Properties

Label 2600.2.d.k.1249.1
Level $2600$
Weight $2$
Character 2600.1249
Analytic conductor $20.761$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2600,2,Mod(1249,2600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2600.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-6,0,-4,0,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.1
Root \(-2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 2600.1249
Dual form 2600.2.d.k.1249.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56155i q^{3} -2.56155i q^{7} -3.56155 q^{9} -5.12311 q^{11} -1.00000i q^{13} +5.68466i q^{17} -5.12311 q^{19} -6.56155 q^{21} +8.00000i q^{23} +1.43845i q^{27} +2.00000 q^{29} +4.00000 q^{31} +13.1231i q^{33} +9.68466i q^{37} -2.56155 q^{39} -3.12311 q^{41} -5.43845i q^{43} -0.315342i q^{47} +0.438447 q^{49} +14.5616 q^{51} -3.12311i q^{53} +13.1231i q^{57} -5.12311 q^{59} +11.1231 q^{61} +9.12311i q^{63} -5.12311i q^{67} +20.4924 q^{69} -7.68466 q^{71} +6.00000i q^{73} +13.1231i q^{77} -8.00000 q^{79} -7.00000 q^{81} -2.24621i q^{83} -5.12311i q^{87} -10.0000 q^{89} -2.56155 q^{91} -10.2462i q^{93} -8.24621i q^{97} +18.2462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{9} - 4 q^{11} - 4 q^{19} - 18 q^{21} + 8 q^{29} + 16 q^{31} - 2 q^{39} + 4 q^{41} + 10 q^{49} + 50 q^{51} - 4 q^{59} + 28 q^{61} + 16 q^{69} - 6 q^{71} - 32 q^{79} - 28 q^{81} - 40 q^{89} - 2 q^{91}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.56155i − 1.47891i −0.673204 0.739457i \(-0.735083\pi\)
0.673204 0.739457i \(-0.264917\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.56155i − 0.968176i −0.875019 0.484088i \(-0.839151\pi\)
0.875019 0.484088i \(-0.160849\pi\)
\(8\) 0 0
\(9\) −3.56155 −1.18718
\(10\) 0 0
\(11\) −5.12311 −1.54467 −0.772337 0.635213i \(-0.780912\pi\)
−0.772337 + 0.635213i \(0.780912\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.68466i 1.37873i 0.724413 + 0.689366i \(0.242111\pi\)
−0.724413 + 0.689366i \(0.757889\pi\)
\(18\) 0 0
\(19\) −5.12311 −1.17532 −0.587661 0.809108i \(-0.699951\pi\)
−0.587661 + 0.809108i \(0.699951\pi\)
\(20\) 0 0
\(21\) −6.56155 −1.43185
\(22\) 0 0
\(23\) 8.00000i 1.66812i 0.551677 + 0.834058i \(0.313988\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.43845i 0.276829i
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 13.1231i 2.28444i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.68466i 1.59215i 0.605199 + 0.796074i \(0.293093\pi\)
−0.605199 + 0.796074i \(0.706907\pi\)
\(38\) 0 0
\(39\) −2.56155 −0.410177
\(40\) 0 0
\(41\) −3.12311 −0.487747 −0.243874 0.969807i \(-0.578418\pi\)
−0.243874 + 0.969807i \(0.578418\pi\)
\(42\) 0 0
\(43\) − 5.43845i − 0.829355i −0.909968 0.414678i \(-0.863894\pi\)
0.909968 0.414678i \(-0.136106\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 0.315342i − 0.0459973i −0.999735 0.0229986i \(-0.992679\pi\)
0.999735 0.0229986i \(-0.00732134\pi\)
\(48\) 0 0
\(49\) 0.438447 0.0626353
\(50\) 0 0
\(51\) 14.5616 2.03903
\(52\) 0 0
\(53\) − 3.12311i − 0.428992i −0.976725 0.214496i \(-0.931189\pi\)
0.976725 0.214496i \(-0.0688108\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 13.1231i 1.73820i
\(58\) 0 0
\(59\) −5.12311 −0.666972 −0.333486 0.942755i \(-0.608225\pi\)
−0.333486 + 0.942755i \(0.608225\pi\)
\(60\) 0 0
\(61\) 11.1231 1.42417 0.712084 0.702094i \(-0.247752\pi\)
0.712084 + 0.702094i \(0.247752\pi\)
\(62\) 0 0
\(63\) 9.12311i 1.14940i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 5.12311i − 0.625887i −0.949772 0.312943i \(-0.898685\pi\)
0.949772 0.312943i \(-0.101315\pi\)
\(68\) 0 0
\(69\) 20.4924 2.46700
\(70\) 0 0
\(71\) −7.68466 −0.912001 −0.456001 0.889979i \(-0.650719\pi\)
−0.456001 + 0.889979i \(0.650719\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.1231i 1.49552i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) − 2.24621i − 0.246554i −0.992372 0.123277i \(-0.960660\pi\)
0.992372 0.123277i \(-0.0393403\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 5.12311i − 0.549255i
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −2.56155 −0.268524
\(92\) 0 0
\(93\) − 10.2462i − 1.06248i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 8.24621i − 0.837276i −0.908153 0.418638i \(-0.862508\pi\)
0.908153 0.418638i \(-0.137492\pi\)
\(98\) 0 0
\(99\) 18.2462 1.83381
\(100\) 0 0
\(101\) −7.12311 −0.708776 −0.354388 0.935099i \(-0.615311\pi\)
−0.354388 + 0.935099i \(0.615311\pi\)
\(102\) 0 0
\(103\) − 2.24621i − 0.221326i −0.993858 0.110663i \(-0.964703\pi\)
0.993858 0.110663i \(-0.0352974\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) 2.80776 0.268935 0.134468 0.990918i \(-0.457068\pi\)
0.134468 + 0.990918i \(0.457068\pi\)
\(110\) 0 0
\(111\) 24.8078 2.35465
\(112\) 0 0
\(113\) 18.4924i 1.73962i 0.493386 + 0.869810i \(0.335759\pi\)
−0.493386 + 0.869810i \(0.664241\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.56155i 0.329266i
\(118\) 0 0
\(119\) 14.5616 1.33486
\(120\) 0 0
\(121\) 15.2462 1.38602
\(122\) 0 0
\(123\) 8.00000i 0.721336i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 10.2462i − 0.909204i −0.890695 0.454602i \(-0.849781\pi\)
0.890695 0.454602i \(-0.150219\pi\)
\(128\) 0 0
\(129\) −13.9309 −1.22654
\(130\) 0 0
\(131\) −4.80776 −0.420056 −0.210028 0.977695i \(-0.567356\pi\)
−0.210028 + 0.977695i \(0.567356\pi\)
\(132\) 0 0
\(133\) 13.1231i 1.13792i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 3.12311i − 0.266825i −0.991061 0.133412i \(-0.957406\pi\)
0.991061 0.133412i \(-0.0425935\pi\)
\(138\) 0 0
\(139\) −7.68466 −0.651804 −0.325902 0.945404i \(-0.605668\pi\)
−0.325902 + 0.945404i \(0.605668\pi\)
\(140\) 0 0
\(141\) −0.807764 −0.0680260
\(142\) 0 0
\(143\) 5.12311i 0.428416i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1.12311i − 0.0926322i
\(148\) 0 0
\(149\) −16.2462 −1.33094 −0.665471 0.746424i \(-0.731769\pi\)
−0.665471 + 0.746424i \(0.731769\pi\)
\(150\) 0 0
\(151\) 10.5616 0.859487 0.429743 0.902951i \(-0.358604\pi\)
0.429743 + 0.902951i \(0.358604\pi\)
\(152\) 0 0
\(153\) − 20.2462i − 1.63681i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 22.4924i − 1.79509i −0.440922 0.897545i \(-0.645349\pi\)
0.440922 0.897545i \(-0.354651\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 20.4924 1.61503
\(162\) 0 0
\(163\) 20.4924i 1.60509i 0.596591 + 0.802545i \(0.296521\pi\)
−0.596591 + 0.802545i \(0.703479\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.2462i 1.10240i 0.834372 + 0.551202i \(0.185831\pi\)
−0.834372 + 0.551202i \(0.814169\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 18.2462 1.39532
\(172\) 0 0
\(173\) 4.87689i 0.370783i 0.982665 + 0.185392i \(0.0593554\pi\)
−0.982665 + 0.185392i \(0.940645\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.1231i 0.986393i
\(178\) 0 0
\(179\) −7.68466 −0.574378 −0.287189 0.957874i \(-0.592721\pi\)
−0.287189 + 0.957874i \(0.592721\pi\)
\(180\) 0 0
\(181\) −23.1231 −1.71873 −0.859363 0.511365i \(-0.829140\pi\)
−0.859363 + 0.511365i \(0.829140\pi\)
\(182\) 0 0
\(183\) − 28.4924i − 2.10622i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 29.1231i − 2.12969i
\(188\) 0 0
\(189\) 3.68466 0.268019
\(190\) 0 0
\(191\) 15.3693 1.11208 0.556042 0.831154i \(-0.312319\pi\)
0.556042 + 0.831154i \(0.312319\pi\)
\(192\) 0 0
\(193\) 21.3693i 1.53820i 0.639130 + 0.769099i \(0.279294\pi\)
−0.639130 + 0.769099i \(0.720706\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.31534i 0.164961i 0.996593 + 0.0824806i \(0.0262843\pi\)
−0.996593 + 0.0824806i \(0.973716\pi\)
\(198\) 0 0
\(199\) −5.12311 −0.363167 −0.181584 0.983375i \(-0.558122\pi\)
−0.181584 + 0.983375i \(0.558122\pi\)
\(200\) 0 0
\(201\) −13.1231 −0.925633
\(202\) 0 0
\(203\) − 5.12311i − 0.359572i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 28.4924i − 1.98036i
\(208\) 0 0
\(209\) 26.2462 1.81549
\(210\) 0 0
\(211\) 15.6847 1.07978 0.539888 0.841737i \(-0.318467\pi\)
0.539888 + 0.841737i \(0.318467\pi\)
\(212\) 0 0
\(213\) 19.6847i 1.34877i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 10.2462i − 0.695558i
\(218\) 0 0
\(219\) 15.3693 1.03856
\(220\) 0 0
\(221\) 5.68466 0.382392
\(222\) 0 0
\(223\) 15.6847i 1.05032i 0.851003 + 0.525161i \(0.175995\pi\)
−0.851003 + 0.525161i \(0.824005\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 8.00000i − 0.530979i −0.964114 0.265489i \(-0.914466\pi\)
0.964114 0.265489i \(-0.0855335\pi\)
\(228\) 0 0
\(229\) −6.80776 −0.449870 −0.224935 0.974374i \(-0.572217\pi\)
−0.224935 + 0.974374i \(0.572217\pi\)
\(230\) 0 0
\(231\) 33.6155 2.21174
\(232\) 0 0
\(233\) 6.80776i 0.445991i 0.974819 + 0.222996i \(0.0715836\pi\)
−0.974819 + 0.222996i \(0.928416\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 20.4924i 1.33113i
\(238\) 0 0
\(239\) 2.56155 0.165693 0.0828465 0.996562i \(-0.473599\pi\)
0.0828465 + 0.996562i \(0.473599\pi\)
\(240\) 0 0
\(241\) −3.75379 −0.241803 −0.120901 0.992665i \(-0.538578\pi\)
−0.120901 + 0.992665i \(0.538578\pi\)
\(242\) 0 0
\(243\) 22.2462i 1.42710i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.12311i 0.325975i
\(248\) 0 0
\(249\) −5.75379 −0.364632
\(250\) 0 0
\(251\) 22.2462 1.40417 0.702084 0.712094i \(-0.252253\pi\)
0.702084 + 0.712094i \(0.252253\pi\)
\(252\) 0 0
\(253\) − 40.9848i − 2.57670i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.4384i 0.713511i 0.934198 + 0.356755i \(0.116117\pi\)
−0.934198 + 0.356755i \(0.883883\pi\)
\(258\) 0 0
\(259\) 24.8078 1.54148
\(260\) 0 0
\(261\) −7.12311 −0.440909
\(262\) 0 0
\(263\) 26.2462i 1.61841i 0.587526 + 0.809205i \(0.300102\pi\)
−0.587526 + 0.809205i \(0.699898\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 25.6155i 1.56764i
\(268\) 0 0
\(269\) 4.87689 0.297349 0.148675 0.988886i \(-0.452499\pi\)
0.148675 + 0.988886i \(0.452499\pi\)
\(270\) 0 0
\(271\) −20.8078 −1.26398 −0.631991 0.774976i \(-0.717762\pi\)
−0.631991 + 0.774976i \(0.717762\pi\)
\(272\) 0 0
\(273\) 6.56155i 0.397123i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 29.3693i 1.76463i 0.470658 + 0.882316i \(0.344016\pi\)
−0.470658 + 0.882316i \(0.655984\pi\)
\(278\) 0 0
\(279\) −14.2462 −0.852898
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 8.49242i 0.504822i 0.967620 + 0.252411i \(0.0812235\pi\)
−0.967620 + 0.252411i \(0.918776\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.00000i 0.472225i
\(288\) 0 0
\(289\) −15.3153 −0.900902
\(290\) 0 0
\(291\) −21.1231 −1.23826
\(292\) 0 0
\(293\) − 15.4384i − 0.901924i −0.892543 0.450962i \(-0.851081\pi\)
0.892543 0.450962i \(-0.148919\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 7.36932i − 0.427611i
\(298\) 0 0
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) −13.9309 −0.802962
\(302\) 0 0
\(303\) 18.2462i 1.04822i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 13.1231i 0.748975i 0.927232 + 0.374488i \(0.122181\pi\)
−0.927232 + 0.374488i \(0.877819\pi\)
\(308\) 0 0
\(309\) −5.75379 −0.327322
\(310\) 0 0
\(311\) −10.8769 −0.616772 −0.308386 0.951261i \(-0.599789\pi\)
−0.308386 + 0.951261i \(0.599789\pi\)
\(312\) 0 0
\(313\) − 26.8078i − 1.51526i −0.652682 0.757632i \(-0.726356\pi\)
0.652682 0.757632i \(-0.273644\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 12.2462i − 0.687816i −0.939003 0.343908i \(-0.888249\pi\)
0.939003 0.343908i \(-0.111751\pi\)
\(318\) 0 0
\(319\) −10.2462 −0.573678
\(320\) 0 0
\(321\) 10.2462 0.571888
\(322\) 0 0
\(323\) − 29.1231i − 1.62045i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 7.19224i − 0.397732i
\(328\) 0 0
\(329\) −0.807764 −0.0445335
\(330\) 0 0
\(331\) −4.49242 −0.246926 −0.123463 0.992349i \(-0.539400\pi\)
−0.123463 + 0.992349i \(0.539400\pi\)
\(332\) 0 0
\(333\) − 34.4924i − 1.89017i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 13.1922i − 0.718627i −0.933217 0.359313i \(-0.883011\pi\)
0.933217 0.359313i \(-0.116989\pi\)
\(338\) 0 0
\(339\) 47.3693 2.57275
\(340\) 0 0
\(341\) −20.4924 −1.10973
\(342\) 0 0
\(343\) − 19.0540i − 1.02882i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.68466i 0.412534i 0.978496 + 0.206267i \(0.0661316\pi\)
−0.978496 + 0.206267i \(0.933868\pi\)
\(348\) 0 0
\(349\) −11.9309 −0.638645 −0.319322 0.947646i \(-0.603455\pi\)
−0.319322 + 0.947646i \(0.603455\pi\)
\(350\) 0 0
\(351\) 1.43845 0.0767786
\(352\) 0 0
\(353\) − 9.36932i − 0.498678i −0.968416 0.249339i \(-0.919787\pi\)
0.968416 0.249339i \(-0.0802134\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 37.3002i − 1.97414i
\(358\) 0 0
\(359\) −14.2462 −0.751886 −0.375943 0.926643i \(-0.622681\pi\)
−0.375943 + 0.926643i \(0.622681\pi\)
\(360\) 0 0
\(361\) 7.24621 0.381380
\(362\) 0 0
\(363\) − 39.0540i − 2.04980i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 9.61553i 0.501926i 0.967997 + 0.250963i \(0.0807473\pi\)
−0.967997 + 0.250963i \(0.919253\pi\)
\(368\) 0 0
\(369\) 11.1231 0.579046
\(370\) 0 0
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) 11.6155i 0.601429i 0.953714 + 0.300715i \(0.0972252\pi\)
−0.953714 + 0.300715i \(0.902775\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2.00000i − 0.103005i
\(378\) 0 0
\(379\) −5.75379 −0.295552 −0.147776 0.989021i \(-0.547212\pi\)
−0.147776 + 0.989021i \(0.547212\pi\)
\(380\) 0 0
\(381\) −26.2462 −1.34463
\(382\) 0 0
\(383\) 11.1922i 0.571897i 0.958245 + 0.285948i \(0.0923086\pi\)
−0.958245 + 0.285948i \(0.907691\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 19.3693i 0.984598i
\(388\) 0 0
\(389\) −20.7386 −1.05149 −0.525745 0.850642i \(-0.676213\pi\)
−0.525745 + 0.850642i \(0.676213\pi\)
\(390\) 0 0
\(391\) −45.4773 −2.29988
\(392\) 0 0
\(393\) 12.3153i 0.621227i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 2.00000i − 0.100377i −0.998740 0.0501886i \(-0.984018\pi\)
0.998740 0.0501886i \(-0.0159822\pi\)
\(398\) 0 0
\(399\) 33.6155 1.68288
\(400\) 0 0
\(401\) 3.61553 0.180551 0.0902754 0.995917i \(-0.471225\pi\)
0.0902754 + 0.995917i \(0.471225\pi\)
\(402\) 0 0
\(403\) − 4.00000i − 0.199254i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 49.6155i − 2.45935i
\(408\) 0 0
\(409\) −12.8769 −0.636721 −0.318361 0.947970i \(-0.603132\pi\)
−0.318361 + 0.947970i \(0.603132\pi\)
\(410\) 0 0
\(411\) −8.00000 −0.394611
\(412\) 0 0
\(413\) 13.1231i 0.645746i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 19.6847i 0.963962i
\(418\) 0 0
\(419\) 1.93087 0.0943292 0.0471646 0.998887i \(-0.484981\pi\)
0.0471646 + 0.998887i \(0.484981\pi\)
\(420\) 0 0
\(421\) −6.31534 −0.307791 −0.153895 0.988087i \(-0.549182\pi\)
−0.153895 + 0.988087i \(0.549182\pi\)
\(422\) 0 0
\(423\) 1.12311i 0.0546073i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 28.4924i − 1.37884i
\(428\) 0 0
\(429\) 13.1231 0.633590
\(430\) 0 0
\(431\) −18.5616 −0.894079 −0.447039 0.894514i \(-0.647522\pi\)
−0.447039 + 0.894514i \(0.647522\pi\)
\(432\) 0 0
\(433\) 6.17708i 0.296852i 0.988924 + 0.148426i \(0.0474206\pi\)
−0.988924 + 0.148426i \(0.952579\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 40.9848i − 1.96057i
\(438\) 0 0
\(439\) −21.1231 −1.00815 −0.504075 0.863660i \(-0.668167\pi\)
−0.504075 + 0.863660i \(0.668167\pi\)
\(440\) 0 0
\(441\) −1.56155 −0.0743597
\(442\) 0 0
\(443\) − 20.8078i − 0.988607i −0.869289 0.494303i \(-0.835423\pi\)
0.869289 0.494303i \(-0.164577\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 41.6155i 1.96835i
\(448\) 0 0
\(449\) −32.7386 −1.54503 −0.772516 0.634996i \(-0.781002\pi\)
−0.772516 + 0.634996i \(0.781002\pi\)
\(450\) 0 0
\(451\) 16.0000 0.753411
\(452\) 0 0
\(453\) − 27.0540i − 1.27111i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 24.7386i 1.15722i 0.815603 + 0.578612i \(0.196406\pi\)
−0.815603 + 0.578612i \(0.803594\pi\)
\(458\) 0 0
\(459\) −8.17708 −0.381673
\(460\) 0 0
\(461\) −34.8078 −1.62116 −0.810580 0.585628i \(-0.800848\pi\)
−0.810580 + 0.585628i \(0.800848\pi\)
\(462\) 0 0
\(463\) − 38.2462i − 1.77745i −0.458439 0.888726i \(-0.651591\pi\)
0.458439 0.888726i \(-0.348409\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 40.4924i 1.87377i 0.349643 + 0.936883i \(0.386303\pi\)
−0.349643 + 0.936883i \(0.613697\pi\)
\(468\) 0 0
\(469\) −13.1231 −0.605969
\(470\) 0 0
\(471\) −57.6155 −2.65478
\(472\) 0 0
\(473\) 27.8617i 1.28108i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 11.1231i 0.509292i
\(478\) 0 0
\(479\) −11.1922 −0.511386 −0.255693 0.966758i \(-0.582304\pi\)
−0.255693 + 0.966758i \(0.582304\pi\)
\(480\) 0 0
\(481\) 9.68466 0.441582
\(482\) 0 0
\(483\) − 52.4924i − 2.38849i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1.75379i 0.0794718i 0.999210 + 0.0397359i \(0.0126517\pi\)
−0.999210 + 0.0397359i \(0.987348\pi\)
\(488\) 0 0
\(489\) 52.4924 2.37379
\(490\) 0 0
\(491\) 0.946025 0.0426935 0.0213467 0.999772i \(-0.493205\pi\)
0.0213467 + 0.999772i \(0.493205\pi\)
\(492\) 0 0
\(493\) 11.3693i 0.512048i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 19.6847i 0.882978i
\(498\) 0 0
\(499\) −28.4924 −1.27550 −0.637748 0.770245i \(-0.720134\pi\)
−0.637748 + 0.770245i \(0.720134\pi\)
\(500\) 0 0
\(501\) 36.4924 1.63036
\(502\) 0 0
\(503\) 7.36932i 0.328582i 0.986412 + 0.164291i \(0.0525335\pi\)
−0.986412 + 0.164291i \(0.947466\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.56155i 0.113763i
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 15.3693 0.679899
\(512\) 0 0
\(513\) − 7.36932i − 0.325363i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.61553i 0.0710508i
\(518\) 0 0
\(519\) 12.4924 0.548356
\(520\) 0 0
\(521\) −9.68466 −0.424293 −0.212146 0.977238i \(-0.568045\pi\)
−0.212146 + 0.977238i \(0.568045\pi\)
\(522\) 0 0
\(523\) 0.492423i 0.0215321i 0.999942 + 0.0107661i \(0.00342701\pi\)
−0.999942 + 0.0107661i \(0.996573\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.7386i 0.990510i
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) 18.2462 0.791818
\(532\) 0 0
\(533\) 3.12311i 0.135277i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 19.6847i 0.849456i
\(538\) 0 0
\(539\) −2.24621 −0.0967512
\(540\) 0 0
\(541\) −5.68466 −0.244403 −0.122201 0.992505i \(-0.538995\pi\)
−0.122201 + 0.992505i \(0.538995\pi\)
\(542\) 0 0
\(543\) 59.2311i 2.54185i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 29.4384i − 1.25870i −0.777123 0.629349i \(-0.783322\pi\)
0.777123 0.629349i \(-0.216678\pi\)
\(548\) 0 0
\(549\) −39.6155 −1.69075
\(550\) 0 0
\(551\) −10.2462 −0.436503
\(552\) 0 0
\(553\) 20.4924i 0.871426i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 42.1771i − 1.78710i −0.448963 0.893550i \(-0.648207\pi\)
0.448963 0.893550i \(-0.351793\pi\)
\(558\) 0 0
\(559\) −5.43845 −0.230022
\(560\) 0 0
\(561\) −74.6004 −3.14963
\(562\) 0 0
\(563\) 7.05398i 0.297290i 0.988891 + 0.148645i \(0.0474911\pi\)
−0.988891 + 0.148645i \(0.952509\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 17.9309i 0.753026i
\(568\) 0 0
\(569\) 41.6847 1.74751 0.873756 0.486365i \(-0.161677\pi\)
0.873756 + 0.486365i \(0.161677\pi\)
\(570\) 0 0
\(571\) 28.8078 1.20557 0.602784 0.797905i \(-0.294058\pi\)
0.602784 + 0.797905i \(0.294058\pi\)
\(572\) 0 0
\(573\) − 39.3693i − 1.64468i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 24.2462i − 1.00938i −0.863300 0.504691i \(-0.831606\pi\)
0.863300 0.504691i \(-0.168394\pi\)
\(578\) 0 0
\(579\) 54.7386 2.27486
\(580\) 0 0
\(581\) −5.75379 −0.238707
\(582\) 0 0
\(583\) 16.0000i 0.662652i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 24.9848i − 1.03123i −0.856819 0.515617i \(-0.827563\pi\)
0.856819 0.515617i \(-0.172437\pi\)
\(588\) 0 0
\(589\) −20.4924 −0.844376
\(590\) 0 0
\(591\) 5.93087 0.243963
\(592\) 0 0
\(593\) − 38.4924i − 1.58069i −0.612659 0.790347i \(-0.709900\pi\)
0.612659 0.790347i \(-0.290100\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 13.1231i 0.537093i
\(598\) 0 0
\(599\) −23.3693 −0.954844 −0.477422 0.878674i \(-0.658429\pi\)
−0.477422 + 0.878674i \(0.658429\pi\)
\(600\) 0 0
\(601\) 34.1771 1.39411 0.697056 0.717017i \(-0.254493\pi\)
0.697056 + 0.717017i \(0.254493\pi\)
\(602\) 0 0
\(603\) 18.2462i 0.743043i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 15.3693i 0.623821i 0.950111 + 0.311911i \(0.100969\pi\)
−0.950111 + 0.311911i \(0.899031\pi\)
\(608\) 0 0
\(609\) −13.1231 −0.531775
\(610\) 0 0
\(611\) −0.315342 −0.0127574
\(612\) 0 0
\(613\) − 6.00000i − 0.242338i −0.992632 0.121169i \(-0.961336\pi\)
0.992632 0.121169i \(-0.0386643\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.8617i 0.880120i 0.897968 + 0.440060i \(0.145043\pi\)
−0.897968 + 0.440060i \(0.854957\pi\)
\(618\) 0 0
\(619\) 29.7538 1.19591 0.597953 0.801531i \(-0.295981\pi\)
0.597953 + 0.801531i \(0.295981\pi\)
\(620\) 0 0
\(621\) −11.5076 −0.461783
\(622\) 0 0
\(623\) 25.6155i 1.02626i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 67.2311i − 2.68495i
\(628\) 0 0
\(629\) −55.0540 −2.19515
\(630\) 0 0
\(631\) −47.6847 −1.89830 −0.949148 0.314830i \(-0.898053\pi\)
−0.949148 + 0.314830i \(0.898053\pi\)
\(632\) 0 0
\(633\) − 40.1771i − 1.59690i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 0.438447i − 0.0173719i
\(638\) 0 0
\(639\) 27.3693 1.08271
\(640\) 0 0
\(641\) −8.24621 −0.325706 −0.162853 0.986650i \(-0.552070\pi\)
−0.162853 + 0.986650i \(0.552070\pi\)
\(642\) 0 0
\(643\) − 35.8617i − 1.41425i −0.707089 0.707124i \(-0.749992\pi\)
0.707089 0.707124i \(-0.250008\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.12311i 0.201410i 0.994916 + 0.100705i \(0.0321098\pi\)
−0.994916 + 0.100705i \(0.967890\pi\)
\(648\) 0 0
\(649\) 26.2462 1.03025
\(650\) 0 0
\(651\) −26.2462 −1.02867
\(652\) 0 0
\(653\) 4.87689i 0.190848i 0.995437 + 0.0954238i \(0.0304206\pi\)
−0.995437 + 0.0954238i \(0.969579\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 21.3693i − 0.833696i
\(658\) 0 0
\(659\) −16.4924 −0.642454 −0.321227 0.947002i \(-0.604095\pi\)
−0.321227 + 0.947002i \(0.604095\pi\)
\(660\) 0 0
\(661\) −40.7386 −1.58455 −0.792275 0.610165i \(-0.791103\pi\)
−0.792275 + 0.610165i \(0.791103\pi\)
\(662\) 0 0
\(663\) − 14.5616i − 0.565524i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.0000i 0.619522i
\(668\) 0 0
\(669\) 40.1771 1.55334
\(670\) 0 0
\(671\) −56.9848 −2.19988
\(672\) 0 0
\(673\) 19.3002i 0.743968i 0.928239 + 0.371984i \(0.121322\pi\)
−0.928239 + 0.371984i \(0.878678\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 1.36932i − 0.0526271i −0.999654 0.0263136i \(-0.991623\pi\)
0.999654 0.0263136i \(-0.00837683\pi\)
\(678\) 0 0
\(679\) −21.1231 −0.810630
\(680\) 0 0
\(681\) −20.4924 −0.785271
\(682\) 0 0
\(683\) 24.0000i 0.918334i 0.888350 + 0.459167i \(0.151852\pi\)
−0.888350 + 0.459167i \(0.848148\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 17.4384i 0.665318i
\(688\) 0 0
\(689\) −3.12311 −0.118981
\(690\) 0 0
\(691\) 16.9848 0.646134 0.323067 0.946376i \(-0.395286\pi\)
0.323067 + 0.946376i \(0.395286\pi\)
\(692\) 0 0
\(693\) − 46.7386i − 1.77545i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 17.7538i − 0.672473i
\(698\) 0 0
\(699\) 17.4384 0.659583
\(700\) 0 0
\(701\) 22.6307 0.854749 0.427375 0.904075i \(-0.359439\pi\)
0.427375 + 0.904075i \(0.359439\pi\)
\(702\) 0 0
\(703\) − 49.6155i − 1.87129i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.2462i 0.686219i
\(708\) 0 0
\(709\) 24.7386 0.929079 0.464539 0.885552i \(-0.346220\pi\)
0.464539 + 0.885552i \(0.346220\pi\)
\(710\) 0 0
\(711\) 28.4924 1.06855
\(712\) 0 0
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 6.56155i − 0.245046i
\(718\) 0 0
\(719\) 13.1231 0.489409 0.244705 0.969598i \(-0.421309\pi\)
0.244705 + 0.969598i \(0.421309\pi\)
\(720\) 0 0
\(721\) −5.75379 −0.214282
\(722\) 0 0
\(723\) 9.61553i 0.357605i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 46.1080i − 1.71005i −0.518587 0.855025i \(-0.673542\pi\)
0.518587 0.855025i \(-0.326458\pi\)
\(728\) 0 0
\(729\) 35.9848 1.33277
\(730\) 0 0
\(731\) 30.9157 1.14346
\(732\) 0 0
\(733\) 27.4384i 1.01346i 0.862104 + 0.506731i \(0.169146\pi\)
−0.862104 + 0.506731i \(0.830854\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 26.2462i 0.966792i
\(738\) 0 0
\(739\) 10.2462 0.376913 0.188456 0.982082i \(-0.439652\pi\)
0.188456 + 0.982082i \(0.439652\pi\)
\(740\) 0 0
\(741\) 13.1231 0.482089
\(742\) 0 0
\(743\) − 50.9157i − 1.86792i −0.357382 0.933958i \(-0.616331\pi\)
0.357382 0.933958i \(-0.383669\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 8.00000i 0.292705i
\(748\) 0 0
\(749\) 10.2462 0.374388
\(750\) 0 0
\(751\) 24.9848 0.911710 0.455855 0.890054i \(-0.349334\pi\)
0.455855 + 0.890054i \(0.349334\pi\)
\(752\) 0 0
\(753\) − 56.9848i − 2.07664i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.12311i 0.113511i 0.998388 + 0.0567556i \(0.0180756\pi\)
−0.998388 + 0.0567556i \(0.981924\pi\)
\(758\) 0 0
\(759\) −104.985 −3.81071
\(760\) 0 0
\(761\) 46.4924 1.68535 0.842674 0.538423i \(-0.180980\pi\)
0.842674 + 0.538423i \(0.180980\pi\)
\(762\) 0 0
\(763\) − 7.19224i − 0.260376i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.12311i 0.184985i
\(768\) 0 0
\(769\) −13.8617 −0.499867 −0.249934 0.968263i \(-0.580409\pi\)
−0.249934 + 0.968263i \(0.580409\pi\)
\(770\) 0 0
\(771\) 29.3002 1.05522
\(772\) 0 0
\(773\) − 46.1771i − 1.66087i −0.557112 0.830437i \(-0.688091\pi\)
0.557112 0.830437i \(-0.311909\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 63.5464i − 2.27971i
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) 39.3693 1.40874
\(782\) 0 0
\(783\) 2.87689i 0.102812i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 16.0000i − 0.570338i −0.958477 0.285169i \(-0.907950\pi\)
0.958477 0.285169i \(-0.0920498\pi\)
\(788\) 0 0
\(789\) 67.2311 2.39349
\(790\) 0 0
\(791\) 47.3693 1.68426
\(792\) 0 0
\(793\) − 11.1231i − 0.394993i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 13.5076i − 0.478463i −0.970963 0.239231i \(-0.923105\pi\)
0.970963 0.239231i \(-0.0768955\pi\)
\(798\) 0 0
\(799\) 1.79261 0.0634180
\(800\) 0 0
\(801\) 35.6155 1.25841
\(802\) 0 0
\(803\) − 30.7386i − 1.08474i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 12.4924i − 0.439754i
\(808\) 0 0
\(809\) 30.1771 1.06097 0.530485 0.847694i \(-0.322010\pi\)
0.530485 + 0.847694i \(0.322010\pi\)
\(810\) 0 0
\(811\) −46.7386 −1.64122 −0.820608 0.571492i \(-0.806365\pi\)
−0.820608 + 0.571492i \(0.806365\pi\)
\(812\) 0 0
\(813\) 53.3002i 1.86932i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 27.8617i 0.974759i
\(818\) 0 0
\(819\) 9.12311 0.318787
\(820\) 0 0
\(821\) 15.4384 0.538806 0.269403 0.963028i \(-0.413174\pi\)
0.269403 + 0.963028i \(0.413174\pi\)
\(822\) 0 0
\(823\) 9.61553i 0.335176i 0.985857 + 0.167588i \(0.0535979\pi\)
−0.985857 + 0.167588i \(0.946402\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 35.8617i − 1.24703i −0.781809 0.623517i \(-0.785703\pi\)
0.781809 0.623517i \(-0.214297\pi\)
\(828\) 0 0
\(829\) −18.4924 −0.642268 −0.321134 0.947034i \(-0.604064\pi\)
−0.321134 + 0.947034i \(0.604064\pi\)
\(830\) 0 0
\(831\) 75.2311 2.60974
\(832\) 0 0
\(833\) 2.49242i 0.0863573i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5.75379i 0.198880i
\(838\) 0 0
\(839\) 10.7386 0.370739 0.185369 0.982669i \(-0.440652\pi\)
0.185369 + 0.982669i \(0.440652\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) − 25.6155i − 0.882246i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 39.0540i − 1.34191i
\(848\) 0 0
\(849\) 21.7538 0.746588
\(850\) 0 0
\(851\) −77.4773 −2.65589
\(852\) 0 0
\(853\) 29.6847i 1.01638i 0.861244 + 0.508192i \(0.169686\pi\)
−0.861244 + 0.508192i \(0.830314\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.7386i 1.39161i 0.718233 + 0.695803i \(0.244951\pi\)
−0.718233 + 0.695803i \(0.755049\pi\)
\(858\) 0 0
\(859\) −12.9848 −0.443037 −0.221519 0.975156i \(-0.571101\pi\)
−0.221519 + 0.975156i \(0.571101\pi\)
\(860\) 0 0
\(861\) 20.4924 0.698380
\(862\) 0 0
\(863\) 49.3002i 1.67820i 0.543979 + 0.839099i \(0.316917\pi\)
−0.543979 + 0.839099i \(0.683083\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 39.2311i 1.33236i
\(868\) 0 0
\(869\) 40.9848 1.39032
\(870\) 0 0
\(871\) −5.12311 −0.173590
\(872\) 0 0
\(873\) 29.3693i 0.994001i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 37.6847i − 1.27252i −0.771474 0.636260i \(-0.780480\pi\)
0.771474 0.636260i \(-0.219520\pi\)
\(878\) 0 0
\(879\) −39.5464 −1.33387
\(880\) 0 0
\(881\) −30.8078 −1.03794 −0.518970 0.854792i \(-0.673684\pi\)
−0.518970 + 0.854792i \(0.673684\pi\)
\(882\) 0 0
\(883\) − 0.315342i − 0.0106121i −0.999986 0.00530604i \(-0.998311\pi\)
0.999986 0.00530604i \(-0.00168897\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 45.4773i − 1.52698i −0.645821 0.763489i \(-0.723485\pi\)
0.645821 0.763489i \(-0.276515\pi\)
\(888\) 0 0
\(889\) −26.2462 −0.880270
\(890\) 0 0
\(891\) 35.8617 1.20141
\(892\) 0 0
\(893\) 1.61553i 0.0540616i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 20.4924i − 0.684222i
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) 17.7538 0.591464
\(902\) 0 0
\(903\) 35.6847i 1.18751i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 20.8078i − 0.690910i −0.938435 0.345455i \(-0.887725\pi\)
0.938435 0.345455i \(-0.112275\pi\)
\(908\) 0 0
\(909\) 25.3693 0.841447
\(910\) 0 0
\(911\) 15.3693 0.509208 0.254604 0.967045i \(-0.418055\pi\)
0.254604 + 0.967045i \(0.418055\pi\)
\(912\) 0 0
\(913\) 11.5076i 0.380845i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.3153i 0.406688i
\(918\) 0 0
\(919\) −24.9848 −0.824174 −0.412087 0.911145i \(-0.635200\pi\)
−0.412087 + 0.911145i \(0.635200\pi\)
\(920\) 0 0
\(921\) 33.6155 1.10767
\(922\) 0 0
\(923\) 7.68466i 0.252944i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 8.00000i 0.262754i
\(928\) 0 0
\(929\) 9.86174 0.323553 0.161777 0.986827i \(-0.448278\pi\)
0.161777 + 0.986827i \(0.448278\pi\)
\(930\) 0 0
\(931\) −2.24621 −0.0736166
\(932\) 0 0
\(933\) 27.8617i 0.912152i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 36.7386i − 1.20020i −0.799925 0.600099i \(-0.795128\pi\)
0.799925 0.600099i \(-0.204872\pi\)
\(938\) 0 0
\(939\) −68.6695 −2.24094
\(940\) 0 0
\(941\) 55.7926 1.81879 0.909394 0.415937i \(-0.136546\pi\)
0.909394 + 0.415937i \(0.136546\pi\)
\(942\) 0 0
\(943\) − 24.9848i − 0.813618i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.36932i 0.239471i 0.992806 + 0.119735i \(0.0382046\pi\)
−0.992806 + 0.119735i \(0.961795\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) −31.3693 −1.01722
\(952\) 0 0
\(953\) 18.6695i 0.604765i 0.953187 + 0.302382i \(0.0977819\pi\)
−0.953187 + 0.302382i \(0.902218\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 26.2462i 0.848420i
\(958\) 0 0
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) − 14.2462i − 0.459078i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.56155i 0.0823740i 0.999151 + 0.0411870i \(0.0131139\pi\)
−0.999151 + 0.0411870i \(0.986886\pi\)
\(968\) 0 0
\(969\) −74.6004 −2.39651
\(970\) 0 0
\(971\) −31.6847 −1.01681 −0.508405 0.861118i \(-0.669765\pi\)
−0.508405 + 0.861118i \(0.669765\pi\)
\(972\) 0 0
\(973\) 19.6847i 0.631061i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 54.4924i 1.74337i 0.490069 + 0.871684i \(0.336971\pi\)
−0.490069 + 0.871684i \(0.663029\pi\)
\(978\) 0 0
\(979\) 51.2311 1.63735
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 0 0
\(983\) − 17.9309i − 0.571906i −0.958244 0.285953i \(-0.907690\pi\)
0.958244 0.285953i \(-0.0923101\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.06913i 0.0658611i
\(988\) 0 0
\(989\) 43.5076 1.38346
\(990\) 0 0
\(991\) −35.8617 −1.13919 −0.569593 0.821927i \(-0.692899\pi\)
−0.569593 + 0.821927i \(0.692899\pi\)
\(992\) 0 0
\(993\) 11.5076i 0.365182i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.246211i 0.00779759i 0.999992 + 0.00389879i \(0.00124103\pi\)
−0.999992 + 0.00389879i \(0.998759\pi\)
\(998\) 0 0
\(999\) −13.9309 −0.440753
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.2.d.k.1249.1 4
5.2 odd 4 2600.2.a.p.1.1 2
5.3 odd 4 104.2.a.b.1.2 2
5.4 even 2 inner 2600.2.d.k.1249.4 4
15.8 even 4 936.2.a.j.1.2 2
20.3 even 4 208.2.a.e.1.1 2
20.7 even 4 5200.2.a.bw.1.2 2
35.13 even 4 5096.2.a.m.1.1 2
40.3 even 4 832.2.a.n.1.2 2
40.13 odd 4 832.2.a.k.1.1 2
60.23 odd 4 1872.2.a.u.1.2 2
65.3 odd 12 1352.2.i.f.529.1 4
65.8 even 4 1352.2.f.c.337.3 4
65.18 even 4 1352.2.f.c.337.4 4
65.23 odd 12 1352.2.i.d.529.1 4
65.28 even 12 1352.2.o.d.1161.2 8
65.33 even 12 1352.2.o.d.361.1 8
65.38 odd 4 1352.2.a.g.1.2 2
65.43 odd 12 1352.2.i.d.1329.1 4
65.48 odd 12 1352.2.i.f.1329.1 4
65.58 even 12 1352.2.o.d.361.2 8
65.63 even 12 1352.2.o.d.1161.1 8
80.3 even 4 3328.2.b.w.1665.1 4
80.13 odd 4 3328.2.b.y.1665.4 4
80.43 even 4 3328.2.b.w.1665.4 4
80.53 odd 4 3328.2.b.y.1665.1 4
120.53 even 4 7488.2.a.cu.1.1 2
120.83 odd 4 7488.2.a.cv.1.1 2
260.83 odd 4 2704.2.f.k.337.2 4
260.103 even 4 2704.2.a.p.1.1 2
260.203 odd 4 2704.2.f.k.337.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.a.b.1.2 2 5.3 odd 4
208.2.a.e.1.1 2 20.3 even 4
832.2.a.k.1.1 2 40.13 odd 4
832.2.a.n.1.2 2 40.3 even 4
936.2.a.j.1.2 2 15.8 even 4
1352.2.a.g.1.2 2 65.38 odd 4
1352.2.f.c.337.3 4 65.8 even 4
1352.2.f.c.337.4 4 65.18 even 4
1352.2.i.d.529.1 4 65.23 odd 12
1352.2.i.d.1329.1 4 65.43 odd 12
1352.2.i.f.529.1 4 65.3 odd 12
1352.2.i.f.1329.1 4 65.48 odd 12
1352.2.o.d.361.1 8 65.33 even 12
1352.2.o.d.361.2 8 65.58 even 12
1352.2.o.d.1161.1 8 65.63 even 12
1352.2.o.d.1161.2 8 65.28 even 12
1872.2.a.u.1.2 2 60.23 odd 4
2600.2.a.p.1.1 2 5.2 odd 4
2600.2.d.k.1249.1 4 1.1 even 1 trivial
2600.2.d.k.1249.4 4 5.4 even 2 inner
2704.2.a.p.1.1 2 260.103 even 4
2704.2.f.k.337.1 4 260.203 odd 4
2704.2.f.k.337.2 4 260.83 odd 4
3328.2.b.w.1665.1 4 80.3 even 4
3328.2.b.w.1665.4 4 80.43 even 4
3328.2.b.y.1665.1 4 80.53 odd 4
3328.2.b.y.1665.4 4 80.13 odd 4
5096.2.a.m.1.1 2 35.13 even 4
5200.2.a.bw.1.2 2 20.7 even 4
7488.2.a.cu.1.1 2 120.53 even 4
7488.2.a.cv.1.1 2 120.83 odd 4