Properties

Label 5096.2.a.m.1.1
Level $5096$
Weight $2$
Character 5096.1
Self dual yes
Analytic conductor $40.692$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5096,2,Mod(1,5096)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5096, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5096.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5096 = 2^{3} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5096.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,-3,0,0,0,3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.6917648700\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 5096.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56155 q^{3} +0.561553 q^{5} +3.56155 q^{9} -5.12311 q^{11} -1.00000 q^{13} -1.43845 q^{15} -5.68466 q^{17} -5.12311 q^{19} -8.00000 q^{23} -4.68466 q^{25} -1.43845 q^{27} -2.00000 q^{29} -4.00000 q^{31} +13.1231 q^{33} +9.68466 q^{37} +2.56155 q^{39} +3.12311 q^{41} +5.43845 q^{43} +2.00000 q^{45} +0.315342 q^{47} +14.5616 q^{51} +3.12311 q^{53} -2.87689 q^{55} +13.1231 q^{57} -5.12311 q^{59} -11.1231 q^{61} -0.561553 q^{65} -5.12311 q^{67} +20.4924 q^{69} -7.68466 q^{71} +6.00000 q^{73} +12.0000 q^{75} +8.00000 q^{79} -7.00000 q^{81} -2.24621 q^{83} -3.19224 q^{85} +5.12311 q^{87} -10.0000 q^{89} +10.2462 q^{93} -2.87689 q^{95} +8.24621 q^{97} -18.2462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 3 q^{5} + 3 q^{9} - 2 q^{11} - 2 q^{13} - 7 q^{15} + q^{17} - 2 q^{19} - 16 q^{23} + 3 q^{25} - 7 q^{27} - 4 q^{29} - 8 q^{31} + 18 q^{33} + 7 q^{37} + q^{39} - 2 q^{41} + 15 q^{43} + 4 q^{45}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.56155 −1.47891 −0.739457 0.673204i \(-0.764917\pi\)
−0.739457 + 0.673204i \(0.764917\pi\)
\(4\) 0 0
\(5\) 0.561553 0.251134 0.125567 0.992085i \(-0.459925\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 3.56155 1.18718
\(10\) 0 0
\(11\) −5.12311 −1.54467 −0.772337 0.635213i \(-0.780912\pi\)
−0.772337 + 0.635213i \(0.780912\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −1.43845 −0.371405
\(16\) 0 0
\(17\) −5.68466 −1.37873 −0.689366 0.724413i \(-0.742111\pi\)
−0.689366 + 0.724413i \(0.742111\pi\)
\(18\) 0 0
\(19\) −5.12311 −1.17532 −0.587661 0.809108i \(-0.699951\pi\)
−0.587661 + 0.809108i \(0.699951\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) −4.68466 −0.936932
\(26\) 0 0
\(27\) −1.43845 −0.276829
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 13.1231 2.28444
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.68466 1.59215 0.796074 0.605199i \(-0.206907\pi\)
0.796074 + 0.605199i \(0.206907\pi\)
\(38\) 0 0
\(39\) 2.56155 0.410177
\(40\) 0 0
\(41\) 3.12311 0.487747 0.243874 0.969807i \(-0.421582\pi\)
0.243874 + 0.969807i \(0.421582\pi\)
\(42\) 0 0
\(43\) 5.43845 0.829355 0.414678 0.909968i \(-0.363894\pi\)
0.414678 + 0.909968i \(0.363894\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 0.315342 0.0459973 0.0229986 0.999735i \(-0.492679\pi\)
0.0229986 + 0.999735i \(0.492679\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 14.5616 2.03903
\(52\) 0 0
\(53\) 3.12311 0.428992 0.214496 0.976725i \(-0.431189\pi\)
0.214496 + 0.976725i \(0.431189\pi\)
\(54\) 0 0
\(55\) −2.87689 −0.387920
\(56\) 0 0
\(57\) 13.1231 1.73820
\(58\) 0 0
\(59\) −5.12311 −0.666972 −0.333486 0.942755i \(-0.608225\pi\)
−0.333486 + 0.942755i \(0.608225\pi\)
\(60\) 0 0
\(61\) −11.1231 −1.42417 −0.712084 0.702094i \(-0.752248\pi\)
−0.712084 + 0.702094i \(0.752248\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.561553 −0.0696521
\(66\) 0 0
\(67\) −5.12311 −0.625887 −0.312943 0.949772i \(-0.601315\pi\)
−0.312943 + 0.949772i \(0.601315\pi\)
\(68\) 0 0
\(69\) 20.4924 2.46700
\(70\) 0 0
\(71\) −7.68466 −0.912001 −0.456001 0.889979i \(-0.650719\pi\)
−0.456001 + 0.889979i \(0.650719\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 12.0000 1.38564
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) −2.24621 −0.246554 −0.123277 0.992372i \(-0.539340\pi\)
−0.123277 + 0.992372i \(0.539340\pi\)
\(84\) 0 0
\(85\) −3.19224 −0.346247
\(86\) 0 0
\(87\) 5.12311 0.549255
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 10.2462 1.06248
\(94\) 0 0
\(95\) −2.87689 −0.295163
\(96\) 0 0
\(97\) 8.24621 0.837276 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(98\) 0 0
\(99\) −18.2462 −1.83381
\(100\) 0 0
\(101\) 7.12311 0.708776 0.354388 0.935099i \(-0.384689\pi\)
0.354388 + 0.935099i \(0.384689\pi\)
\(102\) 0 0
\(103\) −2.24621 −0.221326 −0.110663 0.993858i \(-0.535297\pi\)
−0.110663 + 0.993858i \(0.535297\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) −2.80776 −0.268935 −0.134468 0.990918i \(-0.542932\pi\)
−0.134468 + 0.990918i \(0.542932\pi\)
\(110\) 0 0
\(111\) −24.8078 −2.35465
\(112\) 0 0
\(113\) −18.4924 −1.73962 −0.869810 0.493386i \(-0.835759\pi\)
−0.869810 + 0.493386i \(0.835759\pi\)
\(114\) 0 0
\(115\) −4.49242 −0.418921
\(116\) 0 0
\(117\) −3.56155 −0.329266
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 15.2462 1.38602
\(122\) 0 0
\(123\) −8.00000 −0.721336
\(124\) 0 0
\(125\) −5.43845 −0.486430
\(126\) 0 0
\(127\) −10.2462 −0.909204 −0.454602 0.890695i \(-0.650219\pi\)
−0.454602 + 0.890695i \(0.650219\pi\)
\(128\) 0 0
\(129\) −13.9309 −1.22654
\(130\) 0 0
\(131\) 4.80776 0.420056 0.210028 0.977695i \(-0.432644\pi\)
0.210028 + 0.977695i \(0.432644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.807764 −0.0695213
\(136\) 0 0
\(137\) −3.12311 −0.266825 −0.133412 0.991061i \(-0.542594\pi\)
−0.133412 + 0.991061i \(0.542594\pi\)
\(138\) 0 0
\(139\) −7.68466 −0.651804 −0.325902 0.945404i \(-0.605668\pi\)
−0.325902 + 0.945404i \(0.605668\pi\)
\(140\) 0 0
\(141\) −0.807764 −0.0680260
\(142\) 0 0
\(143\) 5.12311 0.428416
\(144\) 0 0
\(145\) −1.12311 −0.0932688
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.2462 1.33094 0.665471 0.746424i \(-0.268231\pi\)
0.665471 + 0.746424i \(0.268231\pi\)
\(150\) 0 0
\(151\) 10.5616 0.859487 0.429743 0.902951i \(-0.358604\pi\)
0.429743 + 0.902951i \(0.358604\pi\)
\(152\) 0 0
\(153\) −20.2462 −1.63681
\(154\) 0 0
\(155\) −2.24621 −0.180420
\(156\) 0 0
\(157\) 22.4924 1.79509 0.897545 0.440922i \(-0.145349\pi\)
0.897545 + 0.440922i \(0.145349\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −20.4924 −1.60509 −0.802545 0.596591i \(-0.796521\pi\)
−0.802545 + 0.596591i \(0.796521\pi\)
\(164\) 0 0
\(165\) 7.36932 0.573701
\(166\) 0 0
\(167\) −14.2462 −1.10240 −0.551202 0.834372i \(-0.685831\pi\)
−0.551202 + 0.834372i \(0.685831\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −18.2462 −1.39532
\(172\) 0 0
\(173\) 4.87689 0.370783 0.185392 0.982665i \(-0.440645\pi\)
0.185392 + 0.982665i \(0.440645\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.1231 0.986393
\(178\) 0 0
\(179\) 7.68466 0.574378 0.287189 0.957874i \(-0.407279\pi\)
0.287189 + 0.957874i \(0.407279\pi\)
\(180\) 0 0
\(181\) 23.1231 1.71873 0.859363 0.511365i \(-0.170860\pi\)
0.859363 + 0.511365i \(0.170860\pi\)
\(182\) 0 0
\(183\) 28.4924 2.10622
\(184\) 0 0
\(185\) 5.43845 0.399843
\(186\) 0 0
\(187\) 29.1231 2.12969
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.3693 1.11208 0.556042 0.831154i \(-0.312319\pi\)
0.556042 + 0.831154i \(0.312319\pi\)
\(192\) 0 0
\(193\) −21.3693 −1.53820 −0.769099 0.639130i \(-0.779294\pi\)
−0.769099 + 0.639130i \(0.779294\pi\)
\(194\) 0 0
\(195\) 1.43845 0.103009
\(196\) 0 0
\(197\) 2.31534 0.164961 0.0824806 0.996593i \(-0.473716\pi\)
0.0824806 + 0.996593i \(0.473716\pi\)
\(198\) 0 0
\(199\) −5.12311 −0.363167 −0.181584 0.983375i \(-0.558122\pi\)
−0.181584 + 0.983375i \(0.558122\pi\)
\(200\) 0 0
\(201\) 13.1231 0.925633
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.75379 0.122490
\(206\) 0 0
\(207\) −28.4924 −1.98036
\(208\) 0 0
\(209\) 26.2462 1.81549
\(210\) 0 0
\(211\) 15.6847 1.07978 0.539888 0.841737i \(-0.318467\pi\)
0.539888 + 0.841737i \(0.318467\pi\)
\(212\) 0 0
\(213\) 19.6847 1.34877
\(214\) 0 0
\(215\) 3.05398 0.208279
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −15.3693 −1.03856
\(220\) 0 0
\(221\) 5.68466 0.382392
\(222\) 0 0
\(223\) 15.6847 1.05032 0.525161 0.851003i \(-0.324005\pi\)
0.525161 + 0.851003i \(0.324005\pi\)
\(224\) 0 0
\(225\) −16.6847 −1.11231
\(226\) 0 0
\(227\) 8.00000 0.530979 0.265489 0.964114i \(-0.414466\pi\)
0.265489 + 0.964114i \(0.414466\pi\)
\(228\) 0 0
\(229\) −6.80776 −0.449870 −0.224935 0.974374i \(-0.572217\pi\)
−0.224935 + 0.974374i \(0.572217\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.80776 −0.445991 −0.222996 0.974819i \(-0.571584\pi\)
−0.222996 + 0.974819i \(0.571584\pi\)
\(234\) 0 0
\(235\) 0.177081 0.0115515
\(236\) 0 0
\(237\) −20.4924 −1.33113
\(238\) 0 0
\(239\) −2.56155 −0.165693 −0.0828465 0.996562i \(-0.526401\pi\)
−0.0828465 + 0.996562i \(0.526401\pi\)
\(240\) 0 0
\(241\) 3.75379 0.241803 0.120901 0.992665i \(-0.461422\pi\)
0.120901 + 0.992665i \(0.461422\pi\)
\(242\) 0 0
\(243\) 22.2462 1.42710
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.12311 0.325975
\(248\) 0 0
\(249\) 5.75379 0.364632
\(250\) 0 0
\(251\) −22.2462 −1.40417 −0.702084 0.712094i \(-0.747747\pi\)
−0.702084 + 0.712094i \(0.747747\pi\)
\(252\) 0 0
\(253\) 40.9848 2.57670
\(254\) 0 0
\(255\) 8.17708 0.512069
\(256\) 0 0
\(257\) −11.4384 −0.713511 −0.356755 0.934198i \(-0.616117\pi\)
−0.356755 + 0.934198i \(0.616117\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −7.12311 −0.440909
\(262\) 0 0
\(263\) −26.2462 −1.61841 −0.809205 0.587526i \(-0.800102\pi\)
−0.809205 + 0.587526i \(0.800102\pi\)
\(264\) 0 0
\(265\) 1.75379 0.107734
\(266\) 0 0
\(267\) 25.6155 1.56764
\(268\) 0 0
\(269\) 4.87689 0.297349 0.148675 0.988886i \(-0.452499\pi\)
0.148675 + 0.988886i \(0.452499\pi\)
\(270\) 0 0
\(271\) 20.8078 1.26398 0.631991 0.774976i \(-0.282238\pi\)
0.631991 + 0.774976i \(0.282238\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 24.0000 1.44725
\(276\) 0 0
\(277\) 29.3693 1.76463 0.882316 0.470658i \(-0.155984\pi\)
0.882316 + 0.470658i \(0.155984\pi\)
\(278\) 0 0
\(279\) −14.2462 −0.852898
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 8.49242 0.504822 0.252411 0.967620i \(-0.418776\pi\)
0.252411 + 0.967620i \(0.418776\pi\)
\(284\) 0 0
\(285\) 7.36932 0.436521
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 15.3153 0.900902
\(290\) 0 0
\(291\) −21.1231 −1.23826
\(292\) 0 0
\(293\) −15.4384 −0.901924 −0.450962 0.892543i \(-0.648919\pi\)
−0.450962 + 0.892543i \(0.648919\pi\)
\(294\) 0 0
\(295\) −2.87689 −0.167499
\(296\) 0 0
\(297\) 7.36932 0.427611
\(298\) 0 0
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −18.2462 −1.04822
\(304\) 0 0
\(305\) −6.24621 −0.357657
\(306\) 0 0
\(307\) −13.1231 −0.748975 −0.374488 0.927232i \(-0.622181\pi\)
−0.374488 + 0.927232i \(0.622181\pi\)
\(308\) 0 0
\(309\) 5.75379 0.327322
\(310\) 0 0
\(311\) 10.8769 0.616772 0.308386 0.951261i \(-0.400211\pi\)
0.308386 + 0.951261i \(0.400211\pi\)
\(312\) 0 0
\(313\) −26.8078 −1.51526 −0.757632 0.652682i \(-0.773644\pi\)
−0.757632 + 0.652682i \(0.773644\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.2462 −0.687816 −0.343908 0.939003i \(-0.611751\pi\)
−0.343908 + 0.939003i \(0.611751\pi\)
\(318\) 0 0
\(319\) 10.2462 0.573678
\(320\) 0 0
\(321\) −10.2462 −0.571888
\(322\) 0 0
\(323\) 29.1231 1.62045
\(324\) 0 0
\(325\) 4.68466 0.259858
\(326\) 0 0
\(327\) 7.19224 0.397732
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.49242 −0.246926 −0.123463 0.992349i \(-0.539400\pi\)
−0.123463 + 0.992349i \(0.539400\pi\)
\(332\) 0 0
\(333\) 34.4924 1.89017
\(334\) 0 0
\(335\) −2.87689 −0.157182
\(336\) 0 0
\(337\) −13.1922 −0.718627 −0.359313 0.933217i \(-0.616989\pi\)
−0.359313 + 0.933217i \(0.616989\pi\)
\(338\) 0 0
\(339\) 47.3693 2.57275
\(340\) 0 0
\(341\) 20.4924 1.10973
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 11.5076 0.619547
\(346\) 0 0
\(347\) 7.68466 0.412534 0.206267 0.978496i \(-0.433868\pi\)
0.206267 + 0.978496i \(0.433868\pi\)
\(348\) 0 0
\(349\) −11.9309 −0.638645 −0.319322 0.947646i \(-0.603455\pi\)
−0.319322 + 0.947646i \(0.603455\pi\)
\(350\) 0 0
\(351\) 1.43845 0.0767786
\(352\) 0 0
\(353\) −9.36932 −0.498678 −0.249339 0.968416i \(-0.580213\pi\)
−0.249339 + 0.968416i \(0.580213\pi\)
\(354\) 0 0
\(355\) −4.31534 −0.229035
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.2462 0.751886 0.375943 0.926643i \(-0.377319\pi\)
0.375943 + 0.926643i \(0.377319\pi\)
\(360\) 0 0
\(361\) 7.24621 0.381380
\(362\) 0 0
\(363\) −39.0540 −2.04980
\(364\) 0 0
\(365\) 3.36932 0.176358
\(366\) 0 0
\(367\) −9.61553 −0.501926 −0.250963 0.967997i \(-0.580747\pi\)
−0.250963 + 0.967997i \(0.580747\pi\)
\(368\) 0 0
\(369\) 11.1231 0.579046
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.6155 −0.601429 −0.300715 0.953714i \(-0.597225\pi\)
−0.300715 + 0.953714i \(0.597225\pi\)
\(374\) 0 0
\(375\) 13.9309 0.719387
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) 5.75379 0.295552 0.147776 0.989021i \(-0.452788\pi\)
0.147776 + 0.989021i \(0.452788\pi\)
\(380\) 0 0
\(381\) 26.2462 1.34463
\(382\) 0 0
\(383\) 11.1922 0.571897 0.285948 0.958245i \(-0.407691\pi\)
0.285948 + 0.958245i \(0.407691\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 19.3693 0.984598
\(388\) 0 0
\(389\) 20.7386 1.05149 0.525745 0.850642i \(-0.323787\pi\)
0.525745 + 0.850642i \(0.323787\pi\)
\(390\) 0 0
\(391\) 45.4773 2.29988
\(392\) 0 0
\(393\) −12.3153 −0.621227
\(394\) 0 0
\(395\) 4.49242 0.226038
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.61553 0.180551 0.0902754 0.995917i \(-0.471225\pi\)
0.0902754 + 0.995917i \(0.471225\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) −3.93087 −0.195326
\(406\) 0 0
\(407\) −49.6155 −2.45935
\(408\) 0 0
\(409\) −12.8769 −0.636721 −0.318361 0.947970i \(-0.603132\pi\)
−0.318361 + 0.947970i \(0.603132\pi\)
\(410\) 0 0
\(411\) 8.00000 0.394611
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.26137 −0.0619180
\(416\) 0 0
\(417\) 19.6847 0.963962
\(418\) 0 0
\(419\) 1.93087 0.0943292 0.0471646 0.998887i \(-0.484981\pi\)
0.0471646 + 0.998887i \(0.484981\pi\)
\(420\) 0 0
\(421\) −6.31534 −0.307791 −0.153895 0.988087i \(-0.549182\pi\)
−0.153895 + 0.988087i \(0.549182\pi\)
\(422\) 0 0
\(423\) 1.12311 0.0546073
\(424\) 0 0
\(425\) 26.6307 1.29178
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −13.1231 −0.633590
\(430\) 0 0
\(431\) −18.5616 −0.894079 −0.447039 0.894514i \(-0.647522\pi\)
−0.447039 + 0.894514i \(0.647522\pi\)
\(432\) 0 0
\(433\) 6.17708 0.296852 0.148426 0.988924i \(-0.452579\pi\)
0.148426 + 0.988924i \(0.452579\pi\)
\(434\) 0 0
\(435\) 2.87689 0.137937
\(436\) 0 0
\(437\) 40.9848 1.96057
\(438\) 0 0
\(439\) −21.1231 −1.00815 −0.504075 0.863660i \(-0.668167\pi\)
−0.504075 + 0.863660i \(0.668167\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.8078 0.988607 0.494303 0.869289i \(-0.335423\pi\)
0.494303 + 0.869289i \(0.335423\pi\)
\(444\) 0 0
\(445\) −5.61553 −0.266202
\(446\) 0 0
\(447\) −41.6155 −1.96835
\(448\) 0 0
\(449\) 32.7386 1.54503 0.772516 0.634996i \(-0.218998\pi\)
0.772516 + 0.634996i \(0.218998\pi\)
\(450\) 0 0
\(451\) −16.0000 −0.753411
\(452\) 0 0
\(453\) −27.0540 −1.27111
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 24.7386 1.15722 0.578612 0.815603i \(-0.303594\pi\)
0.578612 + 0.815603i \(0.303594\pi\)
\(458\) 0 0
\(459\) 8.17708 0.381673
\(460\) 0 0
\(461\) 34.8078 1.62116 0.810580 0.585628i \(-0.199152\pi\)
0.810580 + 0.585628i \(0.199152\pi\)
\(462\) 0 0
\(463\) 38.2462 1.77745 0.888726 0.458439i \(-0.151591\pi\)
0.888726 + 0.458439i \(0.151591\pi\)
\(464\) 0 0
\(465\) 5.75379 0.266826
\(466\) 0 0
\(467\) −40.4924 −1.87377 −0.936883 0.349643i \(-0.886303\pi\)
−0.936883 + 0.349643i \(0.886303\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −57.6155 −2.65478
\(472\) 0 0
\(473\) −27.8617 −1.28108
\(474\) 0 0
\(475\) 24.0000 1.10120
\(476\) 0 0
\(477\) 11.1231 0.509292
\(478\) 0 0
\(479\) −11.1922 −0.511386 −0.255693 0.966758i \(-0.582304\pi\)
−0.255693 + 0.966758i \(0.582304\pi\)
\(480\) 0 0
\(481\) −9.68466 −0.441582
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.63068 0.210268
\(486\) 0 0
\(487\) 1.75379 0.0794718 0.0397359 0.999210i \(-0.487348\pi\)
0.0397359 + 0.999210i \(0.487348\pi\)
\(488\) 0 0
\(489\) 52.4924 2.37379
\(490\) 0 0
\(491\) 0.946025 0.0426935 0.0213467 0.999772i \(-0.493205\pi\)
0.0213467 + 0.999772i \(0.493205\pi\)
\(492\) 0 0
\(493\) 11.3693 0.512048
\(494\) 0 0
\(495\) −10.2462 −0.460533
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 28.4924 1.27550 0.637748 0.770245i \(-0.279866\pi\)
0.637748 + 0.770245i \(0.279866\pi\)
\(500\) 0 0
\(501\) 36.4924 1.63036
\(502\) 0 0
\(503\) 7.36932 0.328582 0.164291 0.986412i \(-0.447466\pi\)
0.164291 + 0.986412i \(0.447466\pi\)
\(504\) 0 0
\(505\) 4.00000 0.177998
\(506\) 0 0
\(507\) −2.56155 −0.113763
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7.36932 0.325363
\(514\) 0 0
\(515\) −1.26137 −0.0555824
\(516\) 0 0
\(517\) −1.61553 −0.0710508
\(518\) 0 0
\(519\) −12.4924 −0.548356
\(520\) 0 0
\(521\) 9.68466 0.424293 0.212146 0.977238i \(-0.431955\pi\)
0.212146 + 0.977238i \(0.431955\pi\)
\(522\) 0 0
\(523\) 0.492423 0.0215321 0.0107661 0.999942i \(-0.496573\pi\)
0.0107661 + 0.999942i \(0.496573\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.7386 0.990510
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) −18.2462 −0.791818
\(532\) 0 0
\(533\) −3.12311 −0.135277
\(534\) 0 0
\(535\) 2.24621 0.0971122
\(536\) 0 0
\(537\) −19.6847 −0.849456
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5.68466 −0.244403 −0.122201 0.992505i \(-0.538995\pi\)
−0.122201 + 0.992505i \(0.538995\pi\)
\(542\) 0 0
\(543\) −59.2311 −2.54185
\(544\) 0 0
\(545\) −1.57671 −0.0675387
\(546\) 0 0
\(547\) −29.4384 −1.25870 −0.629349 0.777123i \(-0.716678\pi\)
−0.629349 + 0.777123i \(0.716678\pi\)
\(548\) 0 0
\(549\) −39.6155 −1.69075
\(550\) 0 0
\(551\) 10.2462 0.436503
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −13.9309 −0.591332
\(556\) 0 0
\(557\) −42.1771 −1.78710 −0.893550 0.448963i \(-0.851793\pi\)
−0.893550 + 0.448963i \(0.851793\pi\)
\(558\) 0 0
\(559\) −5.43845 −0.230022
\(560\) 0 0
\(561\) −74.6004 −3.14963
\(562\) 0 0
\(563\) 7.05398 0.297290 0.148645 0.988891i \(-0.452509\pi\)
0.148645 + 0.988891i \(0.452509\pi\)
\(564\) 0 0
\(565\) −10.3845 −0.436878
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −41.6847 −1.74751 −0.873756 0.486365i \(-0.838323\pi\)
−0.873756 + 0.486365i \(0.838323\pi\)
\(570\) 0 0
\(571\) 28.8078 1.20557 0.602784 0.797905i \(-0.294058\pi\)
0.602784 + 0.797905i \(0.294058\pi\)
\(572\) 0 0
\(573\) −39.3693 −1.64468
\(574\) 0 0
\(575\) 37.4773 1.56291
\(576\) 0 0
\(577\) 24.2462 1.00938 0.504691 0.863300i \(-0.331606\pi\)
0.504691 + 0.863300i \(0.331606\pi\)
\(578\) 0 0
\(579\) 54.7386 2.27486
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −16.0000 −0.662652
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) 24.9848 1.03123 0.515617 0.856819i \(-0.327563\pi\)
0.515617 + 0.856819i \(0.327563\pi\)
\(588\) 0 0
\(589\) 20.4924 0.844376
\(590\) 0 0
\(591\) −5.93087 −0.243963
\(592\) 0 0
\(593\) −38.4924 −1.58069 −0.790347 0.612659i \(-0.790100\pi\)
−0.790347 + 0.612659i \(0.790100\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 13.1231 0.537093
\(598\) 0 0
\(599\) 23.3693 0.954844 0.477422 0.878674i \(-0.341571\pi\)
0.477422 + 0.878674i \(0.341571\pi\)
\(600\) 0 0
\(601\) −34.1771 −1.39411 −0.697056 0.717017i \(-0.745507\pi\)
−0.697056 + 0.717017i \(0.745507\pi\)
\(602\) 0 0
\(603\) −18.2462 −0.743043
\(604\) 0 0
\(605\) 8.56155 0.348077
\(606\) 0 0
\(607\) −15.3693 −0.623821 −0.311911 0.950111i \(-0.600969\pi\)
−0.311911 + 0.950111i \(0.600969\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.315342 −0.0127574
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 0 0
\(615\) −4.49242 −0.181152
\(616\) 0 0
\(617\) 21.8617 0.880120 0.440060 0.897968i \(-0.354957\pi\)
0.440060 + 0.897968i \(0.354957\pi\)
\(618\) 0 0
\(619\) 29.7538 1.19591 0.597953 0.801531i \(-0.295981\pi\)
0.597953 + 0.801531i \(0.295981\pi\)
\(620\) 0 0
\(621\) 11.5076 0.461783
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) 0 0
\(627\) −67.2311 −2.68495
\(628\) 0 0
\(629\) −55.0540 −2.19515
\(630\) 0 0
\(631\) −47.6847 −1.89830 −0.949148 0.314830i \(-0.898053\pi\)
−0.949148 + 0.314830i \(0.898053\pi\)
\(632\) 0 0
\(633\) −40.1771 −1.59690
\(634\) 0 0
\(635\) −5.75379 −0.228332
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −27.3693 −1.08271
\(640\) 0 0
\(641\) −8.24621 −0.325706 −0.162853 0.986650i \(-0.552070\pi\)
−0.162853 + 0.986650i \(0.552070\pi\)
\(642\) 0 0
\(643\) −35.8617 −1.41425 −0.707124 0.707089i \(-0.750008\pi\)
−0.707124 + 0.707089i \(0.750008\pi\)
\(644\) 0 0
\(645\) −7.82292 −0.308027
\(646\) 0 0
\(647\) −5.12311 −0.201410 −0.100705 0.994916i \(-0.532110\pi\)
−0.100705 + 0.994916i \(0.532110\pi\)
\(648\) 0 0
\(649\) 26.2462 1.03025
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.87689 −0.190848 −0.0954238 0.995437i \(-0.530421\pi\)
−0.0954238 + 0.995437i \(0.530421\pi\)
\(654\) 0 0
\(655\) 2.69981 0.105490
\(656\) 0 0
\(657\) 21.3693 0.833696
\(658\) 0 0
\(659\) 16.4924 0.642454 0.321227 0.947002i \(-0.395905\pi\)
0.321227 + 0.947002i \(0.395905\pi\)
\(660\) 0 0
\(661\) 40.7386 1.58455 0.792275 0.610165i \(-0.208897\pi\)
0.792275 + 0.610165i \(0.208897\pi\)
\(662\) 0 0
\(663\) −14.5616 −0.565524
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.0000 0.619522
\(668\) 0 0
\(669\) −40.1771 −1.55334
\(670\) 0 0
\(671\) 56.9848 2.19988
\(672\) 0 0
\(673\) −19.3002 −0.743968 −0.371984 0.928239i \(-0.621322\pi\)
−0.371984 + 0.928239i \(0.621322\pi\)
\(674\) 0 0
\(675\) 6.73863 0.259370
\(676\) 0 0
\(677\) 1.36932 0.0526271 0.0263136 0.999654i \(-0.491623\pi\)
0.0263136 + 0.999654i \(0.491623\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −20.4924 −0.785271
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) −1.75379 −0.0670088
\(686\) 0 0
\(687\) 17.4384 0.665318
\(688\) 0 0
\(689\) −3.12311 −0.118981
\(690\) 0 0
\(691\) −16.9848 −0.646134 −0.323067 0.946376i \(-0.604714\pi\)
−0.323067 + 0.946376i \(0.604714\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.31534 −0.163690
\(696\) 0 0
\(697\) −17.7538 −0.672473
\(698\) 0 0
\(699\) 17.4384 0.659583
\(700\) 0 0
\(701\) 22.6307 0.854749 0.427375 0.904075i \(-0.359439\pi\)
0.427375 + 0.904075i \(0.359439\pi\)
\(702\) 0 0
\(703\) −49.6155 −1.87129
\(704\) 0 0
\(705\) −0.453602 −0.0170836
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −24.7386 −0.929079 −0.464539 0.885552i \(-0.653780\pi\)
−0.464539 + 0.885552i \(0.653780\pi\)
\(710\) 0 0
\(711\) 28.4924 1.06855
\(712\) 0 0
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) 2.87689 0.107590
\(716\) 0 0
\(717\) 6.56155 0.245046
\(718\) 0 0
\(719\) 13.1231 0.489409 0.244705 0.969598i \(-0.421309\pi\)
0.244705 + 0.969598i \(0.421309\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −9.61553 −0.357605
\(724\) 0 0
\(725\) 9.36932 0.347968
\(726\) 0 0
\(727\) 46.1080 1.71005 0.855025 0.518587i \(-0.173542\pi\)
0.855025 + 0.518587i \(0.173542\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −30.9157 −1.14346
\(732\) 0 0
\(733\) 27.4384 1.01346 0.506731 0.862104i \(-0.330854\pi\)
0.506731 + 0.862104i \(0.330854\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 26.2462 0.966792
\(738\) 0 0
\(739\) −10.2462 −0.376913 −0.188456 0.982082i \(-0.560348\pi\)
−0.188456 + 0.982082i \(0.560348\pi\)
\(740\) 0 0
\(741\) −13.1231 −0.482089
\(742\) 0 0
\(743\) 50.9157 1.86792 0.933958 0.357382i \(-0.116331\pi\)
0.933958 + 0.357382i \(0.116331\pi\)
\(744\) 0 0
\(745\) 9.12311 0.334245
\(746\) 0 0
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 24.9848 0.911710 0.455855 0.890054i \(-0.349334\pi\)
0.455855 + 0.890054i \(0.349334\pi\)
\(752\) 0 0
\(753\) 56.9848 2.07664
\(754\) 0 0
\(755\) 5.93087 0.215846
\(756\) 0 0
\(757\) 3.12311 0.113511 0.0567556 0.998388i \(-0.481924\pi\)
0.0567556 + 0.998388i \(0.481924\pi\)
\(758\) 0 0
\(759\) −104.985 −3.81071
\(760\) 0 0
\(761\) −46.4924 −1.68535 −0.842674 0.538423i \(-0.819020\pi\)
−0.842674 + 0.538423i \(0.819020\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −11.3693 −0.411059
\(766\) 0 0
\(767\) 5.12311 0.184985
\(768\) 0 0
\(769\) −13.8617 −0.499867 −0.249934 0.968263i \(-0.580409\pi\)
−0.249934 + 0.968263i \(0.580409\pi\)
\(770\) 0 0
\(771\) 29.3002 1.05522
\(772\) 0 0
\(773\) −46.1771 −1.66087 −0.830437 0.557112i \(-0.811909\pi\)
−0.830437 + 0.557112i \(0.811909\pi\)
\(774\) 0 0
\(775\) 18.7386 0.673112
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) 39.3693 1.40874
\(782\) 0 0
\(783\) 2.87689 0.102812
\(784\) 0 0
\(785\) 12.6307 0.450808
\(786\) 0 0
\(787\) 16.0000 0.570338 0.285169 0.958477i \(-0.407950\pi\)
0.285169 + 0.958477i \(0.407950\pi\)
\(788\) 0 0
\(789\) 67.2311 2.39349
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 11.1231 0.394993
\(794\) 0 0
\(795\) −4.49242 −0.159330
\(796\) 0 0
\(797\) 13.5076 0.478463 0.239231 0.970963i \(-0.423105\pi\)
0.239231 + 0.970963i \(0.423105\pi\)
\(798\) 0 0
\(799\) −1.79261 −0.0634180
\(800\) 0 0
\(801\) −35.6155 −1.25841
\(802\) 0 0
\(803\) −30.7386 −1.08474
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.4924 −0.439754
\(808\) 0 0
\(809\) −30.1771 −1.06097 −0.530485 0.847694i \(-0.677990\pi\)
−0.530485 + 0.847694i \(0.677990\pi\)
\(810\) 0 0
\(811\) 46.7386 1.64122 0.820608 0.571492i \(-0.193635\pi\)
0.820608 + 0.571492i \(0.193635\pi\)
\(812\) 0 0
\(813\) −53.3002 −1.86932
\(814\) 0 0
\(815\) −11.5076 −0.403093
\(816\) 0 0
\(817\) −27.8617 −0.974759
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.4384 0.538806 0.269403 0.963028i \(-0.413174\pi\)
0.269403 + 0.963028i \(0.413174\pi\)
\(822\) 0 0
\(823\) −9.61553 −0.335176 −0.167588 0.985857i \(-0.553598\pi\)
−0.167588 + 0.985857i \(0.553598\pi\)
\(824\) 0 0
\(825\) −61.4773 −2.14036
\(826\) 0 0
\(827\) −35.8617 −1.24703 −0.623517 0.781809i \(-0.714297\pi\)
−0.623517 + 0.781809i \(0.714297\pi\)
\(828\) 0 0
\(829\) −18.4924 −0.642268 −0.321134 0.947034i \(-0.604064\pi\)
−0.321134 + 0.947034i \(0.604064\pi\)
\(830\) 0 0
\(831\) −75.2311 −2.60974
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) 5.75379 0.198880
\(838\) 0 0
\(839\) 10.7386 0.370739 0.185369 0.982669i \(-0.440652\pi\)
0.185369 + 0.982669i \(0.440652\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −25.6155 −0.882246
\(844\) 0 0
\(845\) 0.561553 0.0193180
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −21.7538 −0.746588
\(850\) 0 0
\(851\) −77.4773 −2.65589
\(852\) 0 0
\(853\) 29.6847 1.01638 0.508192 0.861244i \(-0.330314\pi\)
0.508192 + 0.861244i \(0.330314\pi\)
\(854\) 0 0
\(855\) −10.2462 −0.350413
\(856\) 0 0
\(857\) −40.7386 −1.39161 −0.695803 0.718233i \(-0.744951\pi\)
−0.695803 + 0.718233i \(0.744951\pi\)
\(858\) 0 0
\(859\) −12.9848 −0.443037 −0.221519 0.975156i \(-0.571101\pi\)
−0.221519 + 0.975156i \(0.571101\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −49.3002 −1.67820 −0.839099 0.543979i \(-0.816917\pi\)
−0.839099 + 0.543979i \(0.816917\pi\)
\(864\) 0 0
\(865\) 2.73863 0.0931163
\(866\) 0 0
\(867\) −39.2311 −1.33236
\(868\) 0 0
\(869\) −40.9848 −1.39032
\(870\) 0 0
\(871\) 5.12311 0.173590
\(872\) 0 0
\(873\) 29.3693 0.994001
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.6847 −1.27252 −0.636260 0.771474i \(-0.719520\pi\)
−0.636260 + 0.771474i \(0.719520\pi\)
\(878\) 0 0
\(879\) 39.5464 1.33387
\(880\) 0 0
\(881\) 30.8078 1.03794 0.518970 0.854792i \(-0.326316\pi\)
0.518970 + 0.854792i \(0.326316\pi\)
\(882\) 0 0
\(883\) 0.315342 0.0106121 0.00530604 0.999986i \(-0.498311\pi\)
0.00530604 + 0.999986i \(0.498311\pi\)
\(884\) 0 0
\(885\) 7.36932 0.247717
\(886\) 0 0
\(887\) 45.4773 1.52698 0.763489 0.645821i \(-0.223485\pi\)
0.763489 + 0.645821i \(0.223485\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 35.8617 1.20141
\(892\) 0 0
\(893\) −1.61553 −0.0540616
\(894\) 0 0
\(895\) 4.31534 0.144246
\(896\) 0 0
\(897\) −20.4924 −0.684222
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) −17.7538 −0.591464
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.9848 0.431631
\(906\) 0 0
\(907\) −20.8078 −0.690910 −0.345455 0.938435i \(-0.612275\pi\)
−0.345455 + 0.938435i \(0.612275\pi\)
\(908\) 0 0
\(909\) 25.3693 0.841447
\(910\) 0 0
\(911\) 15.3693 0.509208 0.254604 0.967045i \(-0.418055\pi\)
0.254604 + 0.967045i \(0.418055\pi\)
\(912\) 0 0
\(913\) 11.5076 0.380845
\(914\) 0 0
\(915\) 16.0000 0.528944
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 24.9848 0.824174 0.412087 0.911145i \(-0.364800\pi\)
0.412087 + 0.911145i \(0.364800\pi\)
\(920\) 0 0
\(921\) 33.6155 1.10767
\(922\) 0 0
\(923\) 7.68466 0.252944
\(924\) 0 0
\(925\) −45.3693 −1.49173
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) 9.86174 0.323553 0.161777 0.986827i \(-0.448278\pi\)
0.161777 + 0.986827i \(0.448278\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −27.8617 −0.912152
\(934\) 0 0
\(935\) 16.3542 0.534838
\(936\) 0 0
\(937\) 36.7386 1.20020 0.600099 0.799925i \(-0.295128\pi\)
0.600099 + 0.799925i \(0.295128\pi\)
\(938\) 0 0
\(939\) 68.6695 2.24094
\(940\) 0 0
\(941\) −55.7926 −1.81879 −0.909394 0.415937i \(-0.863454\pi\)
−0.909394 + 0.415937i \(0.863454\pi\)
\(942\) 0 0
\(943\) −24.9848 −0.813618
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.36932 0.239471 0.119735 0.992806i \(-0.461795\pi\)
0.119735 + 0.992806i \(0.461795\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) 31.3693 1.01722
\(952\) 0 0
\(953\) −18.6695 −0.604765 −0.302382 0.953187i \(-0.597782\pi\)
−0.302382 + 0.953187i \(0.597782\pi\)
\(954\) 0 0
\(955\) 8.63068 0.279282
\(956\) 0 0
\(957\) −26.2462 −0.848420
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 14.2462 0.459078
\(964\) 0 0
\(965\) −12.0000 −0.386294
\(966\) 0 0
\(967\) 2.56155 0.0823740 0.0411870 0.999151i \(-0.486886\pi\)
0.0411870 + 0.999151i \(0.486886\pi\)
\(968\) 0 0
\(969\) −74.6004 −2.39651
\(970\) 0 0
\(971\) 31.6847 1.01681 0.508405 0.861118i \(-0.330235\pi\)
0.508405 + 0.861118i \(0.330235\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −12.0000 −0.384308
\(976\) 0 0
\(977\) 54.4924 1.74337 0.871684 0.490069i \(-0.163029\pi\)
0.871684 + 0.490069i \(0.163029\pi\)
\(978\) 0 0
\(979\) 51.2311 1.63735
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 0 0
\(983\) −17.9309 −0.571906 −0.285953 0.958244i \(-0.592310\pi\)
−0.285953 + 0.958244i \(0.592310\pi\)
\(984\) 0 0
\(985\) 1.30019 0.0414274
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −43.5076 −1.38346
\(990\) 0 0
\(991\) −35.8617 −1.13919 −0.569593 0.821927i \(-0.692899\pi\)
−0.569593 + 0.821927i \(0.692899\pi\)
\(992\) 0 0
\(993\) 11.5076 0.365182
\(994\) 0 0
\(995\) −2.87689 −0.0912037
\(996\) 0 0
\(997\) −0.246211 −0.00779759 −0.00389879 0.999992i \(-0.501241\pi\)
−0.00389879 + 0.999992i \(0.501241\pi\)
\(998\) 0 0
\(999\) −13.9309 −0.440753
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5096.2.a.m.1.1 2
7.6 odd 2 104.2.a.b.1.2 2
21.20 even 2 936.2.a.j.1.2 2
28.27 even 2 208.2.a.e.1.1 2
35.13 even 4 2600.2.d.k.1249.4 4
35.27 even 4 2600.2.d.k.1249.1 4
35.34 odd 2 2600.2.a.p.1.1 2
56.13 odd 2 832.2.a.k.1.1 2
56.27 even 2 832.2.a.n.1.2 2
84.83 odd 2 1872.2.a.u.1.2 2
91.6 even 12 1352.2.o.d.361.2 8
91.20 even 12 1352.2.o.d.361.1 8
91.34 even 4 1352.2.f.c.337.3 4
91.41 even 12 1352.2.o.d.1161.2 8
91.48 odd 6 1352.2.i.f.1329.1 4
91.55 odd 6 1352.2.i.f.529.1 4
91.62 odd 6 1352.2.i.d.529.1 4
91.69 odd 6 1352.2.i.d.1329.1 4
91.76 even 12 1352.2.o.d.1161.1 8
91.83 even 4 1352.2.f.c.337.4 4
91.90 odd 2 1352.2.a.g.1.2 2
112.13 odd 4 3328.2.b.y.1665.4 4
112.27 even 4 3328.2.b.w.1665.4 4
112.69 odd 4 3328.2.b.y.1665.1 4
112.83 even 4 3328.2.b.w.1665.1 4
140.139 even 2 5200.2.a.bw.1.2 2
168.83 odd 2 7488.2.a.cv.1.1 2
168.125 even 2 7488.2.a.cu.1.1 2
364.83 odd 4 2704.2.f.k.337.2 4
364.307 odd 4 2704.2.f.k.337.1 4
364.363 even 2 2704.2.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.a.b.1.2 2 7.6 odd 2
208.2.a.e.1.1 2 28.27 even 2
832.2.a.k.1.1 2 56.13 odd 2
832.2.a.n.1.2 2 56.27 even 2
936.2.a.j.1.2 2 21.20 even 2
1352.2.a.g.1.2 2 91.90 odd 2
1352.2.f.c.337.3 4 91.34 even 4
1352.2.f.c.337.4 4 91.83 even 4
1352.2.i.d.529.1 4 91.62 odd 6
1352.2.i.d.1329.1 4 91.69 odd 6
1352.2.i.f.529.1 4 91.55 odd 6
1352.2.i.f.1329.1 4 91.48 odd 6
1352.2.o.d.361.1 8 91.20 even 12
1352.2.o.d.361.2 8 91.6 even 12
1352.2.o.d.1161.1 8 91.76 even 12
1352.2.o.d.1161.2 8 91.41 even 12
1872.2.a.u.1.2 2 84.83 odd 2
2600.2.a.p.1.1 2 35.34 odd 2
2600.2.d.k.1249.1 4 35.27 even 4
2600.2.d.k.1249.4 4 35.13 even 4
2704.2.a.p.1.1 2 364.363 even 2
2704.2.f.k.337.1 4 364.307 odd 4
2704.2.f.k.337.2 4 364.83 odd 4
3328.2.b.w.1665.1 4 112.83 even 4
3328.2.b.w.1665.4 4 112.27 even 4
3328.2.b.y.1665.1 4 112.69 odd 4
3328.2.b.y.1665.4 4 112.13 odd 4
5096.2.a.m.1.1 2 1.1 even 1 trivial
5200.2.a.bw.1.2 2 140.139 even 2
7488.2.a.cu.1.1 2 168.125 even 2
7488.2.a.cv.1.1 2 168.83 odd 2