Properties

Label 1352.2.i.f.1329.1
Level $1352$
Weight $2$
Character 1352.1329
Analytic conductor $10.796$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,2,Mod(529,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,6,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7957743533\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1329.1
Root \(1.28078 + 2.21837i\) of defining polynomial
Character \(\chi\) \(=\) 1352.1329
Dual form 1352.2.i.f.529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28078 - 2.21837i) q^{3} -0.561553 q^{5} +(1.28078 - 2.21837i) q^{7} +(-1.78078 + 3.08440i) q^{9} +(2.56155 + 4.43674i) q^{11} +(0.719224 + 1.24573i) q^{15} +(-2.84233 + 4.92306i) q^{17} +(-2.56155 + 4.43674i) q^{19} -6.56155 q^{21} +(4.00000 + 6.92820i) q^{23} -4.68466 q^{25} +1.43845 q^{27} +(1.00000 + 1.73205i) q^{29} +4.00000 q^{31} +(6.56155 - 11.3649i) q^{33} +(-0.719224 + 1.24573i) q^{35} +(-4.84233 - 8.38716i) q^{37} +(1.56155 + 2.70469i) q^{41} +(-2.71922 + 4.70983i) q^{43} +(1.00000 - 1.73205i) q^{45} -0.315342 q^{47} +(0.219224 + 0.379706i) q^{49} +14.5616 q^{51} +3.12311 q^{53} +(-1.43845 - 2.49146i) q^{55} +13.1231 q^{57} +(-2.56155 + 4.43674i) q^{59} +(-5.56155 + 9.63289i) q^{61} +(4.56155 + 7.90084i) q^{63} +(2.56155 + 4.43674i) q^{67} +(10.2462 - 17.7470i) q^{69} +(3.84233 - 6.65511i) q^{71} -6.00000 q^{73} +(6.00000 + 10.3923i) q^{75} +13.1231 q^{77} +8.00000 q^{79} +(3.50000 + 6.06218i) q^{81} +2.24621 q^{83} +(1.59612 - 2.76456i) q^{85} +(2.56155 - 4.43674i) q^{87} +(-5.00000 - 8.66025i) q^{89} +(-5.12311 - 8.87348i) q^{93} +(1.43845 - 2.49146i) q^{95} +(4.12311 - 7.14143i) q^{97} -18.2462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 6 q^{5} + q^{7} - 3 q^{9} + 2 q^{11} + 7 q^{15} + q^{17} - 2 q^{19} - 18 q^{21} + 16 q^{23} + 6 q^{25} + 14 q^{27} + 4 q^{29} + 16 q^{31} + 18 q^{33} - 7 q^{35} - 7 q^{37} - 2 q^{41} - 15 q^{43}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.28078 2.21837i −0.739457 1.28078i −0.952740 0.303786i \(-0.901749\pi\)
0.213284 0.976990i \(-0.431584\pi\)
\(4\) 0 0
\(5\) −0.561553 −0.251134 −0.125567 0.992085i \(-0.540075\pi\)
−0.125567 + 0.992085i \(0.540075\pi\)
\(6\) 0 0
\(7\) 1.28078 2.21837i 0.484088 0.838465i −0.515745 0.856742i \(-0.672485\pi\)
0.999833 + 0.0182772i \(0.00581813\pi\)
\(8\) 0 0
\(9\) −1.78078 + 3.08440i −0.593592 + 1.02813i
\(10\) 0 0
\(11\) 2.56155 + 4.43674i 0.772337 + 1.33773i 0.936279 + 0.351257i \(0.114246\pi\)
−0.163942 + 0.986470i \(0.552421\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0.719224 + 1.24573i 0.185703 + 0.321647i
\(16\) 0 0
\(17\) −2.84233 + 4.92306i −0.689366 + 1.19402i 0.282677 + 0.959215i \(0.408778\pi\)
−0.972043 + 0.234802i \(0.924556\pi\)
\(18\) 0 0
\(19\) −2.56155 + 4.43674i −0.587661 + 1.01786i 0.406877 + 0.913483i \(0.366618\pi\)
−0.994538 + 0.104375i \(0.966716\pi\)
\(20\) 0 0
\(21\) −6.56155 −1.43185
\(22\) 0 0
\(23\) 4.00000 + 6.92820i 0.834058 + 1.44463i 0.894795 + 0.446476i \(0.147321\pi\)
−0.0607377 + 0.998154i \(0.519345\pi\)
\(24\) 0 0
\(25\) −4.68466 −0.936932
\(26\) 0 0
\(27\) 1.43845 0.276829
\(28\) 0 0
\(29\) 1.00000 + 1.73205i 0.185695 + 0.321634i 0.943811 0.330487i \(-0.107213\pi\)
−0.758115 + 0.652121i \(0.773880\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 6.56155 11.3649i 1.14222 1.97838i
\(34\) 0 0
\(35\) −0.719224 + 1.24573i −0.121571 + 0.210567i
\(36\) 0 0
\(37\) −4.84233 8.38716i −0.796074 1.37884i −0.922155 0.386821i \(-0.873573\pi\)
0.126081 0.992020i \(-0.459760\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.56155 + 2.70469i 0.243874 + 0.422401i 0.961814 0.273703i \(-0.0882485\pi\)
−0.717941 + 0.696104i \(0.754915\pi\)
\(42\) 0 0
\(43\) −2.71922 + 4.70983i −0.414678 + 0.718243i −0.995395 0.0958627i \(-0.969439\pi\)
0.580717 + 0.814106i \(0.302772\pi\)
\(44\) 0 0
\(45\) 1.00000 1.73205i 0.149071 0.258199i
\(46\) 0 0
\(47\) −0.315342 −0.0459973 −0.0229986 0.999735i \(-0.507321\pi\)
−0.0229986 + 0.999735i \(0.507321\pi\)
\(48\) 0 0
\(49\) 0.219224 + 0.379706i 0.0313177 + 0.0542438i
\(50\) 0 0
\(51\) 14.5616 2.03903
\(52\) 0 0
\(53\) 3.12311 0.428992 0.214496 0.976725i \(-0.431189\pi\)
0.214496 + 0.976725i \(0.431189\pi\)
\(54\) 0 0
\(55\) −1.43845 2.49146i −0.193960 0.335949i
\(56\) 0 0
\(57\) 13.1231 1.73820
\(58\) 0 0
\(59\) −2.56155 + 4.43674i −0.333486 + 0.577614i −0.983193 0.182570i \(-0.941558\pi\)
0.649707 + 0.760185i \(0.274892\pi\)
\(60\) 0 0
\(61\) −5.56155 + 9.63289i −0.712084 + 1.23337i 0.251990 + 0.967730i \(0.418915\pi\)
−0.964074 + 0.265636i \(0.914418\pi\)
\(62\) 0 0
\(63\) 4.56155 + 7.90084i 0.574702 + 0.995412i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.56155 + 4.43674i 0.312943 + 0.542034i 0.978998 0.203869i \(-0.0653516\pi\)
−0.666055 + 0.745903i \(0.732018\pi\)
\(68\) 0 0
\(69\) 10.2462 17.7470i 1.23350 2.13648i
\(70\) 0 0
\(71\) 3.84233 6.65511i 0.456001 0.789816i −0.542745 0.839898i \(-0.682615\pi\)
0.998745 + 0.0500816i \(0.0159482\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 6.00000 + 10.3923i 0.692820 + 1.20000i
\(76\) 0 0
\(77\) 13.1231 1.49552
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 3.50000 + 6.06218i 0.388889 + 0.673575i
\(82\) 0 0
\(83\) 2.24621 0.246554 0.123277 0.992372i \(-0.460660\pi\)
0.123277 + 0.992372i \(0.460660\pi\)
\(84\) 0 0
\(85\) 1.59612 2.76456i 0.173123 0.299858i
\(86\) 0 0
\(87\) 2.56155 4.43674i 0.274627 0.475668i
\(88\) 0 0
\(89\) −5.00000 8.66025i −0.529999 0.917985i −0.999388 0.0349934i \(-0.988859\pi\)
0.469389 0.882992i \(-0.344474\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.12311 8.87348i −0.531241 0.920137i
\(94\) 0 0
\(95\) 1.43845 2.49146i 0.147582 0.255619i
\(96\) 0 0
\(97\) 4.12311 7.14143i 0.418638 0.725102i −0.577165 0.816628i \(-0.695841\pi\)
0.995803 + 0.0915255i \(0.0291743\pi\)
\(98\) 0 0
\(99\) −18.2462 −1.83381
\(100\) 0 0
\(101\) 3.56155 + 6.16879i 0.354388 + 0.613818i 0.987013 0.160640i \(-0.0513560\pi\)
−0.632625 + 0.774458i \(0.718023\pi\)
\(102\) 0 0
\(103\) 2.24621 0.221326 0.110663 0.993858i \(-0.464703\pi\)
0.110663 + 0.993858i \(0.464703\pi\)
\(104\) 0 0
\(105\) 3.68466 0.359586
\(106\) 0 0
\(107\) −2.00000 3.46410i −0.193347 0.334887i 0.753010 0.658009i \(-0.228601\pi\)
−0.946357 + 0.323122i \(0.895268\pi\)
\(108\) 0 0
\(109\) −2.80776 −0.268935 −0.134468 0.990918i \(-0.542932\pi\)
−0.134468 + 0.990918i \(0.542932\pi\)
\(110\) 0 0
\(111\) −12.4039 + 21.4842i −1.17732 + 2.03919i
\(112\) 0 0
\(113\) 9.24621 16.0149i 0.869810 1.50656i 0.00762026 0.999971i \(-0.497574\pi\)
0.862190 0.506585i \(-0.169092\pi\)
\(114\) 0 0
\(115\) −2.24621 3.89055i −0.209460 0.362796i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.28078 + 12.6107i 0.667428 + 1.15602i
\(120\) 0 0
\(121\) −7.62311 + 13.2036i −0.693010 + 1.20033i
\(122\) 0 0
\(123\) 4.00000 6.92820i 0.360668 0.624695i
\(124\) 0 0
\(125\) 5.43845 0.486430
\(126\) 0 0
\(127\) 5.12311 + 8.87348i 0.454602 + 0.787394i 0.998665 0.0516503i \(-0.0164481\pi\)
−0.544063 + 0.839044i \(0.683115\pi\)
\(128\) 0 0
\(129\) 13.9309 1.22654
\(130\) 0 0
\(131\) −4.80776 −0.420056 −0.210028 0.977695i \(-0.567356\pi\)
−0.210028 + 0.977695i \(0.567356\pi\)
\(132\) 0 0
\(133\) 6.56155 + 11.3649i 0.568959 + 0.985466i
\(134\) 0 0
\(135\) −0.807764 −0.0695213
\(136\) 0 0
\(137\) 1.56155 2.70469i 0.133412 0.231077i −0.791577 0.611069i \(-0.790740\pi\)
0.924990 + 0.379992i \(0.124073\pi\)
\(138\) 0 0
\(139\) −3.84233 + 6.65511i −0.325902 + 0.564479i −0.981695 0.190462i \(-0.939001\pi\)
0.655792 + 0.754941i \(0.272335\pi\)
\(140\) 0 0
\(141\) 0.403882 + 0.699544i 0.0340130 + 0.0589122i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.561553 0.972638i −0.0466344 0.0807732i
\(146\) 0 0
\(147\) 0.561553 0.972638i 0.0463161 0.0802218i
\(148\) 0 0
\(149\) −8.12311 + 14.0696i −0.665471 + 1.15263i 0.313687 + 0.949527i \(0.398436\pi\)
−0.979157 + 0.203103i \(0.934898\pi\)
\(150\) 0 0
\(151\) 10.5616 0.859487 0.429743 0.902951i \(-0.358604\pi\)
0.429743 + 0.902951i \(0.358604\pi\)
\(152\) 0 0
\(153\) −10.1231 17.5337i −0.818405 1.41752i
\(154\) 0 0
\(155\) −2.24621 −0.180420
\(156\) 0 0
\(157\) −22.4924 −1.79509 −0.897545 0.440922i \(-0.854651\pi\)
−0.897545 + 0.440922i \(0.854651\pi\)
\(158\) 0 0
\(159\) −4.00000 6.92820i −0.317221 0.549442i
\(160\) 0 0
\(161\) 20.4924 1.61503
\(162\) 0 0
\(163\) 10.2462 17.7470i 0.802545 1.39005i −0.115391 0.993320i \(-0.536812\pi\)
0.917936 0.396729i \(-0.129855\pi\)
\(164\) 0 0
\(165\) −3.68466 + 6.38202i −0.286850 + 0.496839i
\(166\) 0 0
\(167\) −7.12311 12.3376i −0.551202 0.954711i −0.998188 0.0601696i \(-0.980836\pi\)
0.446986 0.894541i \(-0.352497\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −9.12311 15.8017i −0.697661 1.20838i
\(172\) 0 0
\(173\) 2.43845 4.22351i 0.185392 0.321108i −0.758317 0.651886i \(-0.773978\pi\)
0.943708 + 0.330778i \(0.107311\pi\)
\(174\) 0 0
\(175\) −6.00000 + 10.3923i −0.453557 + 0.785584i
\(176\) 0 0
\(177\) 13.1231 0.986393
\(178\) 0 0
\(179\) −3.84233 6.65511i −0.287189 0.497426i 0.685949 0.727650i \(-0.259388\pi\)
−0.973138 + 0.230224i \(0.926054\pi\)
\(180\) 0 0
\(181\) −23.1231 −1.71873 −0.859363 0.511365i \(-0.829140\pi\)
−0.859363 + 0.511365i \(0.829140\pi\)
\(182\) 0 0
\(183\) 28.4924 2.10622
\(184\) 0 0
\(185\) 2.71922 + 4.70983i 0.199921 + 0.346274i
\(186\) 0 0
\(187\) −29.1231 −2.12969
\(188\) 0 0
\(189\) 1.84233 3.19101i 0.134010 0.232112i
\(190\) 0 0
\(191\) −7.68466 + 13.3102i −0.556042 + 0.963094i 0.441779 + 0.897124i \(0.354347\pi\)
−0.997822 + 0.0659698i \(0.978986\pi\)
\(192\) 0 0
\(193\) 10.6847 + 18.5064i 0.769099 + 1.33212i 0.938052 + 0.346494i \(0.112628\pi\)
−0.168954 + 0.985624i \(0.554039\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.15767 2.00514i −0.0824806 0.142861i 0.821834 0.569727i \(-0.192951\pi\)
−0.904315 + 0.426866i \(0.859618\pi\)
\(198\) 0 0
\(199\) −2.56155 + 4.43674i −0.181584 + 0.314512i −0.942420 0.334432i \(-0.891456\pi\)
0.760836 + 0.648944i \(0.224789\pi\)
\(200\) 0 0
\(201\) 6.56155 11.3649i 0.462816 0.801621i
\(202\) 0 0
\(203\) 5.12311 0.359572
\(204\) 0 0
\(205\) −0.876894 1.51883i −0.0612450 0.106079i
\(206\) 0 0
\(207\) −28.4924 −1.98036
\(208\) 0 0
\(209\) −26.2462 −1.81549
\(210\) 0 0
\(211\) −7.84233 13.5833i −0.539888 0.935114i −0.998909 0.0466885i \(-0.985133\pi\)
0.459021 0.888425i \(-0.348200\pi\)
\(212\) 0 0
\(213\) −19.6847 −1.34877
\(214\) 0 0
\(215\) 1.52699 2.64482i 0.104140 0.180375i
\(216\) 0 0
\(217\) 5.12311 8.87348i 0.347779 0.602371i
\(218\) 0 0
\(219\) 7.68466 + 13.3102i 0.519281 + 0.899421i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.84233 + 13.5833i 0.525161 + 0.909606i 0.999571 + 0.0293016i \(0.00932831\pi\)
−0.474409 + 0.880304i \(0.657338\pi\)
\(224\) 0 0
\(225\) 8.34233 14.4493i 0.556155 0.963289i
\(226\) 0 0
\(227\) 4.00000 6.92820i 0.265489 0.459841i −0.702202 0.711977i \(-0.747800\pi\)
0.967692 + 0.252136i \(0.0811332\pi\)
\(228\) 0 0
\(229\) 6.80776 0.449870 0.224935 0.974374i \(-0.427783\pi\)
0.224935 + 0.974374i \(0.427783\pi\)
\(230\) 0 0
\(231\) −16.8078 29.1119i −1.10587 1.91542i
\(232\) 0 0
\(233\) −6.80776 −0.445991 −0.222996 0.974819i \(-0.571584\pi\)
−0.222996 + 0.974819i \(0.571584\pi\)
\(234\) 0 0
\(235\) 0.177081 0.0115515
\(236\) 0 0
\(237\) −10.2462 17.7470i −0.665563 1.15279i
\(238\) 0 0
\(239\) −2.56155 −0.165693 −0.0828465 0.996562i \(-0.526401\pi\)
−0.0828465 + 0.996562i \(0.526401\pi\)
\(240\) 0 0
\(241\) 1.87689 3.25088i 0.120901 0.209407i −0.799222 0.601036i \(-0.794755\pi\)
0.920123 + 0.391629i \(0.128088\pi\)
\(242\) 0 0
\(243\) 11.1231 19.2658i 0.713548 1.23590i
\(244\) 0 0
\(245\) −0.123106 0.213225i −0.00786493 0.0136225i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −2.87689 4.98293i −0.182316 0.315780i
\(250\) 0 0
\(251\) −11.1231 + 19.2658i −0.702084 + 1.21605i 0.265649 + 0.964070i \(0.414414\pi\)
−0.967734 + 0.251976i \(0.918920\pi\)
\(252\) 0 0
\(253\) −20.4924 + 35.4939i −1.28835 + 2.23148i
\(254\) 0 0
\(255\) −8.17708 −0.512069
\(256\) 0 0
\(257\) −5.71922 9.90599i −0.356755 0.617918i 0.630661 0.776058i \(-0.282784\pi\)
−0.987417 + 0.158140i \(0.949450\pi\)
\(258\) 0 0
\(259\) −24.8078 −1.54148
\(260\) 0 0
\(261\) −7.12311 −0.440909
\(262\) 0 0
\(263\) 13.1231 + 22.7299i 0.809205 + 1.40158i 0.913415 + 0.407029i \(0.133435\pi\)
−0.104210 + 0.994555i \(0.533231\pi\)
\(264\) 0 0
\(265\) −1.75379 −0.107734
\(266\) 0 0
\(267\) −12.8078 + 22.1837i −0.783822 + 1.35762i
\(268\) 0 0
\(269\) 2.43845 4.22351i 0.148675 0.257512i −0.782063 0.623199i \(-0.785833\pi\)
0.930738 + 0.365687i \(0.119166\pi\)
\(270\) 0 0
\(271\) 10.4039 + 18.0201i 0.631991 + 1.09464i 0.987144 + 0.159832i \(0.0510953\pi\)
−0.355153 + 0.934808i \(0.615571\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.0000 20.7846i −0.723627 1.25336i
\(276\) 0 0
\(277\) −14.6847 + 25.4346i −0.882316 + 1.52822i −0.0335558 + 0.999437i \(0.510683\pi\)
−0.848760 + 0.528779i \(0.822650\pi\)
\(278\) 0 0
\(279\) −7.12311 + 12.3376i −0.426449 + 0.738632i
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 4.24621 + 7.35465i 0.252411 + 0.437189i 0.964189 0.265216i \(-0.0854432\pi\)
−0.711778 + 0.702404i \(0.752110\pi\)
\(284\) 0 0
\(285\) −7.36932 −0.436521
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) −7.65767 13.2635i −0.450451 0.780204i
\(290\) 0 0
\(291\) −21.1231 −1.23826
\(292\) 0 0
\(293\) −7.71922 + 13.3701i −0.450962 + 0.781089i −0.998446 0.0557272i \(-0.982252\pi\)
0.547484 + 0.836816i \(0.315586\pi\)
\(294\) 0 0
\(295\) 1.43845 2.49146i 0.0837496 0.145059i
\(296\) 0 0
\(297\) 3.68466 + 6.38202i 0.213806 + 0.370322i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6.96543 + 12.0645i 0.401481 + 0.695385i
\(302\) 0 0
\(303\) 9.12311 15.8017i 0.524109 0.907783i
\(304\) 0 0
\(305\) 3.12311 5.40938i 0.178829 0.309740i
\(306\) 0 0
\(307\) 13.1231 0.748975 0.374488 0.927232i \(-0.377819\pi\)
0.374488 + 0.927232i \(0.377819\pi\)
\(308\) 0 0
\(309\) −2.87689 4.98293i −0.163661 0.283469i
\(310\) 0 0
\(311\) −10.8769 −0.616772 −0.308386 0.951261i \(-0.599789\pi\)
−0.308386 + 0.951261i \(0.599789\pi\)
\(312\) 0 0
\(313\) 26.8078 1.51526 0.757632 0.652682i \(-0.226356\pi\)
0.757632 + 0.652682i \(0.226356\pi\)
\(314\) 0 0
\(315\) −2.56155 4.43674i −0.144327 0.249982i
\(316\) 0 0
\(317\) −12.2462 −0.687816 −0.343908 0.939003i \(-0.611751\pi\)
−0.343908 + 0.939003i \(0.611751\pi\)
\(318\) 0 0
\(319\) −5.12311 + 8.87348i −0.286839 + 0.496819i
\(320\) 0 0
\(321\) −5.12311 + 8.87348i −0.285944 + 0.495269i
\(322\) 0 0
\(323\) −14.5616 25.2213i −0.810226 1.40335i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.59612 + 6.22866i 0.198866 + 0.344446i
\(328\) 0 0
\(329\) −0.403882 + 0.699544i −0.0222667 + 0.0385671i
\(330\) 0 0
\(331\) 2.24621 3.89055i 0.123463 0.213844i −0.797668 0.603097i \(-0.793933\pi\)
0.921131 + 0.389253i \(0.127267\pi\)
\(332\) 0 0
\(333\) 34.4924 1.89017
\(334\) 0 0
\(335\) −1.43845 2.49146i −0.0785908 0.136123i
\(336\) 0 0
\(337\) −13.1922 −0.718627 −0.359313 0.933217i \(-0.616989\pi\)
−0.359313 + 0.933217i \(0.616989\pi\)
\(338\) 0 0
\(339\) −47.3693 −2.57275
\(340\) 0 0
\(341\) 10.2462 + 17.7470i 0.554863 + 0.961052i
\(342\) 0 0
\(343\) 19.0540 1.02882
\(344\) 0 0
\(345\) −5.75379 + 9.96585i −0.309774 + 0.536544i
\(346\) 0 0
\(347\) −3.84233 + 6.65511i −0.206267 + 0.357265i −0.950536 0.310615i \(-0.899465\pi\)
0.744269 + 0.667880i \(0.232798\pi\)
\(348\) 0 0
\(349\) −5.96543 10.3324i −0.319322 0.553083i 0.661024 0.750364i \(-0.270122\pi\)
−0.980347 + 0.197282i \(0.936789\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.68466 8.11407i −0.249339 0.431868i 0.714003 0.700142i \(-0.246880\pi\)
−0.963343 + 0.268274i \(0.913547\pi\)
\(354\) 0 0
\(355\) −2.15767 + 3.73720i −0.114517 + 0.198350i
\(356\) 0 0
\(357\) 18.6501 32.3029i 0.987068 1.70965i
\(358\) 0 0
\(359\) 14.2462 0.751886 0.375943 0.926643i \(-0.377319\pi\)
0.375943 + 0.926643i \(0.377319\pi\)
\(360\) 0 0
\(361\) −3.62311 6.27540i −0.190690 0.330284i
\(362\) 0 0
\(363\) 39.0540 2.04980
\(364\) 0 0
\(365\) 3.36932 0.176358
\(366\) 0 0
\(367\) −4.80776 8.32729i −0.250963 0.434681i 0.712828 0.701339i \(-0.247414\pi\)
−0.963791 + 0.266658i \(0.914081\pi\)
\(368\) 0 0
\(369\) −11.1231 −0.579046
\(370\) 0 0
\(371\) 4.00000 6.92820i 0.207670 0.359694i
\(372\) 0 0
\(373\) 5.80776 10.0593i 0.300715 0.520853i −0.675583 0.737284i \(-0.736108\pi\)
0.976298 + 0.216431i \(0.0694415\pi\)
\(374\) 0 0
\(375\) −6.96543 12.0645i −0.359694 0.623007i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −2.87689 4.98293i −0.147776 0.255956i 0.782629 0.622488i \(-0.213878\pi\)
−0.930405 + 0.366533i \(0.880545\pi\)
\(380\) 0 0
\(381\) 13.1231 22.7299i 0.672317 1.16449i
\(382\) 0 0
\(383\) 5.59612 9.69276i 0.285948 0.495277i −0.686890 0.726761i \(-0.741025\pi\)
0.972839 + 0.231484i \(0.0743581\pi\)
\(384\) 0 0
\(385\) −7.36932 −0.375575
\(386\) 0 0
\(387\) −9.68466 16.7743i −0.492299 0.852687i
\(388\) 0 0
\(389\) 20.7386 1.05149 0.525745 0.850642i \(-0.323787\pi\)
0.525745 + 0.850642i \(0.323787\pi\)
\(390\) 0 0
\(391\) −45.4773 −2.29988
\(392\) 0 0
\(393\) 6.15767 + 10.6654i 0.310613 + 0.537998i
\(394\) 0 0
\(395\) −4.49242 −0.226038
\(396\) 0 0
\(397\) 1.00000 1.73205i 0.0501886 0.0869291i −0.839840 0.542834i \(-0.817351\pi\)
0.890028 + 0.455905i \(0.150684\pi\)
\(398\) 0 0
\(399\) 16.8078 29.1119i 0.841441 1.45742i
\(400\) 0 0
\(401\) −1.80776 3.13114i −0.0902754 0.156362i 0.817352 0.576139i \(-0.195441\pi\)
−0.907627 + 0.419778i \(0.862108\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.96543 3.40423i −0.0976632 0.169158i
\(406\) 0 0
\(407\) 24.8078 42.9683i 1.22968 2.12986i
\(408\) 0 0
\(409\) −6.43845 + 11.1517i −0.318361 + 0.551417i −0.980146 0.198276i \(-0.936466\pi\)
0.661785 + 0.749693i \(0.269799\pi\)
\(410\) 0 0
\(411\) −8.00000 −0.394611
\(412\) 0 0
\(413\) 6.56155 + 11.3649i 0.322873 + 0.559232i
\(414\) 0 0
\(415\) −1.26137 −0.0619180
\(416\) 0 0
\(417\) 19.6847 0.963962
\(418\) 0 0
\(419\) 0.965435 + 1.67218i 0.0471646 + 0.0816914i 0.888644 0.458598i \(-0.151648\pi\)
−0.841479 + 0.540289i \(0.818315\pi\)
\(420\) 0 0
\(421\) −6.31534 −0.307791 −0.153895 0.988087i \(-0.549182\pi\)
−0.153895 + 0.988087i \(0.549182\pi\)
\(422\) 0 0
\(423\) 0.561553 0.972638i 0.0273036 0.0472913i
\(424\) 0 0
\(425\) 13.3153 23.0628i 0.645889 1.11871i
\(426\) 0 0
\(427\) 14.2462 + 24.6752i 0.689422 + 1.19411i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.28078 + 16.0748i 0.447039 + 0.774295i 0.998192 0.0601098i \(-0.0191451\pi\)
−0.551153 + 0.834405i \(0.685812\pi\)
\(432\) 0 0
\(433\) 3.08854 5.34951i 0.148426 0.257081i −0.782220 0.623002i \(-0.785913\pi\)
0.930646 + 0.365921i \(0.119246\pi\)
\(434\) 0 0
\(435\) −1.43845 + 2.49146i −0.0689683 + 0.119457i
\(436\) 0 0
\(437\) −40.9848 −1.96057
\(438\) 0 0
\(439\) −10.5616 18.2931i −0.504075 0.873084i −0.999989 0.00471229i \(-0.998500\pi\)
0.495913 0.868372i \(-0.334833\pi\)
\(440\) 0 0
\(441\) −1.56155 −0.0743597
\(442\) 0 0
\(443\) 20.8078 0.988607 0.494303 0.869289i \(-0.335423\pi\)
0.494303 + 0.869289i \(0.335423\pi\)
\(444\) 0 0
\(445\) 2.80776 + 4.86319i 0.133101 + 0.230537i
\(446\) 0 0
\(447\) 41.6155 1.96835
\(448\) 0 0
\(449\) −16.3693 + 28.3525i −0.772516 + 1.33804i 0.163664 + 0.986516i \(0.447669\pi\)
−0.936180 + 0.351521i \(0.885665\pi\)
\(450\) 0 0
\(451\) −8.00000 + 13.8564i −0.376705 + 0.652473i
\(452\) 0 0
\(453\) −13.5270 23.4294i −0.635553 1.10081i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −12.3693 21.4243i −0.578612 1.00219i −0.995639 0.0932915i \(-0.970261\pi\)
0.417027 0.908894i \(-0.363072\pi\)
\(458\) 0 0
\(459\) −4.08854 + 7.08156i −0.190837 + 0.330539i
\(460\) 0 0
\(461\) 17.4039 30.1444i 0.810580 1.40397i −0.101879 0.994797i \(-0.532486\pi\)
0.912459 0.409168i \(-0.134181\pi\)
\(462\) 0 0
\(463\) 38.2462 1.77745 0.888726 0.458439i \(-0.151591\pi\)
0.888726 + 0.458439i \(0.151591\pi\)
\(464\) 0 0
\(465\) 2.87689 + 4.98293i 0.133413 + 0.231078i
\(466\) 0 0
\(467\) 40.4924 1.87377 0.936883 0.349643i \(-0.113697\pi\)
0.936883 + 0.349643i \(0.113697\pi\)
\(468\) 0 0
\(469\) 13.1231 0.605969
\(470\) 0 0
\(471\) 28.8078 + 49.8965i 1.32739 + 2.29911i
\(472\) 0 0
\(473\) −27.8617 −1.28108
\(474\) 0 0
\(475\) 12.0000 20.7846i 0.550598 0.953663i
\(476\) 0 0
\(477\) −5.56155 + 9.63289i −0.254646 + 0.441060i
\(478\) 0 0
\(479\) −5.59612 9.69276i −0.255693 0.442874i 0.709390 0.704816i \(-0.248970\pi\)
−0.965084 + 0.261942i \(0.915637\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −26.2462 45.4598i −1.19424 2.06849i
\(484\) 0 0
\(485\) −2.31534 + 4.01029i −0.105134 + 0.182098i
\(486\) 0 0
\(487\) −0.876894 + 1.51883i −0.0397359 + 0.0688246i −0.885209 0.465193i \(-0.845985\pi\)
0.845473 + 0.534017i \(0.179318\pi\)
\(488\) 0 0
\(489\) −52.4924 −2.37379
\(490\) 0 0
\(491\) −0.473012 0.819281i −0.0213467 0.0369737i 0.855155 0.518373i \(-0.173462\pi\)
−0.876501 + 0.481399i \(0.840129\pi\)
\(492\) 0 0
\(493\) −11.3693 −0.512048
\(494\) 0 0
\(495\) 10.2462 0.460533
\(496\) 0 0
\(497\) −9.84233 17.0474i −0.441489 0.764681i
\(498\) 0 0
\(499\) 28.4924 1.27550 0.637748 0.770245i \(-0.279866\pi\)
0.637748 + 0.770245i \(0.279866\pi\)
\(500\) 0 0
\(501\) −18.2462 + 31.6034i −0.815181 + 1.41193i
\(502\) 0 0
\(503\) 3.68466 6.38202i 0.164291 0.284560i −0.772112 0.635486i \(-0.780800\pi\)
0.936403 + 0.350926i \(0.114133\pi\)
\(504\) 0 0
\(505\) −2.00000 3.46410i −0.0889988 0.154150i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.00000 + 15.5885i 0.398918 + 0.690946i 0.993593 0.113020i \(-0.0360525\pi\)
−0.594675 + 0.803966i \(0.702719\pi\)
\(510\) 0 0
\(511\) −7.68466 + 13.3102i −0.339949 + 0.588809i
\(512\) 0 0
\(513\) −3.68466 + 6.38202i −0.162682 + 0.281773i
\(514\) 0 0
\(515\) −1.26137 −0.0555824
\(516\) 0 0
\(517\) −0.807764 1.39909i −0.0355254 0.0615318i
\(518\) 0 0
\(519\) −12.4924 −0.548356
\(520\) 0 0
\(521\) −9.68466 −0.424293 −0.212146 0.977238i \(-0.568045\pi\)
−0.212146 + 0.977238i \(0.568045\pi\)
\(522\) 0 0
\(523\) 0.246211 + 0.426450i 0.0107661 + 0.0186474i 0.871358 0.490647i \(-0.163240\pi\)
−0.860592 + 0.509295i \(0.829906\pi\)
\(524\) 0 0
\(525\) 30.7386 1.34154
\(526\) 0 0
\(527\) −11.3693 + 19.6922i −0.495255 + 0.857807i
\(528\) 0 0
\(529\) −20.5000 + 35.5070i −0.891304 + 1.54378i
\(530\) 0 0
\(531\) −9.12311 15.8017i −0.395909 0.685735i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.12311 + 1.94528i 0.0485561 + 0.0841016i
\(536\) 0 0
\(537\) −9.84233 + 17.0474i −0.424728 + 0.735650i
\(538\) 0 0
\(539\) −1.12311 + 1.94528i −0.0483756 + 0.0837890i
\(540\) 0 0
\(541\) −5.68466 −0.244403 −0.122201 0.992505i \(-0.538995\pi\)
−0.122201 + 0.992505i \(0.538995\pi\)
\(542\) 0 0
\(543\) 29.6155 + 51.2956i 1.27092 + 2.20130i
\(544\) 0 0
\(545\) 1.57671 0.0675387
\(546\) 0 0
\(547\) −29.4384 −1.25870 −0.629349 0.777123i \(-0.716678\pi\)
−0.629349 + 0.777123i \(0.716678\pi\)
\(548\) 0 0
\(549\) −19.8078 34.3081i −0.845375 1.46423i
\(550\) 0 0
\(551\) −10.2462 −0.436503
\(552\) 0 0
\(553\) 10.2462 17.7470i 0.435713 0.754677i
\(554\) 0 0
\(555\) 6.96543 12.0645i 0.295666 0.512109i
\(556\) 0 0
\(557\) 21.0885 + 36.5264i 0.893550 + 1.54767i 0.835589 + 0.549355i \(0.185127\pi\)
0.0579613 + 0.998319i \(0.481540\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 37.3002 + 64.6058i 1.57482 + 2.72766i
\(562\) 0 0
\(563\) 3.52699 6.10892i 0.148645 0.257460i −0.782082 0.623176i \(-0.785842\pi\)
0.930727 + 0.365715i \(0.119176\pi\)
\(564\) 0 0
\(565\) −5.19224 + 8.99322i −0.218439 + 0.378347i
\(566\) 0 0
\(567\) 17.9309 0.753026
\(568\) 0 0
\(569\) 20.8423 + 36.1000i 0.873756 + 1.51339i 0.858082 + 0.513512i \(0.171656\pi\)
0.0156737 + 0.999877i \(0.495011\pi\)
\(570\) 0 0
\(571\) 28.8078 1.20557 0.602784 0.797905i \(-0.294058\pi\)
0.602784 + 0.797905i \(0.294058\pi\)
\(572\) 0 0
\(573\) 39.3693 1.64468
\(574\) 0 0
\(575\) −18.7386 32.4563i −0.781455 1.35352i
\(576\) 0 0
\(577\) −24.2462 −1.00938 −0.504691 0.863300i \(-0.668394\pi\)
−0.504691 + 0.863300i \(0.668394\pi\)
\(578\) 0 0
\(579\) 27.3693 47.4050i 1.13743 1.97009i
\(580\) 0 0
\(581\) 2.87689 4.98293i 0.119354 0.206727i
\(582\) 0 0
\(583\) 8.00000 + 13.8564i 0.331326 + 0.573874i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.4924 + 21.6375i 0.515617 + 0.893076i 0.999836 + 0.0181284i \(0.00577075\pi\)
−0.484218 + 0.874947i \(0.660896\pi\)
\(588\) 0 0
\(589\) −10.2462 + 17.7470i −0.422188 + 0.731251i
\(590\) 0 0
\(591\) −2.96543 + 5.13628i −0.121982 + 0.211278i
\(592\) 0 0
\(593\) 38.4924 1.58069 0.790347 0.612659i \(-0.209900\pi\)
0.790347 + 0.612659i \(0.209900\pi\)
\(594\) 0 0
\(595\) −4.08854 7.08156i −0.167614 0.290316i
\(596\) 0 0
\(597\) 13.1231 0.537093
\(598\) 0 0
\(599\) 23.3693 0.954844 0.477422 0.878674i \(-0.341571\pi\)
0.477422 + 0.878674i \(0.341571\pi\)
\(600\) 0 0
\(601\) −17.0885 29.5982i −0.697056 1.20734i −0.969483 0.245160i \(-0.921160\pi\)
0.272427 0.962177i \(-0.412174\pi\)
\(602\) 0 0
\(603\) −18.2462 −0.743043
\(604\) 0 0
\(605\) 4.28078 7.41452i 0.174038 0.301443i
\(606\) 0 0
\(607\) −7.68466 + 13.3102i −0.311911 + 0.540245i −0.978776 0.204933i \(-0.934302\pi\)
0.666865 + 0.745178i \(0.267636\pi\)
\(608\) 0 0
\(609\) −6.56155 11.3649i −0.265888 0.460531i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −3.00000 5.19615i −0.121169 0.209871i 0.799060 0.601251i \(-0.205331\pi\)
−0.920229 + 0.391381i \(0.871998\pi\)
\(614\) 0 0
\(615\) −2.24621 + 3.89055i −0.0905760 + 0.156882i
\(616\) 0 0
\(617\) −10.9309 + 18.9328i −0.440060 + 0.762207i −0.997693 0.0678808i \(-0.978376\pi\)
0.557633 + 0.830087i \(0.311710\pi\)
\(618\) 0 0
\(619\) −29.7538 −1.19591 −0.597953 0.801531i \(-0.704019\pi\)
−0.597953 + 0.801531i \(0.704019\pi\)
\(620\) 0 0
\(621\) 5.75379 + 9.96585i 0.230892 + 0.399916i
\(622\) 0 0
\(623\) −25.6155 −1.02626
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) 0 0
\(627\) 33.6155 + 58.2238i 1.34247 + 2.32523i
\(628\) 0 0
\(629\) 55.0540 2.19515
\(630\) 0 0
\(631\) 23.8423 41.2961i 0.949148 1.64397i 0.201923 0.979401i \(-0.435281\pi\)
0.747225 0.664571i \(-0.231386\pi\)
\(632\) 0 0
\(633\) −20.0885 + 34.7944i −0.798448 + 1.38295i
\(634\) 0 0
\(635\) −2.87689 4.98293i −0.114166 0.197741i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 13.6847 + 23.7025i 0.541357 + 0.937657i
\(640\) 0 0
\(641\) 4.12311 7.14143i 0.162853 0.282069i −0.773038 0.634360i \(-0.781264\pi\)
0.935891 + 0.352290i \(0.114597\pi\)
\(642\) 0 0
\(643\) −17.9309 + 31.0572i −0.707124 + 1.22478i 0.258795 + 0.965932i \(0.416675\pi\)
−0.965919 + 0.258843i \(0.916659\pi\)
\(644\) 0 0
\(645\) −7.82292 −0.308027
\(646\) 0 0
\(647\) −2.56155 4.43674i −0.100705 0.174426i 0.811270 0.584671i \(-0.198777\pi\)
−0.911975 + 0.410245i \(0.865443\pi\)
\(648\) 0 0
\(649\) −26.2462 −1.03025
\(650\) 0 0
\(651\) −26.2462 −1.02867
\(652\) 0 0
\(653\) 2.43845 + 4.22351i 0.0954238 + 0.165279i 0.909785 0.415079i \(-0.136246\pi\)
−0.814362 + 0.580358i \(0.802913\pi\)
\(654\) 0 0
\(655\) 2.69981 0.105490
\(656\) 0 0
\(657\) 10.6847 18.5064i 0.416848 0.722002i
\(658\) 0 0
\(659\) −8.24621 + 14.2829i −0.321227 + 0.556381i −0.980741 0.195311i \(-0.937429\pi\)
0.659515 + 0.751692i \(0.270762\pi\)
\(660\) 0 0
\(661\) 20.3693 + 35.2807i 0.792275 + 1.37226i 0.924555 + 0.381048i \(0.124437\pi\)
−0.132281 + 0.991212i \(0.542230\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.68466 6.38202i −0.142885 0.247484i
\(666\) 0 0
\(667\) −8.00000 + 13.8564i −0.309761 + 0.536522i
\(668\) 0 0
\(669\) 20.0885 34.7944i 0.776668 1.34523i
\(670\) 0 0
\(671\) −56.9848 −2.19988
\(672\) 0 0
\(673\) 9.65009 + 16.7145i 0.371984 + 0.644295i 0.989871 0.141972i \(-0.0453444\pi\)
−0.617887 + 0.786267i \(0.712011\pi\)
\(674\) 0 0
\(675\) −6.73863 −0.259370
\(676\) 0 0
\(677\) −1.36932 −0.0526271 −0.0263136 0.999654i \(-0.508377\pi\)
−0.0263136 + 0.999654i \(0.508377\pi\)
\(678\) 0 0
\(679\) −10.5616 18.2931i −0.405315 0.702027i
\(680\) 0 0
\(681\) −20.4924 −0.785271
\(682\) 0 0
\(683\) 12.0000 20.7846i 0.459167 0.795301i −0.539750 0.841825i \(-0.681481\pi\)
0.998917 + 0.0465244i \(0.0148145\pi\)
\(684\) 0 0
\(685\) −0.876894 + 1.51883i −0.0335044 + 0.0580313i
\(686\) 0 0
\(687\) −8.71922 15.1021i −0.332659 0.576183i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −8.49242 14.7093i −0.323067 0.559568i 0.658052 0.752972i \(-0.271381\pi\)
−0.981119 + 0.193404i \(0.938047\pi\)
\(692\) 0 0
\(693\) −23.3693 + 40.4768i −0.887727 + 1.53759i
\(694\) 0 0
\(695\) 2.15767 3.73720i 0.0818451 0.141760i
\(696\) 0 0
\(697\) −17.7538 −0.672473
\(698\) 0 0
\(699\) 8.71922 + 15.1021i 0.329791 + 0.571215i
\(700\) 0 0
\(701\) 22.6307 0.854749 0.427375 0.904075i \(-0.359439\pi\)
0.427375 + 0.904075i \(0.359439\pi\)
\(702\) 0 0
\(703\) 49.6155 1.87129
\(704\) 0 0
\(705\) −0.226801 0.392831i −0.00854182 0.0147949i
\(706\) 0 0
\(707\) 18.2462 0.686219
\(708\) 0 0
\(709\) 12.3693 21.4243i 0.464539 0.804606i −0.534641 0.845079i \(-0.679553\pi\)
0.999181 + 0.0404733i \(0.0128866\pi\)
\(710\) 0 0
\(711\) −14.2462 + 24.6752i −0.534275 + 0.925391i
\(712\) 0 0
\(713\) 16.0000 + 27.7128i 0.599205 + 1.03785i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.28078 + 5.68247i 0.122523 + 0.212216i
\(718\) 0 0
\(719\) 6.56155 11.3649i 0.244705 0.423841i −0.717344 0.696719i \(-0.754642\pi\)
0.962049 + 0.272878i \(0.0879757\pi\)
\(720\) 0 0
\(721\) 2.87689 4.98293i 0.107141 0.185574i
\(722\) 0 0
\(723\) −9.61553 −0.357605
\(724\) 0 0
\(725\) −4.68466 8.11407i −0.173984 0.301349i
\(726\) 0 0
\(727\) −46.1080 −1.71005 −0.855025 0.518587i \(-0.826458\pi\)
−0.855025 + 0.518587i \(0.826458\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −15.4579 26.7738i −0.571730 0.990265i
\(732\) 0 0
\(733\) −27.4384 −1.01346 −0.506731 0.862104i \(-0.669146\pi\)
−0.506731 + 0.862104i \(0.669146\pi\)
\(734\) 0 0
\(735\) −0.315342 + 0.546188i −0.0116315 + 0.0201464i
\(736\) 0 0
\(737\) −13.1231 + 22.7299i −0.483396 + 0.837266i
\(738\) 0 0
\(739\) 5.12311 + 8.87348i 0.188456 + 0.326416i 0.944736 0.327833i \(-0.106318\pi\)
−0.756279 + 0.654249i \(0.772985\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25.4579 44.0943i −0.933958 1.61766i −0.776481 0.630140i \(-0.782997\pi\)
−0.157477 0.987523i \(-0.550336\pi\)
\(744\) 0 0
\(745\) 4.56155 7.90084i 0.167122 0.289464i
\(746\) 0 0
\(747\) −4.00000 + 6.92820i −0.146352 + 0.253490i
\(748\) 0 0
\(749\) −10.2462 −0.374388
\(750\) 0 0
\(751\) −12.4924 21.6375i −0.455855 0.789564i 0.542882 0.839809i \(-0.317333\pi\)
−0.998737 + 0.0502450i \(0.984000\pi\)
\(752\) 0 0
\(753\) 56.9848 2.07664
\(754\) 0 0
\(755\) −5.93087 −0.215846
\(756\) 0 0
\(757\) −1.56155 2.70469i −0.0567556 0.0983036i 0.836252 0.548346i \(-0.184742\pi\)
−0.893007 + 0.450042i \(0.851409\pi\)
\(758\) 0 0
\(759\) 104.985 3.81071
\(760\) 0 0
\(761\) −23.2462 + 40.2636i −0.842674 + 1.45956i 0.0449510 + 0.998989i \(0.485687\pi\)
−0.887626 + 0.460566i \(0.847647\pi\)
\(762\) 0 0
\(763\) −3.59612 + 6.22866i −0.130188 + 0.225493i
\(764\) 0 0
\(765\) 5.68466 + 9.84612i 0.205529 + 0.355987i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −6.93087 12.0046i −0.249934 0.432898i 0.713574 0.700580i \(-0.247075\pi\)
−0.963507 + 0.267683i \(0.913742\pi\)
\(770\) 0 0
\(771\) −14.6501 + 25.3747i −0.527610 + 0.913848i
\(772\) 0 0
\(773\) −23.0885 + 39.9905i −0.830437 + 1.43836i 0.0672550 + 0.997736i \(0.478576\pi\)
−0.897692 + 0.440623i \(0.854757\pi\)
\(774\) 0 0
\(775\) −18.7386 −0.673112
\(776\) 0 0
\(777\) 31.7732 + 55.0328i 1.13986 + 1.97429i
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) 39.3693 1.40874
\(782\) 0 0
\(783\) 1.43845 + 2.49146i 0.0514059 + 0.0890376i
\(784\) 0 0
\(785\) 12.6307 0.450808
\(786\) 0 0
\(787\) 8.00000 13.8564i 0.285169 0.493928i −0.687481 0.726202i \(-0.741284\pi\)
0.972650 + 0.232275i \(0.0746169\pi\)
\(788\) 0 0
\(789\) 33.6155 58.2238i 1.19674 2.07282i
\(790\) 0 0
\(791\) −23.6847 41.0230i −0.842130 1.45861i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 2.24621 + 3.89055i 0.0796649 + 0.137984i
\(796\) 0 0
\(797\) 6.75379 11.6979i 0.239231 0.414361i −0.721263 0.692662i \(-0.756438\pi\)
0.960494 + 0.278301i \(0.0897712\pi\)
\(798\) 0 0
\(799\) 0.896305 1.55244i 0.0317090 0.0549216i
\(800\) 0 0
\(801\) 35.6155 1.25841
\(802\) 0 0
\(803\) −15.3693 26.6204i −0.542371 0.939415i
\(804\) 0 0
\(805\) −11.5076 −0.405589
\(806\) 0 0
\(807\) −12.4924 −0.439754
\(808\) 0 0
\(809\) 15.0885 + 26.1341i 0.530485 + 0.918827i 0.999367 + 0.0355661i \(0.0113234\pi\)
−0.468882 + 0.883261i \(0.655343\pi\)
\(810\) 0 0
\(811\) −46.7386 −1.64122 −0.820608 0.571492i \(-0.806365\pi\)
−0.820608 + 0.571492i \(0.806365\pi\)
\(812\) 0 0
\(813\) 26.6501 46.1593i 0.934660 1.61888i
\(814\) 0 0
\(815\) −5.75379 + 9.96585i −0.201546 + 0.349089i
\(816\) 0 0
\(817\) −13.9309 24.1290i −0.487379 0.844166i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.71922 13.3701i −0.269403 0.466619i 0.699305 0.714823i \(-0.253493\pi\)
−0.968708 + 0.248204i \(0.920160\pi\)
\(822\) 0 0
\(823\) 4.80776 8.32729i 0.167588 0.290271i −0.769983 0.638064i \(-0.779735\pi\)
0.937571 + 0.347793i \(0.113069\pi\)
\(824\) 0 0
\(825\) −30.7386 + 53.2409i −1.07018 + 1.85361i
\(826\) 0 0
\(827\) −35.8617 −1.24703 −0.623517 0.781809i \(-0.714297\pi\)
−0.623517 + 0.781809i \(0.714297\pi\)
\(828\) 0 0
\(829\) −9.24621 16.0149i −0.321134 0.556221i 0.659588 0.751627i \(-0.270731\pi\)
−0.980722 + 0.195406i \(0.937397\pi\)
\(830\) 0 0
\(831\) 75.2311 2.60974
\(832\) 0 0
\(833\) −2.49242 −0.0863573
\(834\) 0 0
\(835\) 4.00000 + 6.92820i 0.138426 + 0.239760i
\(836\) 0 0
\(837\) 5.75379 0.198880
\(838\) 0 0
\(839\) 5.36932 9.29993i 0.185369 0.321069i −0.758332 0.651869i \(-0.773985\pi\)
0.943701 + 0.330800i \(0.107318\pi\)
\(840\) 0 0
\(841\) 12.5000 21.6506i 0.431034 0.746574i
\(842\) 0 0
\(843\) −12.8078 22.1837i −0.441123 0.764047i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 19.5270 + 33.8217i 0.670955 + 1.16213i
\(848\) 0 0
\(849\) 10.8769 18.8393i 0.373294 0.646564i
\(850\) 0 0
\(851\) 38.7386 67.0973i 1.32794 2.30007i
\(852\) 0 0
\(853\) −29.6847 −1.01638 −0.508192 0.861244i \(-0.669686\pi\)
−0.508192 + 0.861244i \(0.669686\pi\)
\(854\) 0 0
\(855\) 5.12311 + 8.87348i 0.175207 + 0.303467i
\(856\) 0 0
\(857\) 40.7386 1.39161 0.695803 0.718233i \(-0.255049\pi\)
0.695803 + 0.718233i \(0.255049\pi\)
\(858\) 0 0
\(859\) 12.9848 0.443037 0.221519 0.975156i \(-0.428899\pi\)
0.221519 + 0.975156i \(0.428899\pi\)
\(860\) 0 0
\(861\) −10.2462 17.7470i −0.349190 0.604815i
\(862\) 0 0
\(863\) −49.3002 −1.67820 −0.839099 0.543979i \(-0.816917\pi\)
−0.839099 + 0.543979i \(0.816917\pi\)
\(864\) 0 0
\(865\) −1.36932 + 2.37173i −0.0465582 + 0.0806411i
\(866\) 0 0
\(867\) −19.6155 + 33.9751i −0.666178 + 1.15385i
\(868\) 0 0
\(869\) 20.4924 + 35.4939i 0.695158 + 1.20405i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 14.6847 + 25.4346i 0.497000 + 0.860830i
\(874\) 0 0
\(875\) 6.96543 12.0645i 0.235475 0.407854i
\(876\) 0 0
\(877\) 18.8423 32.6359i 0.636260 1.10204i −0.349986 0.936755i \(-0.613814\pi\)
0.986247 0.165280i \(-0.0528529\pi\)
\(878\) 0 0
\(879\) 39.5464 1.33387
\(880\) 0 0
\(881\) 15.4039 + 26.6803i 0.518970 + 0.898882i 0.999757 + 0.0220449i \(0.00701769\pi\)
−0.480787 + 0.876837i \(0.659649\pi\)
\(882\) 0 0
\(883\) 0.315342 0.0106121 0.00530604 0.999986i \(-0.498311\pi\)
0.00530604 + 0.999986i \(0.498311\pi\)
\(884\) 0 0
\(885\) −7.36932 −0.247717
\(886\) 0 0
\(887\) 22.7386 + 39.3845i 0.763489 + 1.32240i 0.941042 + 0.338290i \(0.109848\pi\)
−0.177553 + 0.984111i \(0.556818\pi\)
\(888\) 0 0
\(889\) 26.2462 0.880270
\(890\) 0 0
\(891\) −17.9309 + 31.0572i −0.600707 + 1.04045i
\(892\) 0 0
\(893\) 0.807764 1.39909i 0.0270308 0.0468187i
\(894\) 0 0
\(895\) 2.15767 + 3.73720i 0.0721230 + 0.124921i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.00000 + 6.92820i 0.133407 + 0.231069i
\(900\) 0 0
\(901\) −8.87689 + 15.3752i −0.295732 + 0.512223i
\(902\) 0 0
\(903\) 17.8423 30.9038i 0.593756 1.02841i
\(904\) 0 0
\(905\) 12.9848 0.431631
\(906\) 0 0
\(907\) 10.4039 + 18.0201i 0.345455 + 0.598346i 0.985436 0.170045i \(-0.0543912\pi\)
−0.639981 + 0.768391i \(0.721058\pi\)
\(908\) 0 0
\(909\) −25.3693 −0.841447
\(910\) 0 0
\(911\) 15.3693 0.509208 0.254604 0.967045i \(-0.418055\pi\)
0.254604 + 0.967045i \(0.418055\pi\)
\(912\) 0 0
\(913\) 5.75379 + 9.96585i 0.190423 + 0.329822i
\(914\) 0 0
\(915\) −16.0000 −0.528944
\(916\) 0 0
\(917\) −6.15767 + 10.6654i −0.203344 + 0.352202i
\(918\) 0 0
\(919\) −12.4924 + 21.6375i −0.412087 + 0.713756i −0.995118 0.0986944i \(-0.968533\pi\)
0.583031 + 0.812450i \(0.301867\pi\)
\(920\) 0 0
\(921\) −16.8078 29.1119i −0.553835 0.959270i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 22.6847 + 39.2910i 0.745867 + 1.29188i
\(926\) 0 0
\(927\) −4.00000 + 6.92820i −0.131377 + 0.227552i
\(928\) 0 0
\(929\) 4.93087 8.54052i 0.161777 0.280205i −0.773729 0.633516i \(-0.781611\pi\)
0.935506 + 0.353311i \(0.114944\pi\)
\(930\) 0 0
\(931\) −2.24621 −0.0736166
\(932\) 0 0
\(933\) 13.9309 + 24.1290i 0.456076 + 0.789947i
\(934\) 0 0
\(935\) 16.3542 0.534838
\(936\) 0 0
\(937\) −36.7386 −1.20020 −0.600099 0.799925i \(-0.704872\pi\)
−0.600099 + 0.799925i \(0.704872\pi\)
\(938\) 0 0
\(939\) −34.3348 59.4695i −1.12047 1.94071i
\(940\) 0 0
\(941\) 55.7926 1.81879 0.909394 0.415937i \(-0.136546\pi\)
0.909394 + 0.415937i \(0.136546\pi\)
\(942\) 0 0
\(943\) −12.4924 + 21.6375i −0.406809 + 0.704614i
\(944\) 0 0
\(945\) −1.03457 + 1.79192i −0.0336544 + 0.0582911i
\(946\) 0 0
\(947\) −3.68466 6.38202i −0.119735 0.207388i 0.799927 0.600097i \(-0.204871\pi\)
−0.919663 + 0.392709i \(0.871538\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 15.6847 + 27.1666i 0.508610 + 0.880938i
\(952\) 0 0
\(953\) 9.33475 16.1683i 0.302382 0.523741i −0.674293 0.738464i \(-0.735551\pi\)
0.976675 + 0.214723i \(0.0688848\pi\)
\(954\) 0 0
\(955\) 4.31534 7.47439i 0.139641 0.241866i
\(956\) 0 0
\(957\) 26.2462 0.848420
\(958\) 0 0
\(959\) −4.00000 6.92820i −0.129167 0.223723i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 14.2462 0.459078
\(964\) 0 0
\(965\) −6.00000 10.3923i −0.193147 0.334540i
\(966\) 0 0
\(967\) 2.56155 0.0823740 0.0411870 0.999151i \(-0.486886\pi\)
0.0411870 + 0.999151i \(0.486886\pi\)
\(968\) 0 0
\(969\) −37.3002 + 64.6058i −1.19825 + 2.07544i
\(970\) 0 0
\(971\) 15.8423 27.4397i 0.508405 0.880582i −0.491548 0.870850i \(-0.663569\pi\)
0.999953 0.00973207i \(-0.00309786\pi\)
\(972\) 0 0
\(973\) 9.84233 + 17.0474i 0.315531 + 0.546515i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −27.2462 47.1918i −0.871684 1.50980i −0.860254 0.509865i \(-0.829695\pi\)
−0.0114294 0.999935i \(-0.503638\pi\)
\(978\) 0 0
\(979\) 25.6155 44.3674i 0.818676 1.41799i
\(980\) 0 0
\(981\) 5.00000 8.66025i 0.159638 0.276501i
\(982\) 0 0
\(983\) 17.9309 0.571906 0.285953 0.958244i \(-0.407690\pi\)
0.285953 + 0.958244i \(0.407690\pi\)
\(984\) 0 0
\(985\) 0.650093 + 1.12599i 0.0207137 + 0.0358772i
\(986\) 0 0
\(987\) 2.06913 0.0658611
\(988\) 0 0
\(989\) −43.5076 −1.38346
\(990\) 0 0
\(991\) 17.9309 + 31.0572i 0.569593 + 0.986564i 0.996606 + 0.0823184i \(0.0262324\pi\)
−0.427013 + 0.904245i \(0.640434\pi\)
\(992\) 0 0
\(993\) −11.5076 −0.365182
\(994\) 0 0
\(995\) 1.43845 2.49146i 0.0456018 0.0789847i
\(996\) 0 0
\(997\) −0.123106 + 0.213225i −0.00389879 + 0.00675291i −0.867968 0.496620i \(-0.834574\pi\)
0.864069 + 0.503373i \(0.167908\pi\)
\(998\) 0 0
\(999\) −6.96543 12.0645i −0.220377 0.381703i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.2.i.f.1329.1 4
13.2 odd 12 1352.2.f.c.337.4 4
13.3 even 3 104.2.a.b.1.2 2
13.4 even 6 1352.2.i.d.529.1 4
13.5 odd 4 1352.2.o.d.361.2 8
13.6 odd 12 1352.2.o.d.1161.2 8
13.7 odd 12 1352.2.o.d.1161.1 8
13.8 odd 4 1352.2.o.d.361.1 8
13.9 even 3 inner 1352.2.i.f.529.1 4
13.10 even 6 1352.2.a.g.1.2 2
13.11 odd 12 1352.2.f.c.337.3 4
13.12 even 2 1352.2.i.d.1329.1 4
39.29 odd 6 936.2.a.j.1.2 2
52.3 odd 6 208.2.a.e.1.1 2
52.11 even 12 2704.2.f.k.337.1 4
52.15 even 12 2704.2.f.k.337.2 4
52.23 odd 6 2704.2.a.p.1.1 2
65.3 odd 12 2600.2.d.k.1249.4 4
65.29 even 6 2600.2.a.p.1.1 2
65.42 odd 12 2600.2.d.k.1249.1 4
91.55 odd 6 5096.2.a.m.1.1 2
104.3 odd 6 832.2.a.n.1.2 2
104.29 even 6 832.2.a.k.1.1 2
156.107 even 6 1872.2.a.u.1.2 2
208.3 odd 12 3328.2.b.w.1665.1 4
208.29 even 12 3328.2.b.y.1665.4 4
208.107 odd 12 3328.2.b.w.1665.4 4
208.133 even 12 3328.2.b.y.1665.1 4
260.159 odd 6 5200.2.a.bw.1.2 2
312.29 odd 6 7488.2.a.cu.1.1 2
312.107 even 6 7488.2.a.cv.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.a.b.1.2 2 13.3 even 3
208.2.a.e.1.1 2 52.3 odd 6
832.2.a.k.1.1 2 104.29 even 6
832.2.a.n.1.2 2 104.3 odd 6
936.2.a.j.1.2 2 39.29 odd 6
1352.2.a.g.1.2 2 13.10 even 6
1352.2.f.c.337.3 4 13.11 odd 12
1352.2.f.c.337.4 4 13.2 odd 12
1352.2.i.d.529.1 4 13.4 even 6
1352.2.i.d.1329.1 4 13.12 even 2
1352.2.i.f.529.1 4 13.9 even 3 inner
1352.2.i.f.1329.1 4 1.1 even 1 trivial
1352.2.o.d.361.1 8 13.8 odd 4
1352.2.o.d.361.2 8 13.5 odd 4
1352.2.o.d.1161.1 8 13.7 odd 12
1352.2.o.d.1161.2 8 13.6 odd 12
1872.2.a.u.1.2 2 156.107 even 6
2600.2.a.p.1.1 2 65.29 even 6
2600.2.d.k.1249.1 4 65.42 odd 12
2600.2.d.k.1249.4 4 65.3 odd 12
2704.2.a.p.1.1 2 52.23 odd 6
2704.2.f.k.337.1 4 52.11 even 12
2704.2.f.k.337.2 4 52.15 even 12
3328.2.b.w.1665.1 4 208.3 odd 12
3328.2.b.w.1665.4 4 208.107 odd 12
3328.2.b.y.1665.1 4 208.133 even 12
3328.2.b.y.1665.4 4 208.29 even 12
5096.2.a.m.1.1 2 91.55 odd 6
5200.2.a.bw.1.2 2 260.159 odd 6
7488.2.a.cu.1.1 2 312.29 odd 6
7488.2.a.cv.1.1 2 312.107 even 6