.717i 2.40962i
\(408\) 77.6665 + 33.4549i 0.190359 + 0.0819973i
\(409\) −187.440 −0.458289 −0.229144 0.973392i \(-0.573593\pi\)
−0.229144 + 0.973392i \(0.573593\pi\)
\(410\) −17.7869 −0.0433828
\(411\) −132.850 545.608i −0.323235 1.32751i
\(412\) 169.398 0.411161
\(413\) 177.448 + 177.448i 0.429656 + 0.429656i
\(414\) −4.61346 + 14.5164i −0.0111436 + 0.0350638i
\(415\) 337.861 + 337.861i 0.814123 + 0.814123i
\(416\) 80.0689 0.192473
\(417\) 23.0867 37.9480i 0.0553638 0.0910023i
\(418\) −57.3727 57.3727i −0.137255 0.137255i
\(419\) −136.575 + 136.575i −0.325955 + 0.325955i −0.851046 0.525091i \(-0.824031\pi\)
0.525091 + 0.851046i \(0.324031\pi\)
\(420\) −70.8981 291.176i −0.168805 0.693275i
\(421\) −43.5185 −0.103369 −0.0516846 0.998663i \(-0.516459\pi\)
−0.0516846 + 0.998663i \(0.516459\pi\)
\(422\) −9.74228 9.74228i −0.0230860 0.0230860i
\(423\) 266.660 + 515.117i 0.630403 + 1.21777i
\(424\) 16.3222 0.0384958
\(425\) 309.516 410.912i 0.728273 0.966852i
\(426\) −5.07492 3.08747i −0.0119130 0.00724757i
\(427\) 265.952i 0.622838i
\(428\) 195.504 + 195.504i 0.456785 + 0.456785i
\(429\) −205.407 + 337.631i −0.478804 + 0.787019i
\(430\) −2.68932 + 2.68932i −0.00625424 + 0.00625424i
\(431\) −383.047 + 383.047i −0.888741 + 0.888741i −0.994402 0.105661i \(-0.966304\pi\)
0.105661 + 0.994402i \(0.466304\pi\)
\(432\) −315.195 + 274.516i −0.729619 + 0.635453i
\(433\) 546.173i 1.26137i −0.776039 0.630685i \(-0.782774\pi\)
0.776039 0.630685i \(-0.217226\pi\)
\(434\) −5.34013 −0.0123045
\(435\) −87.6628 360.027i −0.201524 0.827649i
\(436\) −394.157 394.157i −0.904031 0.904031i
\(437\) −137.836 137.836i −0.315414 0.315414i
\(438\) −0.736137 + 1.21000i −0.00168068 + 0.00276256i
\(439\) 176.803 176.803i 0.402740 0.402740i −0.476458 0.879197i \(-0.658079\pi\)
0.879197 + 0.476458i \(0.158079\pi\)
\(440\) 199.937 0.454402
\(441\) −155.011 299.440i −0.351499 0.679003i
\(442\) −22.9827 17.3115i −0.0519971 0.0391664i
\(443\) 44.3558i 0.100126i −0.998746 0.0500630i \(-0.984058\pi\)
0.998746 0.0500630i \(-0.0159422\pi\)
\(444\) −373.008 + 613.119i −0.840107 + 1.38090i
\(445\) −747.583 + 747.583i −1.67996 + 1.67996i
\(446\) 36.3842i 0.0815788i
\(447\) 166.794 + 685.016i 0.373141 + 1.53247i
\(448\) −143.778 143.778i −0.320934 0.320934i
\(449\) −104.094 + 104.094i −0.231835 + 0.231835i −0.813458 0.581623i \(-0.802418\pi\)
0.581623 + 0.813458i \(0.302418\pi\)
\(450\) −26.0929 50.4045i −0.0579842 0.112010i
\(451\) 186.232i 0.412930i
\(452\) 167.337 167.337i 0.370215 0.370215i
\(453\) −112.828 463.382i −0.249069 1.02292i
\(454\) −27.9570 + 27.9570i −0.0615794 + 0.0615794i
\(455\) 205.052i 0.450663i
\(456\) 28.2476 + 116.012i 0.0619464 + 0.254411i
\(457\) 52.3160i 0.114477i −0.998361 0.0572385i \(-0.981770\pi\)
0.998361 0.0572385i \(-0.0182295\pi\)
\(458\) 63.5062i 0.138660i
\(459\) 457.845 32.5396i 0.997484 0.0708923i
\(460\) 238.860 0.519260
\(461\) −291.344 −0.631983 −0.315991 0.948762i \(-0.602337\pi\)
−0.315991 + 0.948762i \(0.602337\pi\)
\(462\) −33.4644 + 8.14821i −0.0724337 + 0.0176368i
\(463\) 711.561 1.53685 0.768425 0.639940i \(-0.221041\pi\)
0.768425 + 0.639940i \(0.221041\pi\)
\(464\) −181.881 181.881i −0.391985 0.391985i
\(465\) 163.481 39.8059i 0.351573 0.0856041i
\(466\) −6.96430 6.96430i −0.0149449 0.0149449i
\(467\) 378.114 0.809666 0.404833 0.914391i \(-0.367330\pi\)
0.404833 + 0.914391i \(0.367330\pi\)
\(468\) 256.830 132.953i 0.548783 0.284088i
\(469\) 65.3221 + 65.3221i 0.139279 + 0.139279i
\(470\) −70.6012 + 70.6012i −0.150215 + 0.150215i
\(471\) 281.157 68.4588i 0.596937 0.145348i
\(472\) 122.517 0.259571
\(473\) −28.1576 28.1576i −0.0595297 0.0595297i
\(474\) −49.0160 29.8202i −0.103409 0.0629119i
\(475\) 726.357 1.52917
\(476\) 31.8382 + 226.214i 0.0668870 + 0.475240i
\(477\) 78.6760 40.7282i 0.164939 0.0853840i
\(478\) 22.3792i 0.0468185i
\(479\) 152.051 + 152.051i 0.317434 + 0.317434i 0.847781 0.530347i \(-0.177938\pi\)
−0.530347 + 0.847781i \(0.677938\pi\)
\(480\) −187.834 114.274i −0.391321 0.238071i
\(481\) 347.225 347.225i 0.721881 0.721881i
\(482\) −64.9897 + 64.9897i −0.134833 + 0.134833i
\(483\) −80.3970 + 19.5758i −0.166453 + 0.0405296i
\(484\) 562.224i 1.16162i
\(485\) −510.268 −1.05210
\(486\) 18.6233 47.0924i 0.0383195 0.0968980i
\(487\) −329.746 329.746i −0.677097 0.677097i 0.282245 0.959342i \(-0.408921\pi\)
−0.959342 + 0.282245i \(0.908921\pi\)
\(488\) −91.8120 91.8120i −0.188139 0.188139i
\(489\) 532.625 + 324.037i 1.08921 + 0.662652i
\(490\) 41.0409 41.0409i 0.0837568 0.0837568i
\(491\) 432.522 0.880900 0.440450 0.897777i \(-0.354819\pi\)
0.440450 + 0.897777i \(0.354819\pi\)
\(492\) −70.8316 + 116.427i −0.143967 + 0.236640i
\(493\) 39.3667 + 279.705i 0.0798514 + 0.567353i
\(494\) 40.6259i 0.0822386i
\(495\) 963.731 498.894i 1.94693 1.00787i
\(496\) 82.5885 82.5885i 0.166509 0.166509i
\(497\) 32.2702i 0.0649300i
\(498\) −39.0440 + 9.50680i −0.0784016 + 0.0190900i
\(499\) 29.1588 + 29.1588i 0.0584344 + 0.0584344i 0.735720 0.677286i \(-0.236844\pi\)
−0.677286 + 0.735720i \(0.736844\pi\)
\(500\) −109.421 + 109.421i −0.218841 + 0.218841i
\(501\) 652.651 + 397.058i 1.30270 + 0.792531i
\(502\) 14.2047i 0.0282962i
\(503\) −537.457 + 537.457i −1.06850 + 1.06850i −0.0710294 + 0.997474i \(0.522628\pi\)
−0.997474 + 0.0710294i \(0.977372\pi\)
\(504\) 48.3040 + 15.3515i 0.0958412 + 0.0304593i
\(505\) −216.606 + 216.606i −0.428924 + 0.428924i
\(506\) 27.4518i 0.0542525i
\(507\) 300.344 73.1305i 0.592394 0.144242i
\(508\) 290.592i 0.572031i
\(509\) 56.9404i 0.111867i 0.998434 + 0.0559336i \(0.0178135\pi\)
−0.998434 + 0.0559336i \(0.982186\pi\)
\(510\) 29.2083 + 73.4120i 0.0572711 + 0.143945i
\(511\) −7.69411 −0.0150570
\(512\) −255.298 −0.498629
\(513\) 425.637 + 488.711i 0.829702 + 0.952654i
\(514\) 20.1924 0.0392848
\(515\) 225.053 + 225.053i 0.436997 + 0.436997i
\(516\) 6.89388 + 28.3129i 0.0133602 + 0.0548699i
\(517\) −739.204 739.204i −1.42980 1.42980i
\(518\) 42.7950 0.0826158
\(519\) −213.550 129.919i −0.411463 0.250325i
\(520\) 70.7880 + 70.7880i 0.136131 + 0.136131i
\(521\) −526.193 + 526.193i −1.00997 + 1.00997i −0.0100166 + 0.999950i \(0.503188\pi\)
−0.999950 + 0.0100166i \(0.996812\pi\)
\(522\) 29.7000 + 9.43895i 0.0568965 + 0.0180823i
\(523\) −917.253 −1.75383 −0.876915 0.480645i \(-0.840403\pi\)
−0.876915 + 0.480645i \(0.840403\pi\)
\(524\) −536.828 536.828i −1.02448 1.02448i
\(525\) 160.255 263.414i 0.305248 0.501741i
\(526\) 65.4046 0.124343
\(527\) −127.009 + 17.8757i −0.241003 + 0.0339197i
\(528\) 391.530 643.565i 0.741534 1.21887i
\(529\) 463.048i 0.875327i
\(530\) 10.7832 + 10.7832i 0.0203457 + 0.0203457i
\(531\) 590.555 305.712i 1.11216 0.575730i
\(532\) −228.076 + 228.076i −0.428714 + 0.428714i
\(533\) 65.9356 65.9356i 0.123707 0.123707i
\(534\) −21.0356 86.3925i −0.0393926 0.161784i
\(535\) 519.471i 0.970974i
\(536\) 45.1010 0.0841437
\(537\) 286.349 69.7230i 0.533239 0.129838i
\(538\) 16.1688 + 16.1688i 0.0300536 + 0.0300536i
\(539\) 429.703 + 429.703i 0.797223 + 0.797223i
\(540\) −792.249 54.6514i −1.46713 0.101206i
\(541\) 118.414 118.414i 0.218879 0.218879i −0.589147 0.808026i \(-0.700536\pi\)
0.808026 + 0.589147i \(0.200536\pi\)
\(542\) 89.3342 0.164823
\(543\) 132.716 + 80.7417i 0.244413 + 0.148696i
\(544\) 133.871 + 100.837i 0.246086 + 0.185362i
\(545\) 1047.31i 1.92167i
\(546\) −14.7330 8.96323i −0.0269835 0.0164162i
\(547\) 50.1729 50.1729i 0.0917238 0.0917238i −0.659756 0.751480i \(-0.729340\pi\)
0.751480 + 0.659756i \(0.229340\pi\)
\(548\) 740.602i 1.35146i
\(549\) −671.645 213.455i −1.22340 0.388807i
\(550\) 72.3316 + 72.3316i 0.131512 + 0.131512i
\(551\) −282.007 + 282.007i −0.511809 + 0.511809i
\(552\) −20.9967 + 34.5126i −0.0380375 + 0.0625229i
\(553\) 311.682i 0.563619i
\(554\) 52.9177 52.9177i 0.0955193 0.0955193i
\(555\) −1310.11 + 318.998i −2.36056 + 0.574772i
\(556\) 41.4239 41.4239i 0.0745034 0.0745034i
\(557\) 423.368i 0.760085i −0.924969 0.380043i \(-0.875909\pi\)
0.924969 0.380043i \(-0.124091\pi\)
\(558\) −4.28604 + 13.4862i −0.00768107 + 0.0241688i
\(559\) 19.9385i 0.0356681i
\(560\) 390.852i 0.697951i
\(561\) −768.634 + 305.815i −1.37011 + 0.545124i
\(562\) −60.7643 −0.108121
\(563\) 48.4445 0.0860471 0.0430236 0.999074i \(-0.486301\pi\)
0.0430236 + 0.999074i \(0.486301\pi\)
\(564\) 180.981 + 743.281i 0.320888 + 1.31787i
\(565\) 444.630 0.786955
\(566\) −66.1073 66.1073i −0.116797 0.116797i
\(567\) 271.140 46.5340i 0.478200 0.0820706i
\(568\) −11.1403 11.1403i −0.0196133 0.0196133i
\(569\) −732.102 −1.28665 −0.643323 0.765595i \(-0.722445\pi\)
−0.643323 + 0.765595i \(0.722445\pi\)
\(570\) −57.9810 + 95.3043i −0.101721 + 0.167201i
\(571\) 309.245 + 309.245i 0.541584 + 0.541584i 0.923993 0.382409i \(-0.124905\pi\)
−0.382409 + 0.923993i \(0.624905\pi\)
\(572\) −368.557 + 368.557i −0.644330 + 0.644330i
\(573\) −115.256 473.351i −0.201145 0.826093i
\(574\) 8.12648 0.0141576
\(575\) 173.774 + 173.774i 0.302216 + 0.302216i
\(576\) −478.501 + 247.706i −0.830731 + 0.430044i
\(577\) 791.867 1.37239 0.686193 0.727419i \(-0.259281\pi\)
0.686193 + 0.727419i \(0.259281\pi\)
\(578\) −16.6240 57.8878i −0.0287612 0.100152i
\(579\) 110.480 + 67.2138i 0.190813 + 0.116086i
\(580\) 488.697i 0.842581i
\(581\) −154.362 154.362i −0.265683 0.265683i
\(582\) 22.3049 36.6629i 0.0383245 0.0629946i
\(583\) −112.902 + 112.902i −0.193657 + 0.193657i
\(584\) −2.65616 + 2.65616i −0.00454823 + 0.00454823i
\(585\) 517.845 + 164.576i 0.885205 + 0.281327i
\(586\) 67.2360i 0.114737i
\(587\) 914.776 1.55839 0.779196 0.626780i \(-0.215628\pi\)
0.779196 + 0.626780i \(0.215628\pi\)
\(588\) −105.205 432.073i −0.178920 0.734818i
\(589\) −128.054 128.054i −0.217409 0.217409i
\(590\) 80.9406 + 80.9406i 0.137188 + 0.137188i
\(591\) −201.574 + 331.330i −0.341072 + 0.560626i
\(592\) −661.851 + 661.851i −1.11799 + 1.11799i
\(593\) 476.612 0.803730 0.401865 0.915699i \(-0.368362\pi\)
0.401865 + 0.915699i \(0.368362\pi\)
\(594\) −6.28100 + 91.0520i −0.0105741 + 0.153286i
\(595\) −258.237 + 342.834i −0.434012 + 0.576192i
\(596\) 929.833i 1.56012i
\(597\) 74.7417 122.854i 0.125195 0.205786i
\(598\) 9.71935 9.71935i 0.0162531 0.0162531i
\(599\) 338.504i 0.565116i −0.959250 0.282558i \(-0.908817\pi\)
0.959250 0.282558i \(-0.0911829\pi\)
\(600\) −35.6126 146.259i −0.0593543 0.243766i
\(601\) −475.300 475.300i −0.790848 0.790848i 0.190784 0.981632i \(-0.438897\pi\)
−0.981632 + 0.190784i \(0.938897\pi\)
\(602\) 1.22870 1.22870i 0.00204102 0.00204102i
\(603\) 217.395 112.539i 0.360522 0.186631i
\(604\) 628.989i 1.04137i
\(605\) −746.940 + 746.940i −1.23461 + 1.23461i
\(606\) −6.09491 25.0315i −0.0100576 0.0413062i
\(607\) 39.2266 39.2266i 0.0646237 0.0646237i −0.674056 0.738680i \(-0.735449\pi\)
0.738680 + 0.674056i \(0.235449\pi\)
\(608\) 236.639i 0.389209i
\(609\) 40.0513 + 164.489i 0.0657657 + 0.270097i
\(610\) 121.311i 0.198870i
\(611\) 523.433i 0.856683i
\(612\) 596.844 + 101.156i 0.975235 + 0.165288i
\(613\) 610.766 0.996355 0.498178 0.867075i \(-0.334003\pi\)
0.498178 + 0.867075i \(0.334003\pi\)
\(614\) 57.3025 0.0933265
\(615\) −248.782 + 60.5757i −0.404523 + 0.0984970i
\(616\) −91.3469 −0.148290
\(617\) −489.618 489.618i −0.793546 0.793546i 0.188523 0.982069i \(-0.439630\pi\)
−0.982069 + 0.188523i \(0.939630\pi\)
\(618\) −26.0077 + 6.33259i −0.0420836 + 0.0102469i
\(619\) −144.357 144.357i −0.233209 0.233209i 0.580822 0.814031i \(-0.302731\pi\)
−0.814031 + 0.580822i \(0.802731\pi\)
\(620\) 221.908 0.357916
\(621\) −15.0899 + 218.749i −0.0242993 + 0.352253i
\(622\) 40.2210 + 40.2210i 0.0646639 + 0.0646639i
\(623\) 341.555 341.555i 0.548243 0.548243i
\(624\) 366.477 89.2333i 0.587303 0.143002i
\(625\) 465.790 0.745264
\(626\) −39.0397 39.0397i −0.0623637 0.0623637i
\(627\) −997.849 607.069i −1.59147 0.968212i
\(628\) 381.640 0.607707
\(629\) 1017.83 143.253i 1.61817 0.227747i
\(630\) 21.7699 + 42.0538i 0.0345555 + 0.0667520i
\(631\) 138.795i 0.219960i 0.993934 + 0.109980i \(0.0350787\pi\)
−0.993934 + 0.109980i \(0.964921\pi\)
\(632\) −107.599 107.599i −0.170251 0.170251i
\(633\) −169.442 103.084i −0.267680 0.162851i
\(634\) −63.5135 + 63.5135i −0.100179 + 0.100179i
\(635\) 386.064 386.064i 0.607975 0.607975i
\(636\) 113.525 27.6420i 0.178498 0.0434623i
\(637\) 304.274i 0.477668i
\(638\) −56.1652 −0.0880333
\(639\) −81.4965 25.9004i −0.127538 0.0405327i
\(640\) −272.872 272.872i −0.426363 0.426363i
\(641\) 222.717 + 222.717i 0.347453 + 0.347453i 0.859160 0.511707i \(-0.170987\pi\)
−0.511707 + 0.859160i \(0.670987\pi\)
\(642\) −37.3242 22.7072i −0.0581373 0.0353694i
\(643\) −417.674 + 417.674i −0.649570 + 0.649570i −0.952889 0.303319i \(-0.901905\pi\)
0.303319 + 0.952889i \(0.401905\pi\)
\(644\) −109.130 −0.169456
\(645\) −28.4561 + 46.7737i −0.0441180 + 0.0725174i
\(646\) 51.1633 67.9241i 0.0792001 0.105146i
\(647\) 790.271i 1.22144i 0.791847 + 0.610720i \(0.209120\pi\)
−0.791847 + 0.610720i \(0.790880\pi\)
\(648\) 77.5384 109.667i 0.119658 0.169240i
\(649\) −847.459 + 847.459i −1.30579 + 1.30579i
\(650\) 51.2182i 0.0787973i
\(651\) −74.6912 + 18.1865i −0.114733 + 0.0279362i
\(652\) 581.412 + 581.412i 0.891736 + 0.891736i
\(653\) −263.332 + 263.332i −0.403265 + 0.403265i −0.879382 0.476117i \(-0.842044\pi\)
0.476117 + 0.879382i \(0.342044\pi\)
\(654\) 75.2497 + 45.7802i 0.115061 + 0.0700003i
\(655\) 1426.40i 2.17771i
\(656\) −125.681 + 125.681i −0.191587 + 0.191587i
\(657\) −6.17537 + 19.4310i −0.00939934 + 0.0295753i
\(658\) 32.2562 32.2562i 0.0490216 0.0490216i
\(659\) 237.290i 0.360076i −0.983660 0.180038i \(-0.942378\pi\)
0.983660 0.180038i \(-0.0576221\pi\)
\(660\) 1390.60 338.597i 2.10697 0.513025i
\(661\) 808.638i 1.22336i 0.791107 + 0.611678i \(0.209505\pi\)
−0.791107 + 0.611678i \(0.790495\pi\)
\(662\) 64.8568i 0.0979711i
\(663\) −380.410 163.862i −0.573771 0.247152i
\(664\) −106.578 −0.160508
\(665\) −606.018 −0.911305
\(666\) 34.3476 108.076i 0.0515730 0.162276i
\(667\) −134.935 −0.202301
\(668\) 712.432 + 712.432i 1.06651 + 1.06651i
\(669\) −123.911 508.897i −0.185218 0.760683i
\(670\) 29.7958 + 29.7958i 0.0444714 + 0.0444714i
\(671\) 1270.14 1.89290
\(672\) 85.8174 + 52.2094i 0.127704 + 0.0776925i
\(673\) −761.037 761.037i −1.13081 1.13081i −0.990042 0.140771i \(-0.955042\pi\)
−0.140771 0.990042i \(-0.544958\pi\)
\(674\) −44.5886 + 44.5886i −0.0661552 + 0.0661552i
\(675\) −536.614 616.133i −0.794983 0.912790i
\(676\) 407.684 0.603082
\(677\) 674.888 + 674.888i 0.996880 + 0.996880i 0.999995 0.00311505i \(-0.000991552\pi\)
−0.00311505 + 0.999995i \(0.500992\pi\)
\(678\) −19.4357 + 31.9468i −0.0286662 + 0.0471191i
\(679\) 233.131 0.343344
\(680\) 29.2046 + 207.502i 0.0429480 + 0.305150i
\(681\) −295.817 + 486.240i −0.434387 + 0.714009i
\(682\) 25.5035i 0.0373952i
\(683\) 281.976 + 281.976i 0.412849 + 0.412849i 0.882730 0.469881i \(-0.155703\pi\)
−0.469881 + 0.882730i \(0.655703\pi\)
\(684\) 392.936 + 759.047i 0.574467 + 1.10972i
\(685\) 983.923 983.923i 1.43638 1.43638i
\(686\) −43.2746 + 43.2746i −0.0630825 + 0.0630825i
\(687\) 216.279 + 888.247i 0.314816 + 1.29294i
\(688\) 38.0051i 0.0552400i
\(689\) −79.9462 −0.116032
\(690\) −36.6721 + 8.92925i −0.0531479 + 0.0129409i
\(691\) −83.8802 83.8802i −0.121390 0.121390i 0.643802 0.765192i \(-0.277356\pi\)
−0.765192 + 0.643802i \(0.777356\pi\)
\(692\) −233.110 233.110i −0.336864 0.336864i
\(693\) −440.308 + 227.934i −0.635366 + 0.328909i
\(694\) −90.7339 + 90.7339i −0.130740 + 0.130740i
\(695\) 110.067 0.158370
\(696\) 70.6115 + 42.9584i 0.101453 + 0.0617219i
\(697\) 193.278 27.2027i 0.277300 0.0390283i
\(698\) 25.1845i 0.0360810i
\(699\) −121.126 73.6902i −0.173284 0.105422i
\(700\) 287.542 287.542i 0.410774 0.410774i
\(701\) 439.507i 0.626972i −0.949593 0.313486i \(-0.898503\pi\)
0.949593 0.313486i \(-0.101497\pi\)
\(702\) −34.4609 + 30.0133i −0.0490896 + 0.0427540i
\(703\) 1026.20 + 1026.20i 1.45975 + 1.45975i
\(704\) 686.660 686.660i 0.975369 0.975369i
\(705\) −747.041 + 1227.92i −1.05963 + 1.74174i
\(706\) 5.33708i 0.00755960i
\(707\) 98.9629 98.9629i 0.139976 0.139976i
\(708\) 852.133 207.485i 1.20358 0.293058i
\(709\) 542.109 542.109i 0.764611 0.764611i −0.212541 0.977152i \(-0.568174\pi\)
0.977152 + 0.212541i \(0.0681740\pi\)
\(710\) 14.7197i 0.0207319i
\(711\) −787.132 250.158i −1.10708 0.351840i
\(712\) 235.824i 0.331213i
\(713\) 61.2713i 0.0859345i
\(714\) −13.3446 33.5404i −0.0186900 0.0469754i
\(715\) −979.289 −1.36964
\(716\) 388.688 0.542860
\(717\) −76.2153 313.013i −0.106298 0.436559i
\(718\) −67.9750 −0.0946726
\(719\) −93.0554 93.0554i −0.129423 0.129423i 0.639428 0.768851i \(-0.279171\pi\)
−0.768851 + 0.639428i \(0.779171\pi\)
\(720\) −987.074 313.702i −1.37094 0.435697i
\(721\) −102.822 102.822i −0.142610 0.142610i
\(722\) 44.8351 0.0620985
\(723\) −687.665 + 1130.33i −0.951128 + 1.56338i
\(724\) 144.873 + 144.873i 0.200101 + 0.200101i
\(725\) 355.535 355.535i 0.490393 0.490393i
\(726\) −21.0176 86.3182i −0.0289498 0.118896i
\(727\) −331.684 −0.456236 −0.228118 0.973634i \(-0.573257\pi\)
−0.228118 + 0.973634i \(0.573257\pi\)
\(728\) −32.3415 32.3415i −0.0444252 0.0444252i
\(729\) 100.100 722.095i 0.137312 0.990528i
\(730\) −3.50957 −0.00480763
\(731\) 25.1101 33.3360i 0.0343503 0.0456033i
\(732\) −794.057 483.086i −1.08478 0.659954i
\(733\) 288.501i 0.393589i 0.980445 + 0.196795i \(0.0630533\pi\)
−0.980445 + 0.196795i \(0.936947\pi\)
\(734\) 60.7343 + 60.7343i 0.0827442 + 0.0827442i
\(735\) 434.259 713.799i 0.590829 0.971155i
\(736\) −56.6137 + 56.6137i −0.0769207 + 0.0769207i
\(737\) −311.967 + 311.967i −0.423292 + 0.423292i
\(738\) 6.52239 20.5229i 0.00883792 0.0278088i
\(739\) 778.144i 1.05297i −0.850185 0.526484i \(-0.823510\pi\)
0.850185 0.526484i \(-0.176490\pi\)
\(740\) −1778.33 −2.40315
\(741\) −138.356 568.224i −0.186716 0.766834i
\(742\) −4.92663 4.92663i −0.00663966 0.00663966i
\(743\) −757.612 757.612i −1.01967 1.01967i −0.999803 0.0198633i \(-0.993677\pi\)
−0.0198633 0.999803i \(-0.506323\pi\)
\(744\) −19.5066 + 32.0633i −0.0262185 + 0.0430958i
\(745\) −1235.33 + 1235.33i −1.65816 + 1.65816i
\(746\) 31.5755 0.0423264
\(747\) −513.723 + 265.939i −0.687715 + 0.356009i
\(748\) −1080.36 + 152.054i −1.44433 + 0.203280i
\(749\) 237.336i 0.316870i
\(750\) 12.7089 20.8898i 0.0169452 0.0278530i
\(751\) 421.711 421.711i 0.561533 0.561533i −0.368210 0.929743i \(-0.620029\pi\)
0.929743 + 0.368210i \(0.120029\pi\)
\(752\) 997.726i 1.32676i
\(753\) −48.3758 198.678i −0.0642441 0.263848i
\(754\) −19.8854 19.8854i −0.0263732 0.0263732i
\(755\) 835.641 835.641i 1.10681 1.10681i
\(756\) 361.962 + 24.9691i 0.478786 + 0.0330279i
\(757\) 797.793i 1.05389i 0.849900 + 0.526944i \(0.176662\pi\)
−0.849900 + 0.526944i \(0.823338\pi\)
\(758\) −3.97475 + 3.97475i −0.00524374 + 0.00524374i
\(759\) −93.4905 383.962i −0.123176 0.505878i
\(760\) −209.210 + 209.210i −0.275276 + 0.275276i
\(761\) 81.3949i 0.106958i 0.998569 + 0.0534789i \(0.0170310\pi\)
−0.998569 + 0.0534789i \(0.982969\pi\)
\(762\) 10.8632 + 44.6145i 0.0142561 + 0.0585492i
\(763\) 478.495i 0.627123i
\(764\) 642.522i 0.840997i
\(765\) 658.543 + 927.324i 0.860841 + 1.21219i
\(766\) 78.2684 0.102178
\(767\) −600.089 −0.782385
\(768\) −666.492 + 162.284i −0.867828 + 0.211307i
\(769\) −412.662 −0.536621 −0.268310 0.963332i \(-0.586465\pi\)
−0.268310 + 0.963332i \(0.586465\pi\)
\(770\) −60.3481 60.3481i −0.0783741 0.0783741i
\(771\) 282.426 68.7678i 0.366312 0.0891929i
\(772\) 120.600 + 120.600i 0.156218 + 0.156218i
\(773\) −915.455 −1.18429 −0.592144 0.805832i \(-0.701718\pi\)
−0.592144 + 0.805832i \(0.701718\pi\)
\(774\) −2.11683 4.08916i −0.00273492 0.00528315i
\(775\) 161.441 + 161.441i 0.208311 + 0.208311i
\(776\) 80.4815 80.4815i 0.103713 0.103713i
\(777\) 598.563 145.744i 0.770352 0.187572i
\(778\) 145.685 0.187256
\(779\) 194.869 + 194.869i 0.250153 + 0.250153i
\(780\) 612.226 + 372.465i 0.784905 + 0.477519i
\(781\) 154.117 0.197333
\(782\) 28.4905 4.00986i 0.0364329 0.00512770i
\(783\) 447.552 + 30.8733i 0.571586 + 0.0394295i
\(784\) 579.983i 0.739774i
\(785\) 507.026 + 507.026i 0.645893 + 0.645893i
\(786\) 102.487 + 62.3509i 0.130391 + 0.0793268i
\(787\) 603.765 603.765i 0.767172 0.767172i −0.210435 0.977608i \(-0.567488\pi\)
0.977608 + 0.210435i \(0.0674881\pi\)
\(788\) −361.679 + 361.679i −0.458983 + 0.458983i
\(789\) 914.798 222.744i 1.15944 0.282311i
\(790\) 142.170i 0.179962i
\(791\) −203.142 −0.256817
\(792\) −73.3159 + 230.691i −0.0925706 + 0.291277i
\(793\) 449.695 + 449.695i 0.567080 + 0.567080i
\(794\) −16.0720 16.0720i −0.0202418 0.0202418i
\(795\) 187.546 + 114.099i 0.235907 + 0.143521i
\(796\) 134.107 134.107i 0.168476 0.168476i
\(797\) −1418.96 −1.78037 −0.890187 0.455595i \(-0.849427\pi\)
−0.890187 + 0.455595i \(0.849427\pi\)
\(798\) 26.4903 43.5426i 0.0331959 0.0545646i
\(799\) 659.200 875.150i 0.825031 1.09531i
\(800\) 298.338i 0.372923i
\(801\) −588.441 1136.71i −0.734633 1.41912i
\(802\) −86.2968 + 86.2968i −0.107602 + 0.107602i
\(803\) 36.7457i 0.0457605i
\(804\) 313.687 76.3794i 0.390158 0.0949993i
\(805\) −144.984 144.984i −0.180104 0.180104i
\(806\) 9.02957 9.02957i 0.0112029 0.0112029i
\(807\) 281.215 + 171.085i 0.348469 + 0.212001i
\(808\) 68.3281i 0.0845644i
\(809\) 831.666 831.666i 1.02802 1.02802i 0.0284212 0.999596i \(-0.490952\pi\)
0.999596 0.0284212i \(-0.00904797\pi\)
\(810\) 123.677 21.2259i 0.152688 0.0262048i
\(811\) −987.345 + 987.345i −1.21744 + 1.21744i −0.248916 + 0.968525i \(0.580074\pi\)
−0.968525 + 0.248916i \(0.919926\pi\)
\(812\) 223.276i 0.274970i
\(813\) 1249.50 304.239i 1.53690 0.374218i
\(814\) 204.381i 0.251083i
\(815\) 1544.86i 1.89554i
\(816\) 725.107 + 312.340i 0.888612 + 0.382770i
\(817\) 58.9270 0.0721261
\(818\) 39.0625 0.0477536
\(819\) −236.593 75.1915i −0.288880 0.0918089i
\(820\) −337.694 −0.411821
\(821\) −382.463 382.463i −0.465850 0.465850i 0.434717 0.900567i \(-0.356848\pi\)
−0.900567 + 0.434717i \(0.856848\pi\)
\(822\) 27.6858 + 113.704i 0.0336810 + 0.138327i
\(823\) −423.539 423.539i −0.514629 0.514629i 0.401313 0.915941i \(-0.368554\pi\)
−0.915941 + 0.401313i \(0.868554\pi\)
\(824\) −70.9926 −0.0861561
\(825\) 1258.02 + 765.350i 1.52487 + 0.927697i
\(826\) −36.9801 36.9801i −0.0447701 0.0447701i
\(827\) 200.991 200.991i 0.243036 0.243036i −0.575069 0.818105i \(-0.695025\pi\)
0.818105 + 0.575069i \(0.195025\pi\)
\(828\) −87.5887 + 275.601i −0.105783 + 0.332851i
\(829\) 11.6848 0.0140950 0.00704751 0.999975i \(-0.497757\pi\)
0.00704751 + 0.999975i \(0.497757\pi\)
\(830\) −70.4102 70.4102i −0.0848315 0.0848315i
\(831\) 559.930 920.366i 0.673802 1.10754i
\(832\) 486.226 0.584407
\(833\) −383.196 + 508.729i −0.460020 + 0.610719i
\(834\) −4.81126 + 7.90835i −0.00576890 + 0.00948243i
\(835\) 1893.00i 2.26706i
\(836\) −1089.25 1089.25i −1.30293 1.30293i
\(837\) −14.0190 + 203.225i −0.0167491 + 0.242801i
\(838\) 28.4622 28.4622i 0.0339645 0.0339645i
\(839\) −153.284 + 153.284i −0.182699 + 0.182699i −0.792531 0.609832i \(-0.791237\pi\)
0.609832 + 0.792531i \(0.291237\pi\)
\(840\) 29.7125 + 122.028i 0.0353720 + 0.145271i
\(841\) 564.928i 0.671734i
\(842\) 9.06923 0.0107711
\(843\) −849.896 + 206.940i −1.00818 + 0.245481i
\(844\) −184.962 184.962i −0.219149 0.219149i
\(845\) 541.626 + 541.626i 0.640978 + 0.640978i
\(846\) −55.5719 107.350i −0.0656879 0.126892i
\(847\) 341.261 341.261i 0.402906 0.402906i
\(848\) 152.387 0.179702
\(849\) −1149.76 699.491i −1.35426 0.823900i
\(850\) −64.5031 + 85.6339i −0.0758860 + 0.100746i
\(851\) 491.019i 0.576990i
\(852\) −96.3498 58.6170i −0.113087 0.0687994i
\(853\) 311.919 311.919i 0.365673 0.365673i −0.500223 0.865896i \(-0.666749\pi\)
0.865896 + 0.500223i \(0.166749\pi\)
\(854\) 55.4242i 0.0648996i
\(855\) −486.396 + 1530.46i −0.568884 + 1.79001i
\(856\) −81.9331 81.9331i −0.0957162 0.0957162i
\(857\) −803.544 + 803.544i −0.937625 + 0.937625i −0.998166 0.0605412i \(-0.980717\pi\)
0.0605412 + 0.998166i \(0.480717\pi\)
\(858\) 42.8068 70.3622i 0.0498914 0.0820072i
\(859\) 1489.02i 1.73344i −0.498796 0.866720i \(-0.666224\pi\)
0.498796 0.866720i \(-0.333776\pi\)
\(860\) −51.0581 + 51.0581i −0.0593699 + 0.0593699i
\(861\) 113.663 27.6758i 0.132013 0.0321437i
\(862\) 79.8270 79.8270i 0.0926067 0.0926067i
\(863\) 340.663i 0.394743i −0.980329 0.197372i \(-0.936759\pi\)
0.980329 0.197372i \(-0.0632406\pi\)
\(864\) 200.729 174.823i 0.232326 0.202341i
\(865\) 619.394i 0.716063i
\(866\) 113.822i 0.131435i
\(867\) −429.660 753.048i −0.495571 0.868567i
\(868\) −101.385 −0.116803
\(869\) 1488.54 1.71293
\(870\) 18.2689 + 75.0296i 0.0209987 + 0.0862409i
\(871\) −220.905 −0.253622
\(872\) 165.186 + 165.186i 0.189434 + 0.189434i
\(873\) 187.113 588.757i 0.214333 0.674407i
\(874\) 28.7250 + 28.7250i 0.0328661 + 0.0328661i
\(875\) 132.833 0.151809
\(876\) −13.9759 + 22.9724i −0.0159542 + 0.0262243i
\(877\) 586.686 + 586.686i 0.668969 + 0.668969i 0.957477 0.288508i \(-0.0931593\pi\)
−0.288508 + 0.957477i \(0.593159\pi\)
\(878\) −36.8456 + 36.8456i −0.0419654 + 0.0419654i
\(879\) 228.981 + 940.414i 0.260501 + 1.06987i
\(880\) 1866.64 2.12118
\(881\) −552.994 552.994i −0.627689 0.627689i 0.319797 0.947486i \(-0.396385\pi\)
−0.947486 + 0.319797i \(0.896385\pi\)
\(882\) 32.3043 + 62.4032i 0.0366261 + 0.0707520i
\(883\) 61.7667 0.0699510 0.0349755 0.999388i \(-0.488865\pi\)
0.0349755 + 0.999388i \(0.488865\pi\)
\(884\) −436.338 328.668i −0.493595 0.371796i
\(885\) 1407.75 + 856.444i 1.59068 + 0.967734i
\(886\) 9.24374i 0.0104331i
\(887\) 278.018 + 278.018i 0.313436 + 0.313436i 0.846239 0.532803i \(-0.178861\pi\)
−0.532803 + 0.846239i \(0.678861\pi\)
\(888\) 156.323 256.950i 0.176039 0.289358i
\(889\) −176.385 + 176.385i −0.198408 + 0.198408i
\(890\) 155.796 155.796i 0.175052 0.175052i
\(891\) 222.238 + 1294.91i 0.249426 + 1.45333i
\(892\) 690.771i 0.774407i
\(893\) 1546.98 1.73234
\(894\) −34.7598 142.757i −0.0388812 0.159684i
\(895\) 516.389 + 516.389i 0.576971 + 0.576971i
\(896\) 124.670 + 124.670i 0.139140 + 0.139140i
\(897\) 102.842 169.043i 0.114651 0.188453i
\(898\) 21.6931 21.6931i 0.0241571 0.0241571i
\(899\) −125.359 −0.139442
\(900\) −495.386 956.954i −0.550429 1.06328i
\(901\) −133.665 100.682i −0.148352 0.111745i
\(902\) 38.8106i 0.0430273i
\(903\) 13.0010 21.3699i 0.0143976 0.0236655i
\(904\) −70.1288 + 70.1288i −0.0775761 + 0.0775761i
\(905\) 384.940i 0.425349i
\(906\) 23.5134 + 96.5686i 0.0259530 + 0.106588i
\(907\) −134.894 134.894i −0.148726 0.148726i 0.628823 0.777549i \(-0.283537\pi\)
−0.777549 + 0.628823i \(0.783537\pi\)
\(908\) −530.778 + 530.778i −0.584557 + 0.584557i
\(909\) −170.496 329.353i −0.187565 0.362325i
\(910\) 42.7327i 0.0469590i
\(911\) 529.607 529.607i 0.581347 0.581347i −0.353926 0.935273i \(-0.615154\pi\)
0.935273 + 0.353926i \(0.115154\pi\)
\(912\) 263.724 + 1083.10i 0.289171 + 1.18761i
\(913\) 737.204 737.204i 0.807452 0.807452i
\(914\) 10.9026i 0.0119285i
\(915\) −413.138 1696.74i −0.451517 1.85436i
\(916\) 1205.70i 1.31626i
\(917\) 651.692i 0.710679i
\(918\) −95.4148 + 6.78124i −0.103938 + 0.00738697i
\(919\) −427.922 −0.465639 −0.232820 0.972520i \(-0.574795\pi\)
−0.232820 + 0.972520i \(0.574795\pi\)
\(920\) −100.103 −0.108808
\(921\) 801.477 195.151i 0.870224 0.211890i
\(922\) 60.7160 0.0658525
\(923\) 54.5654 + 54.5654i 0.0591174 + 0.0591174i
\(924\) −635.337 + 154.698i −0.687594 + 0.167422i
\(925\) −1293.77 1293.77i −1.39866 1.39866i
\(926\) −148.289 −0.160139
\(927\) −342.197 + 177.145i −0.369144 + 0.191095i
\(928\) 115.829 + 115.829i 0.124816 + 0.124816i
\(929\) −872.431 + 872.431i −0.939107 + 0.939107i −0.998250 0.0591421i \(-0.981163\pi\)
0.0591421 + 0.998250i \(0.481163\pi\)
\(930\) −34.0694 + 8.29554i −0.0366338 + 0.00891994i
\(931\) −899.266 −0.965914
\(932\) −132.221 132.221i −0.141868 0.141868i
\(933\) 699.539 + 425.584i 0.749774 + 0.456145i
\(934\) −78.7989 −0.0843671
\(935\) −1637.32 1233.29i −1.75114 1.31903i
\(936\) −107.634 + 55.7190i −0.114994 + 0.0595288i
\(937\) 855.452i 0.912969i 0.889731 + 0.456485i \(0.150892\pi\)
−0.889731 + 0.456485i \(0.849108\pi\)
\(938\) −13.6131 13.6131i −0.0145129 0.0145129i
\(939\) −678.993 413.084i −0.723102 0.439919i
\(940\) −1340.40 + 1340.40i −1.42596 + 1.42596i
\(941\) 701.925 701.925i 0.745936 0.745936i −0.227778 0.973713i \(-0.573146\pi\)
0.973713 + 0.227778i \(0.0731459\pi\)
\(942\) −58.5931 + 14.2668i −0.0622007 + 0.0151452i
\(943\) 93.2411i 0.0988771i
\(944\) 1143.84 1.21170
\(945\) 447.711 + 514.056i 0.473768 + 0.543974i
\(946\) 5.86803 + 5.86803i 0.00620299 + 0.00620299i
\(947\) −392.939 392.939i −0.414930 0.414930i 0.468522 0.883452i \(-0.344787\pi\)
−0.883452 + 0.468522i \(0.844787\pi\)
\(948\) −930.593 566.152i −0.981638 0.597207i
\(949\) 13.0099 13.0099i 0.0137090 0.0137090i
\(950\) −151.373 −0.159340
\(951\) −672.045 + 1104.65i −0.706672 + 1.16157i
\(952\) −13.3430 94.8034i −0.0140157 0.0995834i
\(953\) 1366.13i 1.43350i −0.697328 0.716752i \(-0.745628\pi\)
0.697328 0.716752i \(-0.254372\pi\)
\(954\) −16.3961 + 8.48774i −0.0171866 + 0.00889700i
\(955\) 853.619 853.619i 0.893842 0.893842i
\(956\) 424.881i 0.444436i
\(957\) −785.570 + 191.278i −0.820867 + 0.199872i
\(958\) −31.6874 31.6874i −0.0330766 0.0330766i
\(959\) −449.534 + 449.534i −0.468753 + 0.468753i
\(960\) −1140.64 693.940i −1.18817 0.722854i
\(961\) 904.077i 0.940767i
\(962\) −72.3615 + 72.3615i −0.0752199 + 0.0752199i
\(963\) −599.376 190.488i −0.622405 0.197807i
\(964\) −1233.86 + 1233.86i −1.27994 + 1.27994i
\(965\) 320.445i 0.332068i
\(966\) 16.7547 4.07959i 0.0173444 0.00422318i
\(967\) 332.446i 0.343791i 0.985115 + 0.171896i \(0.0549892\pi\)
−0.985115 + 0.171896i \(0.945011\pi\)
\(968\) 235.621i 0.243410i
\(969\) 484.285 1124.28i 0.499778 1.16025i
\(970\) 106.340 0.109629
\(971\) 284.514 0.293011 0.146506 0.989210i \(-0.453197\pi\)
0.146506 + 0.989210i \(0.453197\pi\)
\(972\) 353.572 894.073i 0.363757 0.919828i
\(973\) −50.2873 −0.0516828
\(974\) 68.7190 + 68.7190i 0.0705534 + 0.0705534i
\(975\) 174.430 + 716.378i 0.178903 + 0.734746i
\(976\) −857.171 857.171i −0.878249 0.878249i
\(977\) −843.372 −0.863226 −0.431613 0.902059i \(-0.642055\pi\)
−0.431613 + 0.902059i \(0.642055\pi\)
\(978\) −110.999 67.5292i −0.113496 0.0690483i
\(979\) 1631.21 + 1631.21i 1.66620 + 1.66620i
\(980\) 779.180 779.180i 0.795082 0.795082i
\(981\) 1208.41 + 384.045i 1.23181 + 0.391483i
\(982\) −90.1374 −0.0917896
\(983\) 84.6921 + 84.6921i 0.0861568 + 0.0861568i 0.748872 0.662715i \(-0.230596\pi\)
−0.662715 + 0.748872i \(0.730596\pi\)
\(984\) 29.6846 48.7931i 0.0301673 0.0495865i
\(985\) −961.013 −0.975647
\(986\) −8.20402 58.2905i −0.00832050 0.0591181i
\(987\) 341.308 561.013i 0.345803 0.568402i
\(988\) 771.301i 0.780670i
\(989\) 14.0977 + 14.0977i 0.0142545 + 0.0142545i
\(990\) −200.841 + 103.969i −0.202870 + 0.105020i
\(991\) 581.980 581.980i 0.587265 0.587265i −0.349625 0.936890i \(-0.613691\pi\)
0.936890 + 0.349625i \(0.113691\pi\)
\(992\) −52.5958 + 52.5958i −0.0530199 + 0.0530199i
\(993\) −220.878 907.137i −0.222435 0.913532i
\(994\) 6.72511i 0.00676570i
\(995\) 356.335 0.358126
\(996\) −741.270 + 180.491i −0.744247 + 0.181216i
\(997\) 829.581 + 829.581i 0.832078 + 0.832078i 0.987801 0.155723i \(-0.0497707\pi\)
−0.155723 + 0.987801i \(0.549771\pi\)
\(998\) −6.07668 6.07668i −0.00608885 0.00608885i
\(999\) 112.346 1628.61i 0.112458 1.63024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.3.f.a.38.5 20
3.2 odd 2 inner 51.3.f.a.38.6 yes 20
17.13 even 4 inner 51.3.f.a.47.6 yes 20
51.47 odd 4 inner 51.3.f.a.47.5 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.3.f.a.38.5 20 1.1 even 1 trivial
51.3.f.a.38.6 yes 20 3.2 odd 2 inner
51.3.f.a.47.5 yes 20 51.47 odd 4 inner
51.3.f.a.47.6 yes 20 17.13 even 4 inner