Properties

Label 1352.2.o.d.1161.1
Level $1352$
Weight $2$
Character 1352.1161
Analytic conductor $10.796$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,2,Mod(361,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,0,0,0,0,-6,0,0,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7957743533\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.1731891456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 65x^{4} - 144x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1161.1
Root \(1.35234 - 0.780776i\) of defining polynomial
Character \(\chi\) \(=\) 1352.1161
Dual form 1352.2.o.d.361.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28078 + 2.21837i) q^{3} -0.561553i q^{5} +(2.21837 - 1.28078i) q^{7} +(-1.78078 - 3.08440i) q^{9} +(-4.43674 - 2.56155i) q^{11} +(1.24573 + 0.719224i) q^{15} +(2.84233 + 4.92306i) q^{17} +(4.43674 - 2.56155i) q^{19} +6.56155i q^{21} +(-4.00000 + 6.92820i) q^{23} +4.68466 q^{25} +1.43845 q^{27} +(1.00000 - 1.73205i) q^{29} +4.00000i q^{31} +(11.3649 - 6.56155i) q^{33} +(-0.719224 - 1.24573i) q^{35} +(8.38716 + 4.84233i) q^{37} +(2.70469 + 1.56155i) q^{41} +(2.71922 + 4.70983i) q^{43} +(-1.73205 + 1.00000i) q^{45} +0.315342i q^{47} +(-0.219224 + 0.379706i) q^{49} -14.5616 q^{51} +3.12311 q^{53} +(-1.43845 + 2.49146i) q^{55} +13.1231i q^{57} +(-4.43674 + 2.56155i) q^{59} +(-5.56155 - 9.63289i) q^{61} +(-7.90084 - 4.56155i) q^{63} +(4.43674 + 2.56155i) q^{67} +(-10.2462 - 17.7470i) q^{69} +(-6.65511 + 3.84233i) q^{71} +6.00000i q^{73} +(-6.00000 + 10.3923i) q^{75} -13.1231 q^{77} +8.00000 q^{79} +(3.50000 - 6.06218i) q^{81} +2.24621i q^{83} +(2.76456 - 1.59612i) q^{85} +(2.56155 + 4.43674i) q^{87} +(8.66025 + 5.00000i) q^{89} +(-8.87348 - 5.12311i) q^{93} +(-1.43845 - 2.49146i) q^{95} +(-7.14143 + 4.12311i) q^{97} +18.2462i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} - 6 q^{9} - 2 q^{17} - 32 q^{23} - 12 q^{25} + 28 q^{27} + 8 q^{29} - 14 q^{35} + 30 q^{43} - 10 q^{49} - 100 q^{51} - 8 q^{53} - 28 q^{55} - 28 q^{61} - 16 q^{69} - 48 q^{75} - 72 q^{77}+ \cdots - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.28078 + 2.21837i −0.739457 + 1.28078i 0.213284 + 0.976990i \(0.431584\pi\)
−0.952740 + 0.303786i \(0.901749\pi\)
\(4\) 0 0
\(5\) 0.561553i 0.251134i −0.992085 0.125567i \(-0.959925\pi\)
0.992085 0.125567i \(-0.0400750\pi\)
\(6\) 0 0
\(7\) 2.21837 1.28078i 0.838465 0.484088i −0.0182772 0.999833i \(-0.505818\pi\)
0.856742 + 0.515745i \(0.172485\pi\)
\(8\) 0 0
\(9\) −1.78078 3.08440i −0.593592 1.02813i
\(10\) 0 0
\(11\) −4.43674 2.56155i −1.33773 0.772337i −0.351257 0.936279i \(-0.614246\pi\)
−0.986470 + 0.163942i \(0.947579\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 1.24573 + 0.719224i 0.321647 + 0.185703i
\(16\) 0 0
\(17\) 2.84233 + 4.92306i 0.689366 + 1.19402i 0.972043 + 0.234802i \(0.0754442\pi\)
−0.282677 + 0.959215i \(0.591222\pi\)
\(18\) 0 0
\(19\) 4.43674 2.56155i 1.01786 0.587661i 0.104375 0.994538i \(-0.466716\pi\)
0.913483 + 0.406877i \(0.133382\pi\)
\(20\) 0 0
\(21\) 6.56155i 1.43185i
\(22\) 0 0
\(23\) −4.00000 + 6.92820i −0.834058 + 1.44463i 0.0607377 + 0.998154i \(0.480655\pi\)
−0.894795 + 0.446476i \(0.852679\pi\)
\(24\) 0 0
\(25\) 4.68466 0.936932
\(26\) 0 0
\(27\) 1.43845 0.276829
\(28\) 0 0
\(29\) 1.00000 1.73205i 0.185695 0.321634i −0.758115 0.652121i \(-0.773880\pi\)
0.943811 + 0.330487i \(0.107213\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) 11.3649 6.56155i 1.97838 1.14222i
\(34\) 0 0
\(35\) −0.719224 1.24573i −0.121571 0.210567i
\(36\) 0 0
\(37\) 8.38716 + 4.84233i 1.37884 + 0.796074i 0.992020 0.126081i \(-0.0402399\pi\)
0.386821 + 0.922155i \(0.373573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.70469 + 1.56155i 0.422401 + 0.243874i 0.696104 0.717941i \(-0.254915\pi\)
−0.273703 + 0.961814i \(0.588248\pi\)
\(42\) 0 0
\(43\) 2.71922 + 4.70983i 0.414678 + 0.718243i 0.995395 0.0958627i \(-0.0305610\pi\)
−0.580717 + 0.814106i \(0.697228\pi\)
\(44\) 0 0
\(45\) −1.73205 + 1.00000i −0.258199 + 0.149071i
\(46\) 0 0
\(47\) 0.315342i 0.0459973i 0.999735 + 0.0229986i \(0.00732134\pi\)
−0.999735 + 0.0229986i \(0.992679\pi\)
\(48\) 0 0
\(49\) −0.219224 + 0.379706i −0.0313177 + 0.0542438i
\(50\) 0 0
\(51\) −14.5616 −2.03903
\(52\) 0 0
\(53\) 3.12311 0.428992 0.214496 0.976725i \(-0.431189\pi\)
0.214496 + 0.976725i \(0.431189\pi\)
\(54\) 0 0
\(55\) −1.43845 + 2.49146i −0.193960 + 0.335949i
\(56\) 0 0
\(57\) 13.1231i 1.73820i
\(58\) 0 0
\(59\) −4.43674 + 2.56155i −0.577614 + 0.333486i −0.760185 0.649707i \(-0.774892\pi\)
0.182570 + 0.983193i \(0.441558\pi\)
\(60\) 0 0
\(61\) −5.56155 9.63289i −0.712084 1.23337i −0.964074 0.265636i \(-0.914418\pi\)
0.251990 0.967730i \(-0.418915\pi\)
\(62\) 0 0
\(63\) −7.90084 4.56155i −0.995412 0.574702i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.43674 + 2.56155i 0.542034 + 0.312943i 0.745903 0.666055i \(-0.232018\pi\)
−0.203869 + 0.978998i \(0.565352\pi\)
\(68\) 0 0
\(69\) −10.2462 17.7470i −1.23350 2.13648i
\(70\) 0 0
\(71\) −6.65511 + 3.84233i −0.789816 + 0.456001i −0.839898 0.542745i \(-0.817385\pi\)
0.0500816 + 0.998745i \(0.484052\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) −6.00000 + 10.3923i −0.692820 + 1.20000i
\(76\) 0 0
\(77\) −13.1231 −1.49552
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 3.50000 6.06218i 0.388889 0.673575i
\(82\) 0 0
\(83\) 2.24621i 0.246554i 0.992372 + 0.123277i \(0.0393403\pi\)
−0.992372 + 0.123277i \(0.960660\pi\)
\(84\) 0 0
\(85\) 2.76456 1.59612i 0.299858 0.173123i
\(86\) 0 0
\(87\) 2.56155 + 4.43674i 0.274627 + 0.475668i
\(88\) 0 0
\(89\) 8.66025 + 5.00000i 0.917985 + 0.529999i 0.882992 0.469389i \(-0.155526\pi\)
0.0349934 + 0.999388i \(0.488859\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −8.87348 5.12311i −0.920137 0.531241i
\(94\) 0 0
\(95\) −1.43845 2.49146i −0.147582 0.255619i
\(96\) 0 0
\(97\) −7.14143 + 4.12311i −0.725102 + 0.418638i −0.816628 0.577165i \(-0.804159\pi\)
0.0915255 + 0.995803i \(0.470826\pi\)
\(98\) 0 0
\(99\) 18.2462i 1.83381i
\(100\) 0 0
\(101\) −3.56155 + 6.16879i −0.354388 + 0.613818i −0.987013 0.160640i \(-0.948644\pi\)
0.632625 + 0.774458i \(0.281977\pi\)
\(102\) 0 0
\(103\) −2.24621 −0.221326 −0.110663 0.993858i \(-0.535297\pi\)
−0.110663 + 0.993858i \(0.535297\pi\)
\(104\) 0 0
\(105\) 3.68466 0.359586
\(106\) 0 0
\(107\) −2.00000 + 3.46410i −0.193347 + 0.334887i −0.946357 0.323122i \(-0.895268\pi\)
0.753010 + 0.658009i \(0.228601\pi\)
\(108\) 0 0
\(109\) 2.80776i 0.268935i −0.990918 0.134468i \(-0.957068\pi\)
0.990918 0.134468i \(-0.0429324\pi\)
\(110\) 0 0
\(111\) −21.4842 + 12.4039i −2.03919 + 1.17732i
\(112\) 0 0
\(113\) 9.24621 + 16.0149i 0.869810 + 1.50656i 0.862190 + 0.506585i \(0.169092\pi\)
0.00762026 + 0.999971i \(0.497574\pi\)
\(114\) 0 0
\(115\) 3.89055 + 2.24621i 0.362796 + 0.209460i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.6107 + 7.28078i 1.15602 + 0.667428i
\(120\) 0 0
\(121\) 7.62311 + 13.2036i 0.693010 + 1.20033i
\(122\) 0 0
\(123\) −6.92820 + 4.00000i −0.624695 + 0.360668i
\(124\) 0 0
\(125\) 5.43845i 0.486430i
\(126\) 0 0
\(127\) −5.12311 + 8.87348i −0.454602 + 0.787394i −0.998665 0.0516503i \(-0.983552\pi\)
0.544063 + 0.839044i \(0.316885\pi\)
\(128\) 0 0
\(129\) −13.9309 −1.22654
\(130\) 0 0
\(131\) −4.80776 −0.420056 −0.210028 0.977695i \(-0.567356\pi\)
−0.210028 + 0.977695i \(0.567356\pi\)
\(132\) 0 0
\(133\) 6.56155 11.3649i 0.568959 0.985466i
\(134\) 0 0
\(135\) 0.807764i 0.0695213i
\(136\) 0 0
\(137\) 2.70469 1.56155i 0.231077 0.133412i −0.379992 0.924990i \(-0.624073\pi\)
0.611069 + 0.791577i \(0.290740\pi\)
\(138\) 0 0
\(139\) −3.84233 6.65511i −0.325902 0.564479i 0.655792 0.754941i \(-0.272335\pi\)
−0.981695 + 0.190462i \(0.939001\pi\)
\(140\) 0 0
\(141\) −0.699544 0.403882i −0.0589122 0.0340130i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.972638 0.561553i −0.0807732 0.0466344i
\(146\) 0 0
\(147\) −0.561553 0.972638i −0.0463161 0.0802218i
\(148\) 0 0
\(149\) 14.0696 8.12311i 1.15263 0.665471i 0.203103 0.979157i \(-0.434898\pi\)
0.949527 + 0.313687i \(0.101564\pi\)
\(150\) 0 0
\(151\) 10.5616i 0.859487i −0.902951 0.429743i \(-0.858604\pi\)
0.902951 0.429743i \(-0.141396\pi\)
\(152\) 0 0
\(153\) 10.1231 17.5337i 0.818405 1.41752i
\(154\) 0 0
\(155\) 2.24621 0.180420
\(156\) 0 0
\(157\) −22.4924 −1.79509 −0.897545 0.440922i \(-0.854651\pi\)
−0.897545 + 0.440922i \(0.854651\pi\)
\(158\) 0 0
\(159\) −4.00000 + 6.92820i −0.317221 + 0.549442i
\(160\) 0 0
\(161\) 20.4924i 1.61503i
\(162\) 0 0
\(163\) 17.7470 10.2462i 1.39005 0.802545i 0.396729 0.917936i \(-0.370145\pi\)
0.993320 + 0.115391i \(0.0368120\pi\)
\(164\) 0 0
\(165\) −3.68466 6.38202i −0.286850 0.496839i
\(166\) 0 0
\(167\) 12.3376 + 7.12311i 0.954711 + 0.551202i 0.894541 0.446986i \(-0.147503\pi\)
0.0601696 + 0.998188i \(0.480836\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −15.8017 9.12311i −1.20838 0.697661i
\(172\) 0 0
\(173\) −2.43845 4.22351i −0.185392 0.321108i 0.758317 0.651886i \(-0.226022\pi\)
−0.943708 + 0.330778i \(0.892689\pi\)
\(174\) 0 0
\(175\) 10.3923 6.00000i 0.785584 0.453557i
\(176\) 0 0
\(177\) 13.1231i 0.986393i
\(178\) 0 0
\(179\) 3.84233 6.65511i 0.287189 0.497426i −0.685949 0.727650i \(-0.740612\pi\)
0.973138 + 0.230224i \(0.0739458\pi\)
\(180\) 0 0
\(181\) 23.1231 1.71873 0.859363 0.511365i \(-0.170860\pi\)
0.859363 + 0.511365i \(0.170860\pi\)
\(182\) 0 0
\(183\) 28.4924 2.10622
\(184\) 0 0
\(185\) 2.71922 4.70983i 0.199921 0.346274i
\(186\) 0 0
\(187\) 29.1231i 2.12969i
\(188\) 0 0
\(189\) 3.19101 1.84233i 0.232112 0.134010i
\(190\) 0 0
\(191\) −7.68466 13.3102i −0.556042 0.963094i −0.997822 0.0659698i \(-0.978986\pi\)
0.441779 0.897124i \(-0.354347\pi\)
\(192\) 0 0
\(193\) −18.5064 10.6847i −1.33212 0.769099i −0.346494 0.938052i \(-0.612628\pi\)
−0.985624 + 0.168954i \(0.945961\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.00514 1.15767i −0.142861 0.0824806i 0.426866 0.904315i \(-0.359618\pi\)
−0.569727 + 0.821834i \(0.692951\pi\)
\(198\) 0 0
\(199\) 2.56155 + 4.43674i 0.181584 + 0.314512i 0.942420 0.334432i \(-0.108544\pi\)
−0.760836 + 0.648944i \(0.775211\pi\)
\(200\) 0 0
\(201\) −11.3649 + 6.56155i −0.801621 + 0.462816i
\(202\) 0 0
\(203\) 5.12311i 0.359572i
\(204\) 0 0
\(205\) 0.876894 1.51883i 0.0612450 0.106079i
\(206\) 0 0
\(207\) 28.4924 1.98036
\(208\) 0 0
\(209\) −26.2462 −1.81549
\(210\) 0 0
\(211\) −7.84233 + 13.5833i −0.539888 + 0.935114i 0.459021 + 0.888425i \(0.348200\pi\)
−0.998909 + 0.0466885i \(0.985133\pi\)
\(212\) 0 0
\(213\) 19.6847i 1.34877i
\(214\) 0 0
\(215\) 2.64482 1.52699i 0.180375 0.104140i
\(216\) 0 0
\(217\) 5.12311 + 8.87348i 0.347779 + 0.602371i
\(218\) 0 0
\(219\) −13.3102 7.68466i −0.899421 0.519281i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 13.5833 + 7.84233i 0.909606 + 0.525161i 0.880304 0.474409i \(-0.157338\pi\)
0.0293016 + 0.999571i \(0.490672\pi\)
\(224\) 0 0
\(225\) −8.34233 14.4493i −0.556155 0.963289i
\(226\) 0 0
\(227\) −6.92820 + 4.00000i −0.459841 + 0.265489i −0.711977 0.702202i \(-0.752200\pi\)
0.252136 + 0.967692i \(0.418867\pi\)
\(228\) 0 0
\(229\) 6.80776i 0.449870i −0.974374 0.224935i \(-0.927783\pi\)
0.974374 0.224935i \(-0.0722169\pi\)
\(230\) 0 0
\(231\) 16.8078 29.1119i 1.10587 1.91542i
\(232\) 0 0
\(233\) 6.80776 0.445991 0.222996 0.974819i \(-0.428416\pi\)
0.222996 + 0.974819i \(0.428416\pi\)
\(234\) 0 0
\(235\) 0.177081 0.0115515
\(236\) 0 0
\(237\) −10.2462 + 17.7470i −0.665563 + 1.15279i
\(238\) 0 0
\(239\) 2.56155i 0.165693i −0.996562 0.0828465i \(-0.973599\pi\)
0.996562 0.0828465i \(-0.0264011\pi\)
\(240\) 0 0
\(241\) 3.25088 1.87689i 0.209407 0.120901i −0.391629 0.920123i \(-0.628088\pi\)
0.601036 + 0.799222i \(0.294755\pi\)
\(242\) 0 0
\(243\) 11.1231 + 19.2658i 0.713548 + 1.23590i
\(244\) 0 0
\(245\) 0.213225 + 0.123106i 0.0136225 + 0.00786493i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −4.98293 2.87689i −0.315780 0.182316i
\(250\) 0 0
\(251\) 11.1231 + 19.2658i 0.702084 + 1.21605i 0.967734 + 0.251976i \(0.0810803\pi\)
−0.265649 + 0.964070i \(0.585586\pi\)
\(252\) 0 0
\(253\) 35.4939 20.4924i 2.23148 1.28835i
\(254\) 0 0
\(255\) 8.17708i 0.512069i
\(256\) 0 0
\(257\) 5.71922 9.90599i 0.356755 0.617918i −0.630661 0.776058i \(-0.717216\pi\)
0.987417 + 0.158140i \(0.0505496\pi\)
\(258\) 0 0
\(259\) 24.8078 1.54148
\(260\) 0 0
\(261\) −7.12311 −0.440909
\(262\) 0 0
\(263\) 13.1231 22.7299i 0.809205 1.40158i −0.104210 0.994555i \(-0.533231\pi\)
0.913415 0.407029i \(-0.133435\pi\)
\(264\) 0 0
\(265\) 1.75379i 0.107734i
\(266\) 0 0
\(267\) −22.1837 + 12.8078i −1.35762 + 0.783822i
\(268\) 0 0
\(269\) 2.43845 + 4.22351i 0.148675 + 0.257512i 0.930738 0.365687i \(-0.119166\pi\)
−0.782063 + 0.623199i \(0.785833\pi\)
\(270\) 0 0
\(271\) −18.0201 10.4039i −1.09464 0.631991i −0.159832 0.987144i \(-0.551095\pi\)
−0.934808 + 0.355153i \(0.884429\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −20.7846 12.0000i −1.25336 0.723627i
\(276\) 0 0
\(277\) 14.6847 + 25.4346i 0.882316 + 1.52822i 0.848760 + 0.528779i \(0.177350\pi\)
0.0335558 + 0.999437i \(0.489317\pi\)
\(278\) 0 0
\(279\) 12.3376 7.12311i 0.738632 0.426449i
\(280\) 0 0
\(281\) 10.0000i 0.596550i −0.954480 0.298275i \(-0.903589\pi\)
0.954480 0.298275i \(-0.0964112\pi\)
\(282\) 0 0
\(283\) −4.24621 + 7.35465i −0.252411 + 0.437189i −0.964189 0.265216i \(-0.914557\pi\)
0.711778 + 0.702404i \(0.247890\pi\)
\(284\) 0 0
\(285\) 7.36932 0.436521
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) −7.65767 + 13.2635i −0.450451 + 0.780204i
\(290\) 0 0
\(291\) 21.1231i 1.23826i
\(292\) 0 0
\(293\) −13.3701 + 7.71922i −0.781089 + 0.450962i −0.836816 0.547484i \(-0.815586\pi\)
0.0557272 + 0.998446i \(0.482252\pi\)
\(294\) 0 0
\(295\) 1.43845 + 2.49146i 0.0837496 + 0.145059i
\(296\) 0 0
\(297\) −6.38202 3.68466i −0.370322 0.213806i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0645 + 6.96543i 0.695385 + 0.401481i
\(302\) 0 0
\(303\) −9.12311 15.8017i −0.524109 0.907783i
\(304\) 0 0
\(305\) −5.40938 + 3.12311i −0.309740 + 0.178829i
\(306\) 0 0
\(307\) 13.1231i 0.748975i −0.927232 0.374488i \(-0.877819\pi\)
0.927232 0.374488i \(-0.122181\pi\)
\(308\) 0 0
\(309\) 2.87689 4.98293i 0.163661 0.283469i
\(310\) 0 0
\(311\) 10.8769 0.616772 0.308386 0.951261i \(-0.400211\pi\)
0.308386 + 0.951261i \(0.400211\pi\)
\(312\) 0 0
\(313\) 26.8078 1.51526 0.757632 0.652682i \(-0.226356\pi\)
0.757632 + 0.652682i \(0.226356\pi\)
\(314\) 0 0
\(315\) −2.56155 + 4.43674i −0.144327 + 0.249982i
\(316\) 0 0
\(317\) 12.2462i 0.687816i −0.939003 0.343908i \(-0.888249\pi\)
0.939003 0.343908i \(-0.111751\pi\)
\(318\) 0 0
\(319\) −8.87348 + 5.12311i −0.496819 + 0.286839i
\(320\) 0 0
\(321\) −5.12311 8.87348i −0.285944 0.495269i
\(322\) 0 0
\(323\) 25.2213 + 14.5616i 1.40335 + 0.810226i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 6.22866 + 3.59612i 0.344446 + 0.198866i
\(328\) 0 0
\(329\) 0.403882 + 0.699544i 0.0222667 + 0.0385671i
\(330\) 0 0
\(331\) −3.89055 + 2.24621i −0.213844 + 0.123463i −0.603097 0.797668i \(-0.706067\pi\)
0.389253 + 0.921131i \(0.372733\pi\)
\(332\) 0 0
\(333\) 34.4924i 1.89017i
\(334\) 0 0
\(335\) 1.43845 2.49146i 0.0785908 0.136123i
\(336\) 0 0
\(337\) 13.1922 0.718627 0.359313 0.933217i \(-0.383011\pi\)
0.359313 + 0.933217i \(0.383011\pi\)
\(338\) 0 0
\(339\) −47.3693 −2.57275
\(340\) 0 0
\(341\) 10.2462 17.7470i 0.554863 0.961052i
\(342\) 0 0
\(343\) 19.0540i 1.02882i
\(344\) 0 0
\(345\) −9.96585 + 5.75379i −0.536544 + 0.309774i
\(346\) 0 0
\(347\) −3.84233 6.65511i −0.206267 0.357265i 0.744269 0.667880i \(-0.232798\pi\)
−0.950536 + 0.310615i \(0.899465\pi\)
\(348\) 0 0
\(349\) 10.3324 + 5.96543i 0.553083 + 0.319322i 0.750364 0.661024i \(-0.229878\pi\)
−0.197282 + 0.980347i \(0.563211\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.11407 4.68466i −0.431868 0.249339i 0.268274 0.963343i \(-0.413547\pi\)
−0.700142 + 0.714003i \(0.746880\pi\)
\(354\) 0 0
\(355\) 2.15767 + 3.73720i 0.114517 + 0.198350i
\(356\) 0 0
\(357\) −32.3029 + 18.6501i −1.70965 + 0.987068i
\(358\) 0 0
\(359\) 14.2462i 0.751886i −0.926643 0.375943i \(-0.877319\pi\)
0.926643 0.375943i \(-0.122681\pi\)
\(360\) 0 0
\(361\) 3.62311 6.27540i 0.190690 0.330284i
\(362\) 0 0
\(363\) −39.0540 −2.04980
\(364\) 0 0
\(365\) 3.36932 0.176358
\(366\) 0 0
\(367\) −4.80776 + 8.32729i −0.250963 + 0.434681i −0.963791 0.266658i \(-0.914081\pi\)
0.712828 + 0.701339i \(0.247414\pi\)
\(368\) 0 0
\(369\) 11.1231i 0.579046i
\(370\) 0 0
\(371\) 6.92820 4.00000i 0.359694 0.207670i
\(372\) 0 0
\(373\) 5.80776 + 10.0593i 0.300715 + 0.520853i 0.976298 0.216431i \(-0.0694415\pi\)
−0.675583 + 0.737284i \(0.736108\pi\)
\(374\) 0 0
\(375\) 12.0645 + 6.96543i 0.623007 + 0.359694i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −4.98293 2.87689i −0.255956 0.147776i 0.366533 0.930405i \(-0.380545\pi\)
−0.622488 + 0.782629i \(0.713878\pi\)
\(380\) 0 0
\(381\) −13.1231 22.7299i −0.672317 1.16449i
\(382\) 0 0
\(383\) −9.69276 + 5.59612i −0.495277 + 0.285948i −0.726761 0.686890i \(-0.758975\pi\)
0.231484 + 0.972839i \(0.425642\pi\)
\(384\) 0 0
\(385\) 7.36932i 0.375575i
\(386\) 0 0
\(387\) 9.68466 16.7743i 0.492299 0.852687i
\(388\) 0 0
\(389\) −20.7386 −1.05149 −0.525745 0.850642i \(-0.676213\pi\)
−0.525745 + 0.850642i \(0.676213\pi\)
\(390\) 0 0
\(391\) −45.4773 −2.29988
\(392\) 0 0
\(393\) 6.15767 10.6654i 0.310613 0.537998i
\(394\) 0 0
\(395\) 4.49242i 0.226038i
\(396\) 0 0
\(397\) 1.73205 1.00000i 0.0869291 0.0501886i −0.455905 0.890028i \(-0.650684\pi\)
0.542834 + 0.839840i \(0.317351\pi\)
\(398\) 0 0
\(399\) 16.8078 + 29.1119i 0.841441 + 1.45742i
\(400\) 0 0
\(401\) 3.13114 + 1.80776i 0.156362 + 0.0902754i 0.576139 0.817352i \(-0.304559\pi\)
−0.419778 + 0.907627i \(0.637892\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −3.40423 1.96543i −0.169158 0.0976632i
\(406\) 0 0
\(407\) −24.8078 42.9683i −1.22968 2.12986i
\(408\) 0 0
\(409\) 11.1517 6.43845i 0.551417 0.318361i −0.198276 0.980146i \(-0.563534\pi\)
0.749693 + 0.661785i \(0.230201\pi\)
\(410\) 0 0
\(411\) 8.00000i 0.394611i
\(412\) 0 0
\(413\) −6.56155 + 11.3649i −0.322873 + 0.559232i
\(414\) 0 0
\(415\) 1.26137 0.0619180
\(416\) 0 0
\(417\) 19.6847 0.963962
\(418\) 0 0
\(419\) 0.965435 1.67218i 0.0471646 0.0816914i −0.841479 0.540289i \(-0.818315\pi\)
0.888644 + 0.458598i \(0.151648\pi\)
\(420\) 0 0
\(421\) 6.31534i 0.307791i −0.988087 0.153895i \(-0.950818\pi\)
0.988087 0.153895i \(-0.0491819\pi\)
\(422\) 0 0
\(423\) 0.972638 0.561553i 0.0472913 0.0273036i
\(424\) 0 0
\(425\) 13.3153 + 23.0628i 0.645889 + 1.11871i
\(426\) 0 0
\(427\) −24.6752 14.2462i −1.19411 0.689422i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.0748 + 9.28078i 0.774295 + 0.447039i 0.834405 0.551153i \(-0.185812\pi\)
−0.0601098 + 0.998192i \(0.519145\pi\)
\(432\) 0 0
\(433\) −3.08854 5.34951i −0.148426 0.257081i 0.782220 0.623002i \(-0.214087\pi\)
−0.930646 + 0.365921i \(0.880754\pi\)
\(434\) 0 0
\(435\) 2.49146 1.43845i 0.119457 0.0689683i
\(436\) 0 0
\(437\) 40.9848i 1.96057i
\(438\) 0 0
\(439\) 10.5616 18.2931i 0.504075 0.873084i −0.495913 0.868372i \(-0.665167\pi\)
0.999989 0.00471229i \(-0.00149997\pi\)
\(440\) 0 0
\(441\) 1.56155 0.0743597
\(442\) 0 0
\(443\) 20.8078 0.988607 0.494303 0.869289i \(-0.335423\pi\)
0.494303 + 0.869289i \(0.335423\pi\)
\(444\) 0 0
\(445\) 2.80776 4.86319i 0.133101 0.230537i
\(446\) 0 0
\(447\) 41.6155i 1.96835i
\(448\) 0 0
\(449\) −28.3525 + 16.3693i −1.33804 + 0.772516i −0.986516 0.163664i \(-0.947669\pi\)
−0.351521 + 0.936180i \(0.614335\pi\)
\(450\) 0 0
\(451\) −8.00000 13.8564i −0.376705 0.652473i
\(452\) 0 0
\(453\) 23.4294 + 13.5270i 1.10081 + 0.635553i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −21.4243 12.3693i −1.00219 0.578612i −0.0932915 0.995639i \(-0.529739\pi\)
−0.908894 + 0.417027i \(0.863072\pi\)
\(458\) 0 0
\(459\) 4.08854 + 7.08156i 0.190837 + 0.330539i
\(460\) 0 0
\(461\) −30.1444 + 17.4039i −1.40397 + 0.810580i −0.994797 0.101879i \(-0.967514\pi\)
−0.409168 + 0.912459i \(0.634181\pi\)
\(462\) 0 0
\(463\) 38.2462i 1.77745i −0.458439 0.888726i \(-0.651591\pi\)
0.458439 0.888726i \(-0.348409\pi\)
\(464\) 0 0
\(465\) −2.87689 + 4.98293i −0.133413 + 0.231078i
\(466\) 0 0
\(467\) −40.4924 −1.87377 −0.936883 0.349643i \(-0.886303\pi\)
−0.936883 + 0.349643i \(0.886303\pi\)
\(468\) 0 0
\(469\) 13.1231 0.605969
\(470\) 0 0
\(471\) 28.8078 49.8965i 1.32739 2.29911i
\(472\) 0 0
\(473\) 27.8617i 1.28108i
\(474\) 0 0
\(475\) 20.7846 12.0000i 0.953663 0.550598i
\(476\) 0 0
\(477\) −5.56155 9.63289i −0.254646 0.441060i
\(478\) 0 0
\(479\) 9.69276 + 5.59612i 0.442874 + 0.255693i 0.704816 0.709390i \(-0.251030\pi\)
−0.261942 + 0.965084i \(0.584363\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −45.4598 26.2462i −2.06849 1.19424i
\(484\) 0 0
\(485\) 2.31534 + 4.01029i 0.105134 + 0.182098i
\(486\) 0 0
\(487\) 1.51883 0.876894i 0.0688246 0.0397359i −0.465193 0.885209i \(-0.654015\pi\)
0.534017 + 0.845473i \(0.320682\pi\)
\(488\) 0 0
\(489\) 52.4924i 2.37379i
\(490\) 0 0
\(491\) 0.473012 0.819281i 0.0213467 0.0369737i −0.855155 0.518373i \(-0.826538\pi\)
0.876501 + 0.481399i \(0.159871\pi\)
\(492\) 0 0
\(493\) 11.3693 0.512048
\(494\) 0 0
\(495\) 10.2462 0.460533
\(496\) 0 0
\(497\) −9.84233 + 17.0474i −0.441489 + 0.764681i
\(498\) 0 0
\(499\) 28.4924i 1.27550i 0.770245 + 0.637748i \(0.220134\pi\)
−0.770245 + 0.637748i \(0.779866\pi\)
\(500\) 0 0
\(501\) −31.6034 + 18.2462i −1.41193 + 0.815181i
\(502\) 0 0
\(503\) 3.68466 + 6.38202i 0.164291 + 0.284560i 0.936403 0.350926i \(-0.114133\pi\)
−0.772112 + 0.635486i \(0.780800\pi\)
\(504\) 0 0
\(505\) 3.46410 + 2.00000i 0.154150 + 0.0889988i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.5885 + 9.00000i 0.690946 + 0.398918i 0.803966 0.594675i \(-0.202719\pi\)
−0.113020 + 0.993593i \(0.536052\pi\)
\(510\) 0 0
\(511\) 7.68466 + 13.3102i 0.339949 + 0.588809i
\(512\) 0 0
\(513\) 6.38202 3.68466i 0.281773 0.162682i
\(514\) 0 0
\(515\) 1.26137i 0.0555824i
\(516\) 0 0
\(517\) 0.807764 1.39909i 0.0355254 0.0615318i
\(518\) 0 0
\(519\) 12.4924 0.548356
\(520\) 0 0
\(521\) −9.68466 −0.424293 −0.212146 0.977238i \(-0.568045\pi\)
−0.212146 + 0.977238i \(0.568045\pi\)
\(522\) 0 0
\(523\) 0.246211 0.426450i 0.0107661 0.0186474i −0.860592 0.509295i \(-0.829906\pi\)
0.871358 + 0.490647i \(0.163240\pi\)
\(524\) 0 0
\(525\) 30.7386i 1.34154i
\(526\) 0 0
\(527\) −19.6922 + 11.3693i −0.857807 + 0.495255i
\(528\) 0 0
\(529\) −20.5000 35.5070i −0.891304 1.54378i
\(530\) 0 0
\(531\) 15.8017 + 9.12311i 0.685735 + 0.395909i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.94528 + 1.12311i 0.0841016 + 0.0485561i
\(536\) 0 0
\(537\) 9.84233 + 17.0474i 0.424728 + 0.735650i
\(538\) 0 0
\(539\) 1.94528 1.12311i 0.0837890 0.0483756i
\(540\) 0 0
\(541\) 5.68466i 0.244403i 0.992505 + 0.122201i \(0.0389953\pi\)
−0.992505 + 0.122201i \(0.961005\pi\)
\(542\) 0 0
\(543\) −29.6155 + 51.2956i −1.27092 + 2.20130i
\(544\) 0 0
\(545\) −1.57671 −0.0675387
\(546\) 0 0
\(547\) −29.4384 −1.25870 −0.629349 0.777123i \(-0.716678\pi\)
−0.629349 + 0.777123i \(0.716678\pi\)
\(548\) 0 0
\(549\) −19.8078 + 34.3081i −0.845375 + 1.46423i
\(550\) 0 0
\(551\) 10.2462i 0.436503i
\(552\) 0 0
\(553\) 17.7470 10.2462i 0.754677 0.435713i
\(554\) 0 0
\(555\) 6.96543 + 12.0645i 0.295666 + 0.512109i
\(556\) 0 0
\(557\) −36.5264 21.0885i −1.54767 0.893550i −0.998319 0.0579613i \(-0.981540\pi\)
−0.549355 0.835589i \(-0.685127\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 64.6058 + 37.3002i 2.72766 + 1.57482i
\(562\) 0 0
\(563\) −3.52699 6.10892i −0.148645 0.257460i 0.782082 0.623176i \(-0.214158\pi\)
−0.930727 + 0.365715i \(0.880824\pi\)
\(564\) 0 0
\(565\) 8.99322 5.19224i 0.378347 0.218439i
\(566\) 0 0
\(567\) 17.9309i 0.753026i
\(568\) 0 0
\(569\) −20.8423 + 36.1000i −0.873756 + 1.51339i −0.0156737 + 0.999877i \(0.504989\pi\)
−0.858082 + 0.513512i \(0.828344\pi\)
\(570\) 0 0
\(571\) −28.8078 −1.20557 −0.602784 0.797905i \(-0.705942\pi\)
−0.602784 + 0.797905i \(0.705942\pi\)
\(572\) 0 0
\(573\) 39.3693 1.64468
\(574\) 0 0
\(575\) −18.7386 + 32.4563i −0.781455 + 1.35352i
\(576\) 0 0
\(577\) 24.2462i 1.00938i −0.863300 0.504691i \(-0.831606\pi\)
0.863300 0.504691i \(-0.168394\pi\)
\(578\) 0 0
\(579\) 47.4050 27.3693i 1.97009 1.13743i
\(580\) 0 0
\(581\) 2.87689 + 4.98293i 0.119354 + 0.206727i
\(582\) 0 0
\(583\) −13.8564 8.00000i −0.573874 0.331326i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.6375 + 12.4924i 0.893076 + 0.515617i 0.874947 0.484218i \(-0.160896\pi\)
0.0181284 + 0.999836i \(0.494229\pi\)
\(588\) 0 0
\(589\) 10.2462 + 17.7470i 0.422188 + 0.731251i
\(590\) 0 0
\(591\) 5.13628 2.96543i 0.211278 0.121982i
\(592\) 0 0
\(593\) 38.4924i 1.58069i −0.612659 0.790347i \(-0.709900\pi\)
0.612659 0.790347i \(-0.290100\pi\)
\(594\) 0 0
\(595\) 4.08854 7.08156i 0.167614 0.290316i
\(596\) 0 0
\(597\) −13.1231 −0.537093
\(598\) 0 0
\(599\) 23.3693 0.954844 0.477422 0.878674i \(-0.341571\pi\)
0.477422 + 0.878674i \(0.341571\pi\)
\(600\) 0 0
\(601\) −17.0885 + 29.5982i −0.697056 + 1.20734i 0.272427 + 0.962177i \(0.412174\pi\)
−0.969483 + 0.245160i \(0.921160\pi\)
\(602\) 0 0
\(603\) 18.2462i 0.743043i
\(604\) 0 0
\(605\) 7.41452 4.28078i 0.301443 0.174038i
\(606\) 0 0
\(607\) −7.68466 13.3102i −0.311911 0.540245i 0.666865 0.745178i \(-0.267636\pi\)
−0.978776 + 0.204933i \(0.934302\pi\)
\(608\) 0 0
\(609\) 11.3649 + 6.56155i 0.460531 + 0.265888i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −5.19615 3.00000i −0.209871 0.121169i 0.391381 0.920229i \(-0.371998\pi\)
−0.601251 + 0.799060i \(0.705331\pi\)
\(614\) 0 0
\(615\) 2.24621 + 3.89055i 0.0905760 + 0.156882i
\(616\) 0 0
\(617\) 18.9328 10.9309i 0.762207 0.440060i −0.0678808 0.997693i \(-0.521624\pi\)
0.830087 + 0.557633i \(0.188290\pi\)
\(618\) 0 0
\(619\) 29.7538i 1.19591i 0.801531 + 0.597953i \(0.204019\pi\)
−0.801531 + 0.597953i \(0.795981\pi\)
\(620\) 0 0
\(621\) −5.75379 + 9.96585i −0.230892 + 0.399916i
\(622\) 0 0
\(623\) 25.6155 1.02626
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) 0 0
\(627\) 33.6155 58.2238i 1.34247 2.32523i
\(628\) 0 0
\(629\) 55.0540i 2.19515i
\(630\) 0 0
\(631\) 41.2961 23.8423i 1.64397 0.949148i 0.664571 0.747225i \(-0.268614\pi\)
0.979401 0.201923i \(-0.0647192\pi\)
\(632\) 0 0
\(633\) −20.0885 34.7944i −0.798448 1.38295i
\(634\) 0 0
\(635\) 4.98293 + 2.87689i 0.197741 + 0.114166i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 23.7025 + 13.6847i 0.937657 + 0.541357i
\(640\) 0 0
\(641\) −4.12311 7.14143i −0.162853 0.282069i 0.773038 0.634360i \(-0.218736\pi\)
−0.935891 + 0.352290i \(0.885403\pi\)
\(642\) 0 0
\(643\) 31.0572 17.9309i 1.22478 0.707124i 0.258843 0.965919i \(-0.416659\pi\)
0.965932 + 0.258795i \(0.0833254\pi\)
\(644\) 0 0
\(645\) 7.82292i 0.308027i
\(646\) 0 0
\(647\) 2.56155 4.43674i 0.100705 0.174426i −0.811270 0.584671i \(-0.801223\pi\)
0.911975 + 0.410245i \(0.134557\pi\)
\(648\) 0 0
\(649\) 26.2462 1.03025
\(650\) 0 0
\(651\) −26.2462 −1.02867
\(652\) 0 0
\(653\) 2.43845 4.22351i 0.0954238 0.165279i −0.814362 0.580358i \(-0.802913\pi\)
0.909785 + 0.415079i \(0.136246\pi\)
\(654\) 0 0
\(655\) 2.69981i 0.105490i
\(656\) 0 0
\(657\) 18.5064 10.6847i 0.722002 0.416848i
\(658\) 0 0
\(659\) −8.24621 14.2829i −0.321227 0.556381i 0.659515 0.751692i \(-0.270762\pi\)
−0.980741 + 0.195311i \(0.937429\pi\)
\(660\) 0 0
\(661\) −35.2807 20.3693i −1.37226 0.792275i −0.381048 0.924555i \(-0.624437\pi\)
−0.991212 + 0.132281i \(0.957770\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.38202 3.68466i −0.247484 0.142885i
\(666\) 0 0
\(667\) 8.00000 + 13.8564i 0.309761 + 0.536522i
\(668\) 0 0
\(669\) −34.7944 + 20.0885i −1.34523 + 0.776668i
\(670\) 0 0
\(671\) 56.9848i 2.19988i
\(672\) 0 0
\(673\) −9.65009 + 16.7145i −0.371984 + 0.644295i −0.989871 0.141972i \(-0.954656\pi\)
0.617887 + 0.786267i \(0.287989\pi\)
\(674\) 0 0
\(675\) 6.73863 0.259370
\(676\) 0 0
\(677\) −1.36932 −0.0526271 −0.0263136 0.999654i \(-0.508377\pi\)
−0.0263136 + 0.999654i \(0.508377\pi\)
\(678\) 0 0
\(679\) −10.5616 + 18.2931i −0.405315 + 0.702027i
\(680\) 0 0
\(681\) 20.4924i 0.785271i
\(682\) 0 0
\(683\) 20.7846 12.0000i 0.795301 0.459167i −0.0465244 0.998917i \(-0.514815\pi\)
0.841825 + 0.539750i \(0.181481\pi\)
\(684\) 0 0
\(685\) −0.876894 1.51883i −0.0335044 0.0580313i
\(686\) 0 0
\(687\) 15.1021 + 8.71922i 0.576183 + 0.332659i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −14.7093 8.49242i −0.559568 0.323067i 0.193404 0.981119i \(-0.438047\pi\)
−0.752972 + 0.658052i \(0.771381\pi\)
\(692\) 0 0
\(693\) 23.3693 + 40.4768i 0.887727 + 1.53759i
\(694\) 0 0
\(695\) −3.73720 + 2.15767i −0.141760 + 0.0818451i
\(696\) 0 0
\(697\) 17.7538i 0.672473i
\(698\) 0 0
\(699\) −8.71922 + 15.1021i −0.329791 + 0.571215i
\(700\) 0 0
\(701\) −22.6307 −0.854749 −0.427375 0.904075i \(-0.640561\pi\)
−0.427375 + 0.904075i \(0.640561\pi\)
\(702\) 0 0
\(703\) 49.6155 1.87129
\(704\) 0 0
\(705\) −0.226801 + 0.392831i −0.00854182 + 0.0147949i
\(706\) 0 0
\(707\) 18.2462i 0.686219i
\(708\) 0 0
\(709\) 21.4243 12.3693i 0.804606 0.464539i −0.0404733 0.999181i \(-0.512887\pi\)
0.845079 + 0.534641i \(0.179553\pi\)
\(710\) 0 0
\(711\) −14.2462 24.6752i −0.534275 0.925391i
\(712\) 0 0
\(713\) −27.7128 16.0000i −1.03785 0.599205i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.68247 + 3.28078i 0.212216 + 0.122523i
\(718\) 0 0
\(719\) −6.56155 11.3649i −0.244705 0.423841i 0.717344 0.696719i \(-0.245358\pi\)
−0.962049 + 0.272878i \(0.912024\pi\)
\(720\) 0 0
\(721\) −4.98293 + 2.87689i −0.185574 + 0.107141i
\(722\) 0 0
\(723\) 9.61553i 0.357605i
\(724\) 0 0
\(725\) 4.68466 8.11407i 0.173984 0.301349i
\(726\) 0 0
\(727\) 46.1080 1.71005 0.855025 0.518587i \(-0.173542\pi\)
0.855025 + 0.518587i \(0.173542\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −15.4579 + 26.7738i −0.571730 + 0.990265i
\(732\) 0 0
\(733\) 27.4384i 1.01346i −0.862104 0.506731i \(-0.830854\pi\)
0.862104 0.506731i \(-0.169146\pi\)
\(734\) 0 0
\(735\) −0.546188 + 0.315342i −0.0201464 + 0.0116315i
\(736\) 0 0
\(737\) −13.1231 22.7299i −0.483396 0.837266i
\(738\) 0 0
\(739\) −8.87348 5.12311i −0.326416 0.188456i 0.327833 0.944736i \(-0.393682\pi\)
−0.654249 + 0.756279i \(0.727015\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −44.0943 25.4579i −1.61766 0.933958i −0.987523 0.157477i \(-0.949664\pi\)
−0.630140 0.776481i \(-0.717003\pi\)
\(744\) 0 0
\(745\) −4.56155 7.90084i −0.167122 0.289464i
\(746\) 0 0
\(747\) 6.92820 4.00000i 0.253490 0.146352i
\(748\) 0 0
\(749\) 10.2462i 0.374388i
\(750\) 0 0
\(751\) 12.4924 21.6375i 0.455855 0.789564i −0.542882 0.839809i \(-0.682667\pi\)
0.998737 + 0.0502450i \(0.0160002\pi\)
\(752\) 0 0
\(753\) −56.9848 −2.07664
\(754\) 0 0
\(755\) −5.93087 −0.215846
\(756\) 0 0
\(757\) −1.56155 + 2.70469i −0.0567556 + 0.0983036i −0.893007 0.450042i \(-0.851409\pi\)
0.836252 + 0.548346i \(0.184742\pi\)
\(758\) 0 0
\(759\) 104.985i 3.81071i
\(760\) 0 0
\(761\) −40.2636 + 23.2462i −1.45956 + 0.842674i −0.998989 0.0449510i \(-0.985687\pi\)
−0.460566 + 0.887626i \(0.652353\pi\)
\(762\) 0 0
\(763\) −3.59612 6.22866i −0.130188 0.225493i
\(764\) 0 0
\(765\) −9.84612 5.68466i −0.355987 0.205529i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −12.0046 6.93087i −0.432898 0.249934i 0.267683 0.963507i \(-0.413742\pi\)
−0.700580 + 0.713574i \(0.747075\pi\)
\(770\) 0 0
\(771\) 14.6501 + 25.3747i 0.527610 + 0.913848i
\(772\) 0 0
\(773\) 39.9905 23.0885i 1.43836 0.830437i 0.440623 0.897692i \(-0.354757\pi\)
0.997736 + 0.0672550i \(0.0214241\pi\)
\(774\) 0 0
\(775\) 18.7386i 0.673112i
\(776\) 0 0
\(777\) −31.7732 + 55.0328i −1.13986 + 1.97429i
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) 39.3693 1.40874
\(782\) 0 0
\(783\) 1.43845 2.49146i 0.0514059 0.0890376i
\(784\) 0 0
\(785\) 12.6307i 0.450808i
\(786\) 0 0
\(787\) 13.8564 8.00000i 0.493928 0.285169i −0.232275 0.972650i \(-0.574617\pi\)
0.726202 + 0.687481i \(0.241284\pi\)
\(788\) 0 0
\(789\) 33.6155 + 58.2238i 1.19674 + 2.07282i
\(790\) 0 0
\(791\) 41.0230 + 23.6847i 1.45861 + 0.842130i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 3.89055 + 2.24621i 0.137984 + 0.0796649i
\(796\) 0 0
\(797\) −6.75379 11.6979i −0.239231 0.414361i 0.721263 0.692662i \(-0.243562\pi\)
−0.960494 + 0.278301i \(0.910229\pi\)
\(798\) 0 0
\(799\) −1.55244 + 0.896305i −0.0549216 + 0.0317090i
\(800\) 0 0
\(801\) 35.6155i 1.25841i
\(802\) 0 0
\(803\) 15.3693 26.6204i 0.542371 0.939415i
\(804\) 0 0
\(805\) 11.5076 0.405589
\(806\) 0 0
\(807\) −12.4924 −0.439754
\(808\) 0 0
\(809\) 15.0885 26.1341i 0.530485 0.918827i −0.468882 0.883261i \(-0.655343\pi\)
0.999367 0.0355661i \(-0.0113234\pi\)
\(810\) 0 0
\(811\) 46.7386i 1.64122i −0.571492 0.820608i \(-0.693635\pi\)
0.571492 0.820608i \(-0.306365\pi\)
\(812\) 0 0
\(813\) 46.1593 26.6501i 1.61888 0.934660i
\(814\) 0 0
\(815\) −5.75379 9.96585i −0.201546 0.349089i
\(816\) 0 0
\(817\) 24.1290 + 13.9309i 0.844166 + 0.487379i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13.3701 7.71922i −0.466619 0.269403i 0.248204 0.968708i \(-0.420160\pi\)
−0.714823 + 0.699305i \(0.753493\pi\)
\(822\) 0 0
\(823\) −4.80776 8.32729i −0.167588 0.290271i 0.769983 0.638064i \(-0.220265\pi\)
−0.937571 + 0.347793i \(0.886931\pi\)
\(824\) 0 0
\(825\) 53.2409 30.7386i 1.85361 1.07018i
\(826\) 0 0
\(827\) 35.8617i 1.24703i 0.781809 + 0.623517i \(0.214297\pi\)
−0.781809 + 0.623517i \(0.785703\pi\)
\(828\) 0 0
\(829\) 9.24621 16.0149i 0.321134 0.556221i −0.659588 0.751627i \(-0.729269\pi\)
0.980722 + 0.195406i \(0.0626026\pi\)
\(830\) 0 0
\(831\) −75.2311 −2.60974
\(832\) 0 0
\(833\) −2.49242 −0.0863573
\(834\) 0 0
\(835\) 4.00000 6.92820i 0.138426 0.239760i
\(836\) 0 0
\(837\) 5.75379i 0.198880i
\(838\) 0 0
\(839\) 9.29993 5.36932i 0.321069 0.185369i −0.330800 0.943701i \(-0.607318\pi\)
0.651869 + 0.758332i \(0.273985\pi\)
\(840\) 0 0
\(841\) 12.5000 + 21.6506i 0.431034 + 0.746574i
\(842\) 0 0
\(843\) 22.1837 + 12.8078i 0.764047 + 0.441123i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 33.8217 + 19.5270i 1.16213 + 0.670955i
\(848\) 0 0
\(849\) −10.8769 18.8393i −0.373294 0.646564i
\(850\) 0 0
\(851\) −67.0973 + 38.7386i −2.30007 + 1.32794i
\(852\) 0 0
\(853\) 29.6847i 1.01638i 0.861244 + 0.508192i \(0.169686\pi\)
−0.861244 + 0.508192i \(0.830314\pi\)
\(854\) 0 0
\(855\) −5.12311 + 8.87348i −0.175207 + 0.303467i
\(856\) 0 0
\(857\) −40.7386 −1.39161 −0.695803 0.718233i \(-0.744951\pi\)
−0.695803 + 0.718233i \(0.744951\pi\)
\(858\) 0 0
\(859\) 12.9848 0.443037 0.221519 0.975156i \(-0.428899\pi\)
0.221519 + 0.975156i \(0.428899\pi\)
\(860\) 0 0
\(861\) −10.2462 + 17.7470i −0.349190 + 0.604815i
\(862\) 0 0
\(863\) 49.3002i 1.67820i −0.543979 0.839099i \(-0.683083\pi\)
0.543979 0.839099i \(-0.316917\pi\)
\(864\) 0 0
\(865\) −2.37173 + 1.36932i −0.0806411 + 0.0465582i
\(866\) 0 0
\(867\) −19.6155 33.9751i −0.666178 1.15385i
\(868\) 0 0
\(869\) −35.4939 20.4924i −1.20405 0.695158i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 25.4346 + 14.6847i 0.860830 + 0.497000i
\(874\) 0 0
\(875\) −6.96543 12.0645i −0.235475 0.407854i
\(876\) 0 0
\(877\) −32.6359 + 18.8423i −1.10204 + 0.636260i −0.936755 0.349986i \(-0.886186\pi\)
−0.165280 + 0.986247i \(0.552853\pi\)
\(878\) 0 0
\(879\) 39.5464i 1.33387i
\(880\) 0 0
\(881\) −15.4039 + 26.6803i −0.518970 + 0.898882i 0.480787 + 0.876837i \(0.340351\pi\)
−0.999757 + 0.0220449i \(0.992982\pi\)
\(882\) 0 0
\(883\) −0.315342 −0.0106121 −0.00530604 0.999986i \(-0.501689\pi\)
−0.00530604 + 0.999986i \(0.501689\pi\)
\(884\) 0 0
\(885\) −7.36932 −0.247717
\(886\) 0 0
\(887\) 22.7386 39.3845i 0.763489 1.32240i −0.177553 0.984111i \(-0.556818\pi\)
0.941042 0.338290i \(-0.109848\pi\)
\(888\) 0 0
\(889\) 26.2462i 0.880270i
\(890\) 0 0
\(891\) −31.0572 + 17.9309i −1.04045 + 0.600707i
\(892\) 0 0
\(893\) 0.807764 + 1.39909i 0.0270308 + 0.0468187i
\(894\) 0 0
\(895\) −3.73720 2.15767i −0.124921 0.0721230i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.92820 + 4.00000i 0.231069 + 0.133407i
\(900\) 0 0
\(901\) 8.87689 + 15.3752i 0.295732 + 0.512223i
\(902\) 0 0
\(903\) −30.9038 + 17.8423i −1.02841 + 0.593756i
\(904\) 0 0
\(905\) 12.9848i 0.431631i
\(906\) 0 0
\(907\) −10.4039 + 18.0201i −0.345455 + 0.598346i −0.985436 0.170045i \(-0.945609\pi\)
0.639981 + 0.768391i \(0.278942\pi\)
\(908\) 0 0
\(909\) 25.3693 0.841447
\(910\) 0 0
\(911\) 15.3693 0.509208 0.254604 0.967045i \(-0.418055\pi\)
0.254604 + 0.967045i \(0.418055\pi\)
\(912\) 0 0
\(913\) 5.75379 9.96585i 0.190423 0.329822i
\(914\) 0 0
\(915\) 16.0000i 0.528944i
\(916\) 0 0
\(917\) −10.6654 + 6.15767i −0.352202 + 0.203344i
\(918\) 0 0
\(919\) −12.4924 21.6375i −0.412087 0.713756i 0.583031 0.812450i \(-0.301867\pi\)
−0.995118 + 0.0986944i \(0.968533\pi\)
\(920\) 0 0
\(921\) 29.1119 + 16.8078i 0.959270 + 0.553835i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 39.2910 + 22.6847i 1.29188 + 0.745867i
\(926\) 0 0
\(927\) 4.00000 + 6.92820i 0.131377 + 0.227552i
\(928\) 0 0
\(929\) −8.54052 + 4.93087i −0.280205 + 0.161777i −0.633516 0.773729i \(-0.718389\pi\)
0.353311 + 0.935506i \(0.385056\pi\)
\(930\) 0 0
\(931\) 2.24621i 0.0736166i
\(932\) 0 0
\(933\) −13.9309 + 24.1290i −0.456076 + 0.789947i
\(934\) 0 0
\(935\) −16.3542 −0.534838
\(936\) 0 0
\(937\) −36.7386 −1.20020 −0.600099 0.799925i \(-0.704872\pi\)
−0.600099 + 0.799925i \(0.704872\pi\)
\(938\) 0 0
\(939\) −34.3348 + 59.4695i −1.12047 + 1.94071i
\(940\) 0 0
\(941\) 55.7926i 1.81879i 0.415937 + 0.909394i \(0.363454\pi\)
−0.415937 + 0.909394i \(0.636546\pi\)
\(942\) 0 0
\(943\) −21.6375 + 12.4924i −0.704614 + 0.406809i
\(944\) 0 0
\(945\) −1.03457 1.79192i −0.0336544 0.0582911i
\(946\) 0 0
\(947\) 6.38202 + 3.68466i 0.207388 + 0.119735i 0.600097 0.799927i \(-0.295129\pi\)
−0.392709 + 0.919663i \(0.628462\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 27.1666 + 15.6847i 0.880938 + 0.508610i
\(952\) 0 0
\(953\) −9.33475 16.1683i −0.302382 0.523741i 0.674293 0.738464i \(-0.264449\pi\)
−0.976675 + 0.214723i \(0.931115\pi\)
\(954\) 0 0
\(955\) −7.47439 + 4.31534i −0.241866 + 0.139641i
\(956\) 0 0
\(957\) 26.2462i 0.848420i
\(958\) 0 0
\(959\) 4.00000 6.92820i 0.129167 0.223723i
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 14.2462 0.459078
\(964\) 0 0
\(965\) −6.00000 + 10.3923i −0.193147 + 0.334540i
\(966\) 0 0
\(967\) 2.56155i 0.0823740i 0.999151 + 0.0411870i \(0.0131139\pi\)
−0.999151 + 0.0411870i \(0.986886\pi\)
\(968\) 0 0
\(969\) −64.6058 + 37.3002i −2.07544 + 1.19825i
\(970\) 0 0
\(971\) 15.8423 + 27.4397i 0.508405 + 0.880582i 0.999953 + 0.00973207i \(0.00309786\pi\)
−0.491548 + 0.870850i \(0.663569\pi\)
\(972\) 0 0
\(973\) −17.0474 9.84233i −0.546515 0.315531i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −47.1918 27.2462i −1.50980 0.871684i −0.999935 0.0114294i \(-0.996362\pi\)
−0.509865 0.860254i \(-0.670305\pi\)
\(978\) 0 0
\(979\) −25.6155 44.3674i −0.818676 1.41799i
\(980\) 0 0
\(981\) −8.66025 + 5.00000i −0.276501 + 0.159638i
\(982\) 0 0
\(983\) 17.9309i 0.571906i −0.958244 0.285953i \(-0.907690\pi\)
0.958244 0.285953i \(-0.0923101\pi\)
\(984\) 0 0
\(985\) −0.650093 + 1.12599i −0.0207137 + 0.0358772i
\(986\) 0 0
\(987\) −2.06913 −0.0658611
\(988\) 0 0
\(989\) −43.5076 −1.38346
\(990\) 0 0
\(991\) 17.9309 31.0572i 0.569593 0.986564i −0.427013 0.904245i \(-0.640434\pi\)
0.996606 0.0823184i \(-0.0262324\pi\)
\(992\) 0 0
\(993\) 11.5076i 0.365182i
\(994\) 0 0
\(995\) 2.49146 1.43845i 0.0789847 0.0456018i
\(996\) 0 0
\(997\) −0.123106 0.213225i −0.00389879 0.00675291i 0.864069 0.503373i \(-0.167908\pi\)
−0.867968 + 0.496620i \(0.834574\pi\)
\(998\) 0 0
\(999\) 12.0645 + 6.96543i 0.381703 + 0.220377i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.2.o.d.1161.1 8
13.2 odd 12 1352.2.i.f.1329.1 4
13.3 even 3 inner 1352.2.o.d.361.1 8
13.4 even 6 1352.2.f.c.337.4 4
13.5 odd 4 1352.2.i.f.529.1 4
13.6 odd 12 104.2.a.b.1.2 2
13.7 odd 12 1352.2.a.g.1.2 2
13.8 odd 4 1352.2.i.d.529.1 4
13.9 even 3 1352.2.f.c.337.3 4
13.10 even 6 inner 1352.2.o.d.361.2 8
13.11 odd 12 1352.2.i.d.1329.1 4
13.12 even 2 inner 1352.2.o.d.1161.2 8
39.32 even 12 936.2.a.j.1.2 2
52.7 even 12 2704.2.a.p.1.1 2
52.19 even 12 208.2.a.e.1.1 2
52.35 odd 6 2704.2.f.k.337.1 4
52.43 odd 6 2704.2.f.k.337.2 4
65.19 odd 12 2600.2.a.p.1.1 2
65.32 even 12 2600.2.d.k.1249.1 4
65.58 even 12 2600.2.d.k.1249.4 4
91.6 even 12 5096.2.a.m.1.1 2
104.19 even 12 832.2.a.n.1.2 2
104.45 odd 12 832.2.a.k.1.1 2
156.71 odd 12 1872.2.a.u.1.2 2
208.19 even 12 3328.2.b.w.1665.1 4
208.45 odd 12 3328.2.b.y.1665.4 4
208.123 even 12 3328.2.b.w.1665.4 4
208.149 odd 12 3328.2.b.y.1665.1 4
260.19 even 12 5200.2.a.bw.1.2 2
312.149 even 12 7488.2.a.cu.1.1 2
312.227 odd 12 7488.2.a.cv.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.a.b.1.2 2 13.6 odd 12
208.2.a.e.1.1 2 52.19 even 12
832.2.a.k.1.1 2 104.45 odd 12
832.2.a.n.1.2 2 104.19 even 12
936.2.a.j.1.2 2 39.32 even 12
1352.2.a.g.1.2 2 13.7 odd 12
1352.2.f.c.337.3 4 13.9 even 3
1352.2.f.c.337.4 4 13.4 even 6
1352.2.i.d.529.1 4 13.8 odd 4
1352.2.i.d.1329.1 4 13.11 odd 12
1352.2.i.f.529.1 4 13.5 odd 4
1352.2.i.f.1329.1 4 13.2 odd 12
1352.2.o.d.361.1 8 13.3 even 3 inner
1352.2.o.d.361.2 8 13.10 even 6 inner
1352.2.o.d.1161.1 8 1.1 even 1 trivial
1352.2.o.d.1161.2 8 13.12 even 2 inner
1872.2.a.u.1.2 2 156.71 odd 12
2600.2.a.p.1.1 2 65.19 odd 12
2600.2.d.k.1249.1 4 65.32 even 12
2600.2.d.k.1249.4 4 65.58 even 12
2704.2.a.p.1.1 2 52.7 even 12
2704.2.f.k.337.1 4 52.35 odd 6
2704.2.f.k.337.2 4 52.43 odd 6
3328.2.b.w.1665.1 4 208.19 even 12
3328.2.b.w.1665.4 4 208.123 even 12
3328.2.b.y.1665.1 4 208.149 odd 12
3328.2.b.y.1665.4 4 208.45 odd 12
5096.2.a.m.1.1 2 91.6 even 12
5200.2.a.bw.1.2 2 260.19 even 12
7488.2.a.cu.1.1 2 312.149 even 12
7488.2.a.cv.1.1 2 312.227 odd 12