Properties

Label 504.3.l.h.181.9
Level $504$
Weight $3$
Character 504.181
Analytic conductor $13.733$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(181,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.9
Character \(\chi\) \(=\) 504.181
Dual form 504.3.l.h.181.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19641 - 1.60268i) q^{2} +(-1.13719 + 3.83494i) q^{4} -9.09019 q^{5} +(3.83254 - 5.85761i) q^{7} +(7.50675 - 2.76563i) q^{8} +(10.8756 + 14.5687i) q^{10} -14.8648i q^{11} +4.25079 q^{13} +(-13.9732 + 0.865781i) q^{14} +(-13.4136 - 8.72211i) q^{16} -4.31083i q^{17} -26.9453 q^{19} +(10.3373 - 34.8604i) q^{20} +(-23.8236 + 17.7845i) q^{22} -9.33910 q^{23} +57.6315 q^{25} +(-5.08570 - 6.81267i) q^{26} +(18.1053 + 21.3588i) q^{28} +34.2521i q^{29} +4.01283i q^{31} +(2.06943 + 31.9330i) q^{32} +(-6.90890 + 5.15754i) q^{34} +(-34.8385 + 53.2468i) q^{35} +64.5914i q^{37} +(32.2378 + 43.1849i) q^{38} +(-68.2378 + 25.1401i) q^{40} +36.7189i q^{41} -74.7186i q^{43} +(57.0058 + 16.9041i) q^{44} +(11.1734 + 14.9676i) q^{46} +52.5115i q^{47} +(-19.6233 - 44.8991i) q^{49} +(-68.9511 - 92.3650i) q^{50} +(-4.83395 + 16.3015i) q^{52} +19.3795i q^{53} +135.124i q^{55} +(12.5699 - 54.5710i) q^{56} +(54.8953 - 40.9797i) q^{58} -3.71348 q^{59} -79.8128 q^{61} +(6.43130 - 4.80100i) q^{62} +(48.7026 - 41.5217i) q^{64} -38.6404 q^{65} +66.3899i q^{67} +(16.5318 + 4.90223i) q^{68} +(127.019 - 7.87011i) q^{70} -0.994759 q^{71} -8.78191i q^{73} +(103.520 - 77.2781i) q^{74} +(30.6420 - 103.334i) q^{76} +(-87.0725 - 56.9701i) q^{77} -31.1944 q^{79} +(121.932 + 79.2856i) q^{80} +(58.8488 - 43.9310i) q^{82} +44.7600 q^{83} +39.1863i q^{85} +(-119.750 + 89.3943i) q^{86} +(-41.1106 - 111.587i) q^{88} +11.6296i q^{89} +(16.2913 - 24.8995i) q^{91} +(10.6203 - 35.8149i) q^{92} +(84.1594 - 62.8255i) q^{94} +244.938 q^{95} +91.4731i q^{97} +(-48.4814 + 85.1678i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 6 q^{4} + 2 q^{8} - 38 q^{14} - 46 q^{16} + 16 q^{22} - 64 q^{23} + 160 q^{25} - 122 q^{28} + 122 q^{32} + 216 q^{44} - 260 q^{46} - 16 q^{49} - 122 q^{50} - 98 q^{56} - 160 q^{58} - 174 q^{64}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19641 1.60268i −0.598207 0.801342i
\(3\) 0 0
\(4\) −1.13719 + 3.83494i −0.284297 + 0.958736i
\(5\) −9.09019 −1.81804 −0.909019 0.416756i \(-0.863167\pi\)
−0.909019 + 0.416756i \(0.863167\pi\)
\(6\) 0 0
\(7\) 3.83254 5.85761i 0.547506 0.836802i
\(8\) 7.50675 2.76563i 0.938344 0.345703i
\(9\) 0 0
\(10\) 10.8756 + 14.5687i 1.08756 + 1.45687i
\(11\) 14.8648i 1.35135i −0.737200 0.675675i \(-0.763852\pi\)
0.737200 0.675675i \(-0.236148\pi\)
\(12\) 0 0
\(13\) 4.25079 0.326984 0.163492 0.986545i \(-0.447724\pi\)
0.163492 + 0.986545i \(0.447724\pi\)
\(14\) −13.9732 + 0.865781i −0.998086 + 0.0618415i
\(15\) 0 0
\(16\) −13.4136 8.72211i −0.838350 0.545132i
\(17\) 4.31083i 0.253578i −0.991930 0.126789i \(-0.959533\pi\)
0.991930 0.126789i \(-0.0404672\pi\)
\(18\) 0 0
\(19\) −26.9453 −1.41818 −0.709088 0.705120i \(-0.750893\pi\)
−0.709088 + 0.705120i \(0.750893\pi\)
\(20\) 10.3373 34.8604i 0.516863 1.74302i
\(21\) 0 0
\(22\) −23.8236 + 17.7845i −1.08289 + 0.808386i
\(23\) −9.33910 −0.406048 −0.203024 0.979174i \(-0.565077\pi\)
−0.203024 + 0.979174i \(0.565077\pi\)
\(24\) 0 0
\(25\) 57.6315 2.30526
\(26\) −5.08570 6.81267i −0.195604 0.262026i
\(27\) 0 0
\(28\) 18.1053 + 21.3588i 0.646618 + 0.762814i
\(29\) 34.2521i 1.18111i 0.806999 + 0.590553i \(0.201090\pi\)
−0.806999 + 0.590553i \(0.798910\pi\)
\(30\) 0 0
\(31\) 4.01283i 0.129446i 0.997903 + 0.0647231i \(0.0206164\pi\)
−0.997903 + 0.0647231i \(0.979384\pi\)
\(32\) 2.06943 + 31.9330i 0.0646697 + 0.997907i
\(33\) 0 0
\(34\) −6.90890 + 5.15754i −0.203203 + 0.151692i
\(35\) −34.8385 + 53.2468i −0.995386 + 1.52134i
\(36\) 0 0
\(37\) 64.5914i 1.74571i 0.487976 + 0.872857i \(0.337735\pi\)
−0.487976 + 0.872857i \(0.662265\pi\)
\(38\) 32.2378 + 43.1849i 0.848363 + 1.13644i
\(39\) 0 0
\(40\) −68.2378 + 25.1401i −1.70594 + 0.628501i
\(41\) 36.7189i 0.895583i 0.894138 + 0.447792i \(0.147789\pi\)
−0.894138 + 0.447792i \(0.852211\pi\)
\(42\) 0 0
\(43\) 74.7186i 1.73764i −0.495127 0.868821i \(-0.664878\pi\)
0.495127 0.868821i \(-0.335122\pi\)
\(44\) 57.0058 + 16.9041i 1.29559 + 0.384185i
\(45\) 0 0
\(46\) 11.1734 + 14.9676i 0.242900 + 0.325383i
\(47\) 52.5115i 1.11727i 0.829415 + 0.558633i \(0.188674\pi\)
−0.829415 + 0.558633i \(0.811326\pi\)
\(48\) 0 0
\(49\) −19.6233 44.8991i −0.400475 0.916308i
\(50\) −68.9511 92.3650i −1.37902 1.84730i
\(51\) 0 0
\(52\) −4.83395 + 16.3015i −0.0929605 + 0.313491i
\(53\) 19.3795i 0.365650i 0.983145 + 0.182825i \(0.0585242\pi\)
−0.983145 + 0.182825i \(0.941476\pi\)
\(54\) 0 0
\(55\) 135.124i 2.45680i
\(56\) 12.5699 54.5710i 0.224463 0.974483i
\(57\) 0 0
\(58\) 54.8953 40.9797i 0.946470 0.706546i
\(59\) −3.71348 −0.0629404 −0.0314702 0.999505i \(-0.510019\pi\)
−0.0314702 + 0.999505i \(0.510019\pi\)
\(60\) 0 0
\(61\) −79.8128 −1.30841 −0.654203 0.756319i \(-0.726996\pi\)
−0.654203 + 0.756319i \(0.726996\pi\)
\(62\) 6.43130 4.80100i 0.103731 0.0774356i
\(63\) 0 0
\(64\) 48.7026 41.5217i 0.760978 0.648777i
\(65\) −38.6404 −0.594468
\(66\) 0 0
\(67\) 66.3899i 0.990894i 0.868638 + 0.495447i \(0.164996\pi\)
−0.868638 + 0.495447i \(0.835004\pi\)
\(68\) 16.5318 + 4.90223i 0.243115 + 0.0720916i
\(69\) 0 0
\(70\) 127.019 7.87011i 1.81456 0.112430i
\(71\) −0.994759 −0.0140107 −0.00700535 0.999975i \(-0.502230\pi\)
−0.00700535 + 0.999975i \(0.502230\pi\)
\(72\) 0 0
\(73\) 8.78191i 0.120300i −0.998189 0.0601501i \(-0.980842\pi\)
0.998189 0.0601501i \(-0.0191579\pi\)
\(74\) 103.520 77.2781i 1.39891 1.04430i
\(75\) 0 0
\(76\) 30.6420 103.334i 0.403184 1.35966i
\(77\) −87.0725 56.9701i −1.13081 0.739871i
\(78\) 0 0
\(79\) −31.1944 −0.394866 −0.197433 0.980316i \(-0.563260\pi\)
−0.197433 + 0.980316i \(0.563260\pi\)
\(80\) 121.932 + 79.2856i 1.52415 + 0.991070i
\(81\) 0 0
\(82\) 58.8488 43.9310i 0.717668 0.535744i
\(83\) 44.7600 0.539277 0.269639 0.962962i \(-0.413096\pi\)
0.269639 + 0.962962i \(0.413096\pi\)
\(84\) 0 0
\(85\) 39.1863i 0.461015i
\(86\) −119.750 + 89.3943i −1.39244 + 1.03947i
\(87\) 0 0
\(88\) −41.1106 111.587i −0.467166 1.26803i
\(89\) 11.6296i 0.130669i 0.997863 + 0.0653347i \(0.0208115\pi\)
−0.997863 + 0.0653347i \(0.979188\pi\)
\(90\) 0 0
\(91\) 16.2913 24.8995i 0.179025 0.273621i
\(92\) 10.6203 35.8149i 0.115438 0.389293i
\(93\) 0 0
\(94\) 84.1594 62.8255i 0.895312 0.668357i
\(95\) 244.938 2.57830
\(96\) 0 0
\(97\) 91.4731i 0.943021i 0.881860 + 0.471511i \(0.156291\pi\)
−0.881860 + 0.471511i \(0.843709\pi\)
\(98\) −48.4814 + 85.1678i −0.494709 + 0.869059i
\(99\) 0 0
\(100\) −65.5379 + 221.013i −0.655379 + 2.21013i
\(101\) −35.1617 −0.348136 −0.174068 0.984734i \(-0.555691\pi\)
−0.174068 + 0.984734i \(0.555691\pi\)
\(102\) 0 0
\(103\) 45.5116i 0.441860i 0.975290 + 0.220930i \(0.0709093\pi\)
−0.975290 + 0.220930i \(0.929091\pi\)
\(104\) 31.9096 11.7561i 0.306823 0.113039i
\(105\) 0 0
\(106\) 31.0591 23.1858i 0.293011 0.218734i
\(107\) 64.2360i 0.600336i 0.953886 + 0.300168i \(0.0970428\pi\)
−0.953886 + 0.300168i \(0.902957\pi\)
\(108\) 0 0
\(109\) 39.3165i 0.360702i −0.983602 0.180351i \(-0.942277\pi\)
0.983602 0.180351i \(-0.0577234\pi\)
\(110\) 216.561 161.664i 1.96874 1.46968i
\(111\) 0 0
\(112\) −102.499 + 45.1439i −0.915169 + 0.403070i
\(113\) 72.5108 0.641688 0.320844 0.947132i \(-0.396033\pi\)
0.320844 + 0.947132i \(0.396033\pi\)
\(114\) 0 0
\(115\) 84.8941 0.738210
\(116\) −131.355 38.9511i −1.13237 0.335785i
\(117\) 0 0
\(118\) 4.44286 + 5.95154i 0.0376514 + 0.0504368i
\(119\) −25.2512 16.5214i −0.212195 0.138836i
\(120\) 0 0
\(121\) −99.9635 −0.826145
\(122\) 95.4892 + 127.915i 0.782698 + 1.04848i
\(123\) 0 0
\(124\) −15.3890 4.56335i −0.124105 0.0368012i
\(125\) −296.626 −2.37301
\(126\) 0 0
\(127\) −78.5274 −0.618326 −0.309163 0.951009i \(-0.600049\pi\)
−0.309163 + 0.951009i \(0.600049\pi\)
\(128\) −124.815 28.3777i −0.975115 0.221701i
\(129\) 0 0
\(130\) 46.2300 + 61.9284i 0.355615 + 0.476372i
\(131\) −13.2698 −0.101296 −0.0506479 0.998717i \(-0.516129\pi\)
−0.0506479 + 0.998717i \(0.516129\pi\)
\(132\) 0 0
\(133\) −103.269 + 157.835i −0.776460 + 1.18673i
\(134\) 106.402 79.4298i 0.794045 0.592759i
\(135\) 0 0
\(136\) −11.9222 32.3603i −0.0876629 0.237944i
\(137\) −101.465 −0.740623 −0.370311 0.928908i \(-0.620749\pi\)
−0.370311 + 0.928908i \(0.620749\pi\)
\(138\) 0 0
\(139\) 163.338 1.17509 0.587546 0.809191i \(-0.300094\pi\)
0.587546 + 0.809191i \(0.300094\pi\)
\(140\) −164.581 194.155i −1.17558 1.38682i
\(141\) 0 0
\(142\) 1.19014 + 1.59428i 0.00838129 + 0.0112274i
\(143\) 63.1873i 0.441869i
\(144\) 0 0
\(145\) 311.358i 2.14730i
\(146\) −14.0746 + 10.5068i −0.0964015 + 0.0719644i
\(147\) 0 0
\(148\) −247.705 73.4526i −1.67368 0.496302i
\(149\) 95.5068i 0.640985i 0.947251 + 0.320492i \(0.103848\pi\)
−0.947251 + 0.320492i \(0.896152\pi\)
\(150\) 0 0
\(151\) 194.643 1.28902 0.644512 0.764594i \(-0.277060\pi\)
0.644512 + 0.764594i \(0.277060\pi\)
\(152\) −202.272 + 74.5208i −1.33074 + 0.490268i
\(153\) 0 0
\(154\) 12.8697 + 207.709i 0.0835694 + 1.34876i
\(155\) 36.4774i 0.235338i
\(156\) 0 0
\(157\) −247.603 −1.57709 −0.788545 0.614977i \(-0.789165\pi\)
−0.788545 + 0.614977i \(0.789165\pi\)
\(158\) 37.3214 + 49.9948i 0.236212 + 0.316423i
\(159\) 0 0
\(160\) −18.8115 290.277i −0.117572 1.81423i
\(161\) −35.7925 + 54.7048i −0.222313 + 0.339781i
\(162\) 0 0
\(163\) 42.2893i 0.259444i −0.991550 0.129722i \(-0.958592\pi\)
0.991550 0.129722i \(-0.0414085\pi\)
\(164\) −140.815 41.7563i −0.858628 0.254612i
\(165\) 0 0
\(166\) −53.5515 71.7361i −0.322599 0.432145i
\(167\) 218.408i 1.30783i −0.756568 0.653915i \(-0.773126\pi\)
0.756568 0.653915i \(-0.226874\pi\)
\(168\) 0 0
\(169\) −150.931 −0.893082
\(170\) 62.8032 46.8830i 0.369430 0.275782i
\(171\) 0 0
\(172\) 286.542 + 84.9691i 1.66594 + 0.494007i
\(173\) 270.029 1.56086 0.780431 0.625242i \(-0.215000\pi\)
0.780431 + 0.625242i \(0.215000\pi\)
\(174\) 0 0
\(175\) 220.875 337.583i 1.26214 1.92905i
\(176\) −129.653 + 199.391i −0.736664 + 1.13290i
\(177\) 0 0
\(178\) 18.6385 13.9138i 0.104711 0.0781674i
\(179\) 150.910i 0.843071i −0.906812 0.421535i \(-0.861491\pi\)
0.906812 0.421535i \(-0.138509\pi\)
\(180\) 0 0
\(181\) 62.7742 0.346819 0.173409 0.984850i \(-0.444522\pi\)
0.173409 + 0.984850i \(0.444522\pi\)
\(182\) −59.3971 + 3.68025i −0.326358 + 0.0202212i
\(183\) 0 0
\(184\) −70.1063 + 25.8285i −0.381012 + 0.140372i
\(185\) 587.148i 3.17377i
\(186\) 0 0
\(187\) −64.0798 −0.342673
\(188\) −201.379 59.7155i −1.07116 0.317636i
\(189\) 0 0
\(190\) −293.047 392.558i −1.54235 2.06610i
\(191\) −152.844 −0.800231 −0.400115 0.916465i \(-0.631030\pi\)
−0.400115 + 0.916465i \(0.631030\pi\)
\(192\) 0 0
\(193\) −196.995 −1.02070 −0.510350 0.859967i \(-0.670484\pi\)
−0.510350 + 0.859967i \(0.670484\pi\)
\(194\) 146.602 109.440i 0.755682 0.564122i
\(195\) 0 0
\(196\) 194.501 24.1955i 0.992351 0.123446i
\(197\) 58.4171i 0.296533i 0.988947 + 0.148267i \(0.0473694\pi\)
−0.988947 + 0.148267i \(0.952631\pi\)
\(198\) 0 0
\(199\) 31.9014i 0.160309i 0.996782 + 0.0801543i \(0.0255413\pi\)
−0.996782 + 0.0801543i \(0.974459\pi\)
\(200\) 432.625 159.387i 2.16313 0.796936i
\(201\) 0 0
\(202\) 42.0680 + 56.3531i 0.208257 + 0.278976i
\(203\) 200.636 + 131.273i 0.988352 + 0.646663i
\(204\) 0 0
\(205\) 333.782i 1.62820i
\(206\) 72.9407 54.4507i 0.354081 0.264324i
\(207\) 0 0
\(208\) −57.0184 37.0758i −0.274127 0.178249i
\(209\) 400.538i 1.91645i
\(210\) 0 0
\(211\) 77.3310i 0.366498i 0.983067 + 0.183249i \(0.0586614\pi\)
−0.983067 + 0.183249i \(0.941339\pi\)
\(212\) −74.3191 22.0381i −0.350562 0.103953i
\(213\) 0 0
\(214\) 102.950 76.8528i 0.481075 0.359125i
\(215\) 679.206i 3.15910i
\(216\) 0 0
\(217\) 23.5056 + 15.3793i 0.108321 + 0.0708725i
\(218\) −63.0120 + 47.0388i −0.289046 + 0.215775i
\(219\) 0 0
\(220\) −518.194 153.662i −2.35543 0.698462i
\(221\) 18.3244i 0.0829160i
\(222\) 0 0
\(223\) 145.310i 0.651614i 0.945436 + 0.325807i \(0.105636\pi\)
−0.945436 + 0.325807i \(0.894364\pi\)
\(224\) 194.982 + 110.263i 0.870457 + 0.492244i
\(225\) 0 0
\(226\) −86.7529 116.212i −0.383862 0.514212i
\(227\) −357.567 −1.57519 −0.787593 0.616196i \(-0.788673\pi\)
−0.787593 + 0.616196i \(0.788673\pi\)
\(228\) 0 0
\(229\) 127.298 0.555886 0.277943 0.960598i \(-0.410347\pi\)
0.277943 + 0.960598i \(0.410347\pi\)
\(230\) −101.568 136.058i −0.441602 0.591558i
\(231\) 0 0
\(232\) 94.7285 + 257.122i 0.408312 + 1.10828i
\(233\) −80.4881 −0.345442 −0.172721 0.984971i \(-0.555256\pi\)
−0.172721 + 0.984971i \(0.555256\pi\)
\(234\) 0 0
\(235\) 477.340i 2.03123i
\(236\) 4.22293 14.2410i 0.0178938 0.0603432i
\(237\) 0 0
\(238\) 3.73224 + 60.2361i 0.0156817 + 0.253093i
\(239\) −343.515 −1.43730 −0.718650 0.695372i \(-0.755240\pi\)
−0.718650 + 0.695372i \(0.755240\pi\)
\(240\) 0 0
\(241\) 201.772i 0.837229i 0.908164 + 0.418614i \(0.137484\pi\)
−0.908164 + 0.418614i \(0.862516\pi\)
\(242\) 119.598 + 160.210i 0.494205 + 0.662024i
\(243\) 0 0
\(244\) 90.7623 306.078i 0.371976 1.25442i
\(245\) 178.379 + 408.141i 0.728079 + 1.66588i
\(246\) 0 0
\(247\) −114.539 −0.463720
\(248\) 11.0980 + 30.1233i 0.0447500 + 0.121465i
\(249\) 0 0
\(250\) 354.888 + 475.398i 1.41955 + 1.90159i
\(251\) 388.278 1.54692 0.773461 0.633844i \(-0.218524\pi\)
0.773461 + 0.633844i \(0.218524\pi\)
\(252\) 0 0
\(253\) 138.824i 0.548712i
\(254\) 93.9513 + 125.855i 0.369887 + 0.495490i
\(255\) 0 0
\(256\) 103.849 + 233.990i 0.405662 + 0.914023i
\(257\) 290.061i 1.12864i −0.825555 0.564322i \(-0.809138\pi\)
0.825555 0.564322i \(-0.190862\pi\)
\(258\) 0 0
\(259\) 378.352 + 247.549i 1.46082 + 0.955788i
\(260\) 43.9415 148.184i 0.169006 0.569938i
\(261\) 0 0
\(262\) 15.8761 + 21.2672i 0.0605958 + 0.0811726i
\(263\) −289.474 −1.10066 −0.550331 0.834947i \(-0.685498\pi\)
−0.550331 + 0.834947i \(0.685498\pi\)
\(264\) 0 0
\(265\) 176.163i 0.664765i
\(266\) 376.513 23.3288i 1.41546 0.0877021i
\(267\) 0 0
\(268\) −254.602 75.4978i −0.950006 0.281708i
\(269\) 130.290 0.484348 0.242174 0.970233i \(-0.422139\pi\)
0.242174 + 0.970233i \(0.422139\pi\)
\(270\) 0 0
\(271\) 317.150i 1.17030i 0.810927 + 0.585148i \(0.198964\pi\)
−0.810927 + 0.585148i \(0.801036\pi\)
\(272\) −37.5996 + 57.8238i −0.138234 + 0.212587i
\(273\) 0 0
\(274\) 121.394 + 162.617i 0.443046 + 0.593492i
\(275\) 856.683i 3.11521i
\(276\) 0 0
\(277\) 526.555i 1.90092i 0.310843 + 0.950461i \(0.399389\pi\)
−0.310843 + 0.950461i \(0.600611\pi\)
\(278\) −195.420 261.779i −0.702948 0.941651i
\(279\) 0 0
\(280\) −114.263 + 496.061i −0.408083 + 1.77165i
\(281\) −165.241 −0.588046 −0.294023 0.955798i \(-0.594994\pi\)
−0.294023 + 0.955798i \(0.594994\pi\)
\(282\) 0 0
\(283\) 170.636 0.602953 0.301477 0.953474i \(-0.402520\pi\)
0.301477 + 0.953474i \(0.402520\pi\)
\(284\) 1.13123 3.81485i 0.00398320 0.0134326i
\(285\) 0 0
\(286\) −101.269 + 75.5981i −0.354088 + 0.264329i
\(287\) 215.085 + 140.727i 0.749426 + 0.490337i
\(288\) 0 0
\(289\) 270.417 0.935698
\(290\) −499.008 + 372.513i −1.72072 + 1.28453i
\(291\) 0 0
\(292\) 33.6781 + 9.98669i 0.115336 + 0.0342010i
\(293\) −16.1118 −0.0549892 −0.0274946 0.999622i \(-0.508753\pi\)
−0.0274946 + 0.999622i \(0.508753\pi\)
\(294\) 0 0
\(295\) 33.7562 0.114428
\(296\) 178.636 + 484.872i 0.603499 + 1.63808i
\(297\) 0 0
\(298\) 153.067 114.266i 0.513648 0.383442i
\(299\) −39.6985 −0.132771
\(300\) 0 0
\(301\) −437.673 286.362i −1.45406 0.951369i
\(302\) −232.873 311.951i −0.771103 1.03295i
\(303\) 0 0
\(304\) 361.434 + 235.020i 1.18893 + 0.773093i
\(305\) 725.513 2.37873
\(306\) 0 0
\(307\) −5.96095 −0.0194168 −0.00970839 0.999953i \(-0.503090\pi\)
−0.00970839 + 0.999953i \(0.503090\pi\)
\(308\) 317.495 269.132i 1.03083 0.873807i
\(309\) 0 0
\(310\) −58.4617 + 43.6420i −0.188586 + 0.140781i
\(311\) 261.056i 0.839408i 0.907661 + 0.419704i \(0.137866\pi\)
−0.907661 + 0.419704i \(0.862134\pi\)
\(312\) 0 0
\(313\) 285.715i 0.912826i −0.889768 0.456413i \(-0.849134\pi\)
0.889768 0.456413i \(-0.150866\pi\)
\(314\) 296.236 + 396.830i 0.943426 + 1.26379i
\(315\) 0 0
\(316\) 35.4739 119.629i 0.112259 0.378572i
\(317\) 593.885i 1.87345i −0.350060 0.936727i \(-0.613839\pi\)
0.350060 0.936727i \(-0.386161\pi\)
\(318\) 0 0
\(319\) 509.152 1.59609
\(320\) −442.716 + 377.440i −1.38349 + 1.17950i
\(321\) 0 0
\(322\) 130.497 8.08561i 0.405270 0.0251106i
\(323\) 116.157i 0.359619i
\(324\) 0 0
\(325\) 244.979 0.753782
\(326\) −67.7764 + 50.5956i −0.207903 + 0.155201i
\(327\) 0 0
\(328\) 101.551 + 275.640i 0.309606 + 0.840365i
\(329\) 307.592 + 201.253i 0.934931 + 0.611710i
\(330\) 0 0
\(331\) 25.5772i 0.0772725i 0.999253 + 0.0386362i \(0.0123014\pi\)
−0.999253 + 0.0386362i \(0.987699\pi\)
\(332\) −50.9006 + 171.652i −0.153315 + 0.517024i
\(333\) 0 0
\(334\) −350.038 + 261.306i −1.04802 + 0.782352i
\(335\) 603.496i 1.80148i
\(336\) 0 0
\(337\) −565.903 −1.67924 −0.839619 0.543176i \(-0.817222\pi\)
−0.839619 + 0.543176i \(0.817222\pi\)
\(338\) 180.576 + 241.894i 0.534248 + 0.715664i
\(339\) 0 0
\(340\) −150.277 44.5622i −0.441992 0.131065i
\(341\) 59.6501 0.174927
\(342\) 0 0
\(343\) −338.208 57.1319i −0.986030 0.166565i
\(344\) −206.644 560.894i −0.600708 1.63051i
\(345\) 0 0
\(346\) −323.066 432.771i −0.933718 1.25078i
\(347\) 85.1612i 0.245421i 0.992442 + 0.122711i \(0.0391587\pi\)
−0.992442 + 0.122711i \(0.960841\pi\)
\(348\) 0 0
\(349\) −275.035 −0.788066 −0.394033 0.919096i \(-0.628920\pi\)
−0.394033 + 0.919096i \(0.628920\pi\)
\(350\) −805.296 + 49.8962i −2.30085 + 0.142561i
\(351\) 0 0
\(352\) 474.679 30.7618i 1.34852 0.0873914i
\(353\) 145.204i 0.411342i −0.978621 0.205671i \(-0.934062\pi\)
0.978621 0.205671i \(-0.0659376\pi\)
\(354\) 0 0
\(355\) 9.04255 0.0254720
\(356\) −44.5988 13.2250i −0.125278 0.0371490i
\(357\) 0 0
\(358\) −241.860 + 180.550i −0.675588 + 0.504331i
\(359\) 40.1294 0.111781 0.0558906 0.998437i \(-0.482200\pi\)
0.0558906 + 0.998437i \(0.482200\pi\)
\(360\) 0 0
\(361\) 365.052 1.01122
\(362\) −75.1039 100.607i −0.207469 0.277920i
\(363\) 0 0
\(364\) 76.9618 + 90.7917i 0.211434 + 0.249428i
\(365\) 79.8292i 0.218710i
\(366\) 0 0
\(367\) 373.965i 1.01898i 0.860477 + 0.509489i \(0.170166\pi\)
−0.860477 + 0.509489i \(0.829834\pi\)
\(368\) 125.271 + 81.4566i 0.340410 + 0.221350i
\(369\) 0 0
\(370\) −941.012 + 702.472i −2.54328 + 1.89857i
\(371\) 113.517 + 74.2725i 0.305977 + 0.200195i
\(372\) 0 0
\(373\) 222.942i 0.597699i −0.954300 0.298849i \(-0.903397\pi\)
0.954300 0.298849i \(-0.0966028\pi\)
\(374\) 76.6660 + 102.700i 0.204989 + 0.274598i
\(375\) 0 0
\(376\) 145.227 + 394.191i 0.386243 + 1.04838i
\(377\) 145.598i 0.386203i
\(378\) 0 0
\(379\) 445.711i 1.17602i −0.808854 0.588010i \(-0.799912\pi\)
0.808854 0.588010i \(-0.200088\pi\)
\(380\) −278.541 + 939.325i −0.733003 + 2.47191i
\(381\) 0 0
\(382\) 182.865 + 244.961i 0.478704 + 0.641258i
\(383\) 463.682i 1.21066i −0.795975 0.605329i \(-0.793042\pi\)
0.795975 0.605329i \(-0.206958\pi\)
\(384\) 0 0
\(385\) 791.505 + 517.869i 2.05586 + 1.34511i
\(386\) 235.687 + 315.721i 0.610589 + 0.817929i
\(387\) 0 0
\(388\) −350.794 104.022i −0.904109 0.268098i
\(389\) 170.836i 0.439167i −0.975594 0.219584i \(-0.929530\pi\)
0.975594 0.219584i \(-0.0704699\pi\)
\(390\) 0 0
\(391\) 40.2593i 0.102965i
\(392\) −271.481 282.776i −0.692554 0.721366i
\(393\) 0 0
\(394\) 93.6240 69.8910i 0.237624 0.177388i
\(395\) 283.563 0.717881
\(396\) 0 0
\(397\) 537.521 1.35396 0.676979 0.736003i \(-0.263289\pi\)
0.676979 + 0.736003i \(0.263289\pi\)
\(398\) 51.1278 38.1673i 0.128462 0.0958977i
\(399\) 0 0
\(400\) −773.046 502.668i −1.93261 1.25667i
\(401\) −490.979 −1.22439 −0.612193 0.790709i \(-0.709712\pi\)
−0.612193 + 0.790709i \(0.709712\pi\)
\(402\) 0 0
\(403\) 17.0577i 0.0423268i
\(404\) 39.9855 134.843i 0.0989740 0.333770i
\(405\) 0 0
\(406\) −29.6548 478.611i −0.0730414 1.17885i
\(407\) 960.141 2.35907
\(408\) 0 0
\(409\) 426.048i 1.04168i 0.853654 + 0.520841i \(0.174382\pi\)
−0.853654 + 0.520841i \(0.825618\pi\)
\(410\) −534.946 + 399.341i −1.30475 + 0.974002i
\(411\) 0 0
\(412\) −174.535 51.7553i −0.423628 0.125620i
\(413\) −14.2321 + 21.7521i −0.0344602 + 0.0526686i
\(414\) 0 0
\(415\) −406.877 −0.980426
\(416\) 8.79671 + 135.740i 0.0211459 + 0.326299i
\(417\) 0 0
\(418\) 641.936 479.210i 1.53573 1.14643i
\(419\) 725.389 1.73124 0.865619 0.500704i \(-0.166925\pi\)
0.865619 + 0.500704i \(0.166925\pi\)
\(420\) 0 0
\(421\) 30.0999i 0.0714963i 0.999361 + 0.0357481i \(0.0113814\pi\)
−0.999361 + 0.0357481i \(0.988619\pi\)
\(422\) 123.937 92.5199i 0.293690 0.219241i
\(423\) 0 0
\(424\) 53.5963 + 145.477i 0.126406 + 0.343105i
\(425\) 248.440i 0.584564i
\(426\) 0 0
\(427\) −305.886 + 467.513i −0.716360 + 1.09488i
\(428\) −246.341 73.0484i −0.575564 0.170674i
\(429\) 0 0
\(430\) 1088.55 812.611i 2.53152 1.88979i
\(431\) 265.508 0.616027 0.308013 0.951382i \(-0.400336\pi\)
0.308013 + 0.951382i \(0.400336\pi\)
\(432\) 0 0
\(433\) 716.150i 1.65393i −0.562256 0.826963i \(-0.690067\pi\)
0.562256 0.826963i \(-0.309933\pi\)
\(434\) −3.47423 56.0721i −0.00800514 0.129198i
\(435\) 0 0
\(436\) 150.777 + 44.7103i 0.345818 + 0.102547i
\(437\) 251.645 0.575847
\(438\) 0 0
\(439\) 294.401i 0.670617i −0.942108 0.335308i \(-0.891160\pi\)
0.942108 0.335308i \(-0.108840\pi\)
\(440\) 373.703 + 1014.34i 0.849325 + 2.30533i
\(441\) 0 0
\(442\) −29.3683 + 21.9236i −0.0664440 + 0.0496009i
\(443\) 488.734i 1.10324i 0.834096 + 0.551619i \(0.185990\pi\)
−0.834096 + 0.551619i \(0.814010\pi\)
\(444\) 0 0
\(445\) 105.715i 0.237562i
\(446\) 232.886 173.851i 0.522165 0.389800i
\(447\) 0 0
\(448\) −56.5636 444.415i −0.126258 0.991997i
\(449\) −430.945 −0.959788 −0.479894 0.877326i \(-0.659325\pi\)
−0.479894 + 0.877326i \(0.659325\pi\)
\(450\) 0 0
\(451\) 545.821 1.21025
\(452\) −82.4584 + 278.075i −0.182430 + 0.615210i
\(453\) 0 0
\(454\) 427.798 + 573.067i 0.942287 + 1.26226i
\(455\) −148.091 + 226.341i −0.325475 + 0.497452i
\(456\) 0 0
\(457\) −699.398 −1.53041 −0.765206 0.643785i \(-0.777363\pi\)
−0.765206 + 0.643785i \(0.777363\pi\)
\(458\) −152.301 204.018i −0.332535 0.445454i
\(459\) 0 0
\(460\) −96.5406 + 325.564i −0.209871 + 0.707748i
\(461\) −387.880 −0.841389 −0.420695 0.907202i \(-0.638214\pi\)
−0.420695 + 0.907202i \(0.638214\pi\)
\(462\) 0 0
\(463\) −293.086 −0.633015 −0.316508 0.948590i \(-0.602510\pi\)
−0.316508 + 0.948590i \(0.602510\pi\)
\(464\) 298.751 459.444i 0.643859 0.990181i
\(465\) 0 0
\(466\) 96.2970 + 128.997i 0.206646 + 0.276817i
\(467\) −588.136 −1.25939 −0.629696 0.776842i \(-0.716820\pi\)
−0.629696 + 0.776842i \(0.716820\pi\)
\(468\) 0 0
\(469\) 388.886 + 254.442i 0.829182 + 0.542520i
\(470\) −765.024 + 571.096i −1.62771 + 1.21510i
\(471\) 0 0
\(472\) −27.8762 + 10.2701i −0.0590597 + 0.0217587i
\(473\) −1110.68 −2.34816
\(474\) 0 0
\(475\) −1552.90 −3.26926
\(476\) 92.0742 78.0489i 0.193433 0.163968i
\(477\) 0 0
\(478\) 410.986 + 550.546i 0.859803 + 1.15177i
\(479\) 389.912i 0.814012i 0.913425 + 0.407006i \(0.133427\pi\)
−0.913425 + 0.407006i \(0.866573\pi\)
\(480\) 0 0
\(481\) 274.564i 0.570820i
\(482\) 323.377 241.403i 0.670906 0.500836i
\(483\) 0 0
\(484\) 113.677 383.355i 0.234871 0.792055i
\(485\) 831.507i 1.71445i
\(486\) 0 0
\(487\) −307.232 −0.630867 −0.315433 0.948948i \(-0.602150\pi\)
−0.315433 + 0.948948i \(0.602150\pi\)
\(488\) −599.135 + 220.732i −1.22774 + 0.452321i
\(489\) 0 0
\(490\) 440.705 774.191i 0.899399 1.57998i
\(491\) 751.084i 1.52970i 0.644207 + 0.764851i \(0.277188\pi\)
−0.644207 + 0.764851i \(0.722812\pi\)
\(492\) 0 0
\(493\) 147.655 0.299503
\(494\) 137.036 + 183.570i 0.277401 + 0.371599i
\(495\) 0 0
\(496\) 35.0004 53.8265i 0.0705652 0.108521i
\(497\) −3.81246 + 5.82692i −0.00767094 + 0.0117242i
\(498\) 0 0
\(499\) 252.238i 0.505487i −0.967533 0.252744i \(-0.918667\pi\)
0.967533 0.252744i \(-0.0813329\pi\)
\(500\) 337.320 1137.54i 0.674640 2.27509i
\(501\) 0 0
\(502\) −464.541 622.286i −0.925380 1.23961i
\(503\) 840.895i 1.67176i −0.548912 0.835880i \(-0.684958\pi\)
0.548912 0.835880i \(-0.315042\pi\)
\(504\) 0 0
\(505\) 319.626 0.632924
\(506\) 222.491 166.091i 0.439706 0.328243i
\(507\) 0 0
\(508\) 89.3005 301.148i 0.175788 0.592812i
\(509\) −532.050 −1.04528 −0.522642 0.852552i \(-0.675054\pi\)
−0.522642 + 0.852552i \(0.675054\pi\)
\(510\) 0 0
\(511\) −51.4410 33.6570i −0.100667 0.0658650i
\(512\) 250.765 446.387i 0.489775 0.871849i
\(513\) 0 0
\(514\) −464.877 + 347.033i −0.904429 + 0.675162i
\(515\) 413.709i 0.803318i
\(516\) 0 0
\(517\) 780.576 1.50982
\(518\) −55.9220 902.549i −0.107958 1.74237i
\(519\) 0 0
\(520\) −290.064 + 106.865i −0.557816 + 0.205510i
\(521\) 673.016i 1.29178i 0.763432 + 0.645889i \(0.223513\pi\)
−0.763432 + 0.645889i \(0.776487\pi\)
\(522\) 0 0
\(523\) 131.940 0.252276 0.126138 0.992013i \(-0.459742\pi\)
0.126138 + 0.992013i \(0.459742\pi\)
\(524\) 15.0902 50.8888i 0.0287981 0.0971160i
\(525\) 0 0
\(526\) 346.331 + 463.935i 0.658424 + 0.882006i
\(527\) 17.2986 0.0328247
\(528\) 0 0
\(529\) −441.781 −0.835125
\(530\) −282.333 + 210.764i −0.532704 + 0.397667i
\(531\) 0 0
\(532\) −487.854 575.520i −0.917018 1.08180i
\(533\) 156.084i 0.292841i
\(534\) 0 0
\(535\) 583.917i 1.09143i
\(536\) 183.610 + 498.372i 0.342555 + 0.929799i
\(537\) 0 0
\(538\) −155.880 208.813i −0.289740 0.388129i
\(539\) −667.418 + 291.697i −1.23825 + 0.541182i
\(540\) 0 0
\(541\) 413.321i 0.763995i −0.924163 0.381997i \(-0.875236\pi\)
0.924163 0.381997i \(-0.124764\pi\)
\(542\) 508.291 379.443i 0.937807 0.700079i
\(543\) 0 0
\(544\) 137.658 8.92097i 0.253048 0.0163988i
\(545\) 357.395i 0.655770i
\(546\) 0 0
\(547\) 869.058i 1.58877i 0.607414 + 0.794385i \(0.292207\pi\)
−0.607414 + 0.794385i \(0.707793\pi\)
\(548\) 115.385 389.114i 0.210557 0.710062i
\(549\) 0 0
\(550\) −1372.99 + 1024.95i −2.49635 + 1.86354i
\(551\) 922.935i 1.67502i
\(552\) 0 0
\(553\) −119.554 + 182.725i −0.216191 + 0.330425i
\(554\) 843.902 629.978i 1.52329 1.13714i
\(555\) 0 0
\(556\) −185.746 + 626.392i −0.334075 + 1.12660i
\(557\) 238.943i 0.428982i 0.976726 + 0.214491i \(0.0688092\pi\)
−0.976726 + 0.214491i \(0.931191\pi\)
\(558\) 0 0
\(559\) 317.613i 0.568180i
\(560\) 931.734 410.366i 1.66381 0.732797i
\(561\) 0 0
\(562\) 197.697 + 264.829i 0.351773 + 0.471226i
\(563\) −349.331 −0.620481 −0.310240 0.950658i \(-0.600410\pi\)
−0.310240 + 0.950658i \(0.600410\pi\)
\(564\) 0 0
\(565\) −659.136 −1.16661
\(566\) −204.151 273.475i −0.360691 0.483172i
\(567\) 0 0
\(568\) −7.46741 + 2.75113i −0.0131469 + 0.00484354i
\(569\) 905.015 1.59054 0.795268 0.606258i \(-0.207330\pi\)
0.795268 + 0.606258i \(0.207330\pi\)
\(570\) 0 0
\(571\) 469.382i 0.822035i −0.911627 0.411017i \(-0.865174\pi\)
0.911627 0.411017i \(-0.134826\pi\)
\(572\) 242.320 + 71.8559i 0.423636 + 0.125622i
\(573\) 0 0
\(574\) −31.7905 513.081i −0.0553842 0.893869i
\(575\) −538.226 −0.936045
\(576\) 0 0
\(577\) 607.599i 1.05303i 0.850165 + 0.526516i \(0.176502\pi\)
−0.850165 + 0.526516i \(0.823498\pi\)
\(578\) −323.530 433.392i −0.559741 0.749814i
\(579\) 0 0
\(580\) 1194.04 + 354.073i 2.05869 + 0.610470i
\(581\) 171.544 262.187i 0.295257 0.451268i
\(582\) 0 0
\(583\) 288.073 0.494121
\(584\) −24.2875 65.9236i −0.0415882 0.112883i
\(585\) 0 0
\(586\) 19.2764 + 25.8222i 0.0328949 + 0.0440651i
\(587\) −374.034 −0.637196 −0.318598 0.947890i \(-0.603212\pi\)
−0.318598 + 0.947890i \(0.603212\pi\)
\(588\) 0 0
\(589\) 108.127i 0.183577i
\(590\) −40.3864 54.1006i −0.0684516 0.0916959i
\(591\) 0 0
\(592\) 563.374 866.404i 0.951645 1.46352i
\(593\) 1159.14i 1.95471i 0.211614 + 0.977353i \(0.432128\pi\)
−0.211614 + 0.977353i \(0.567872\pi\)
\(594\) 0 0
\(595\) 229.538 + 150.183i 0.385778 + 0.252408i
\(596\) −366.263 108.609i −0.614536 0.182230i
\(597\) 0 0
\(598\) 47.4958 + 63.6242i 0.0794245 + 0.106395i
\(599\) −154.662 −0.258200 −0.129100 0.991632i \(-0.541209\pi\)
−0.129100 + 0.991632i \(0.541209\pi\)
\(600\) 0 0
\(601\) 924.074i 1.53756i −0.639513 0.768780i \(-0.720864\pi\)
0.639513 0.768780i \(-0.279136\pi\)
\(602\) 64.6899 + 1044.06i 0.107458 + 1.73432i
\(603\) 0 0
\(604\) −221.346 + 746.444i −0.366466 + 1.23583i
\(605\) 908.687 1.50196
\(606\) 0 0
\(607\) 61.7356i 0.101706i −0.998706 0.0508531i \(-0.983806\pi\)
0.998706 0.0508531i \(-0.0161940\pi\)
\(608\) −55.7616 860.446i −0.0917131 1.41521i
\(609\) 0 0
\(610\) −868.014 1162.77i −1.42297 1.90618i
\(611\) 223.215i 0.365328i
\(612\) 0 0
\(613\) 661.600i 1.07928i 0.841895 + 0.539641i \(0.181440\pi\)
−0.841895 + 0.539641i \(0.818560\pi\)
\(614\) 7.13176 + 9.55352i 0.0116153 + 0.0155595i
\(615\) 0 0
\(616\) −811.190 186.850i −1.31687 0.303328i
\(617\) −354.372 −0.574347 −0.287174 0.957879i \(-0.592716\pi\)
−0.287174 + 0.957879i \(0.592716\pi\)
\(618\) 0 0
\(619\) −636.341 −1.02801 −0.514007 0.857786i \(-0.671839\pi\)
−0.514007 + 0.857786i \(0.671839\pi\)
\(620\) 139.889 + 41.4817i 0.225627 + 0.0669059i
\(621\) 0 0
\(622\) 418.390 312.331i 0.672653 0.502140i
\(623\) 68.1216 + 44.5708i 0.109344 + 0.0715423i
\(624\) 0 0
\(625\) 1255.60 2.00896
\(626\) −457.910 + 341.833i −0.731486 + 0.546059i
\(627\) 0 0
\(628\) 281.572 949.545i 0.448362 1.51201i
\(629\) 278.443 0.442675
\(630\) 0 0
\(631\) −199.202 −0.315693 −0.157847 0.987464i \(-0.550455\pi\)
−0.157847 + 0.987464i \(0.550455\pi\)
\(632\) −234.169 + 86.2721i −0.370520 + 0.136506i
\(633\) 0 0
\(634\) −951.810 + 710.532i −1.50128 + 1.12071i
\(635\) 713.829 1.12414
\(636\) 0 0
\(637\) −83.4144 190.856i −0.130949 0.299618i
\(638\) −609.156 816.009i −0.954790 1.27901i
\(639\) 0 0
\(640\) 1134.59 + 257.959i 1.77279 + 0.403060i
\(641\) −19.2310 −0.0300016 −0.0150008 0.999887i \(-0.504775\pi\)
−0.0150008 + 0.999887i \(0.504775\pi\)
\(642\) 0 0
\(643\) 783.597 1.21866 0.609329 0.792918i \(-0.291439\pi\)
0.609329 + 0.792918i \(0.291439\pi\)
\(644\) −169.087 199.472i −0.262558 0.309739i
\(645\) 0 0
\(646\) 186.163 138.972i 0.288178 0.215126i
\(647\) 321.191i 0.496431i 0.968705 + 0.248216i \(0.0798442\pi\)
−0.968705 + 0.248216i \(0.920156\pi\)
\(648\) 0 0
\(649\) 55.2003i 0.0850544i
\(650\) −293.096 392.624i −0.450917 0.604037i
\(651\) 0 0
\(652\) 162.177 + 48.0910i 0.248738 + 0.0737592i
\(653\) 567.084i 0.868428i −0.900810 0.434214i \(-0.857026\pi\)
0.900810 0.434214i \(-0.142974\pi\)
\(654\) 0 0
\(655\) 120.625 0.184160
\(656\) 320.266 492.533i 0.488211 0.750812i
\(657\) 0 0
\(658\) −45.4635 733.754i −0.0690934 1.11513i
\(659\) 76.3245i 0.115819i −0.998322 0.0579094i \(-0.981557\pi\)
0.998322 0.0579094i \(-0.0184434\pi\)
\(660\) 0 0
\(661\) −422.507 −0.639193 −0.319597 0.947554i \(-0.603547\pi\)
−0.319597 + 0.947554i \(0.603547\pi\)
\(662\) 40.9921 30.6009i 0.0619216 0.0462249i
\(663\) 0 0
\(664\) 336.002 123.789i 0.506027 0.186430i
\(665\) 938.735 1434.75i 1.41163 2.15752i
\(666\) 0 0
\(667\) 319.884i 0.479586i
\(668\) 837.581 + 248.371i 1.25386 + 0.371812i
\(669\) 0 0
\(670\) −967.214 + 722.031i −1.44360 + 1.07766i
\(671\) 1186.41i 1.76811i
\(672\) 0 0
\(673\) 523.984 0.778579 0.389289 0.921115i \(-0.372721\pi\)
0.389289 + 0.921115i \(0.372721\pi\)
\(674\) 677.054 + 906.964i 1.00453 + 1.34564i
\(675\) 0 0
\(676\) 171.637 578.811i 0.253901 0.856230i
\(677\) −523.084 −0.772650 −0.386325 0.922363i \(-0.626256\pi\)
−0.386325 + 0.922363i \(0.626256\pi\)
\(678\) 0 0
\(679\) 535.814 + 350.574i 0.789122 + 0.516310i
\(680\) 108.375 + 294.161i 0.159374 + 0.432590i
\(681\) 0 0
\(682\) −71.3662 95.6002i −0.104642 0.140176i
\(683\) 243.110i 0.355945i −0.984036 0.177972i \(-0.943046\pi\)
0.984036 0.177972i \(-0.0569537\pi\)
\(684\) 0 0
\(685\) 922.339 1.34648
\(686\) 313.073 + 610.394i 0.456374 + 0.889788i
\(687\) 0 0
\(688\) −651.704 + 1002.25i −0.947244 + 1.45675i
\(689\) 82.3779i 0.119562i
\(690\) 0 0
\(691\) −1129.66 −1.63482 −0.817409 0.576057i \(-0.804590\pi\)
−0.817409 + 0.576057i \(0.804590\pi\)
\(692\) −307.074 + 1035.55i −0.443749 + 1.49645i
\(693\) 0 0
\(694\) 136.486 101.888i 0.196666 0.146813i
\(695\) −1484.77 −2.13636
\(696\) 0 0
\(697\) 158.289 0.227100
\(698\) 329.056 + 440.794i 0.471426 + 0.631510i
\(699\) 0 0
\(700\) 1043.44 + 1230.94i 1.49062 + 1.75848i
\(701\) 1291.80i 1.84280i 0.388616 + 0.921400i \(0.372953\pi\)
−0.388616 + 0.921400i \(0.627047\pi\)
\(702\) 0 0
\(703\) 1740.44i 2.47573i
\(704\) −617.214 723.957i −0.876725 1.02835i
\(705\) 0 0
\(706\) −232.715 + 173.724i −0.329625 + 0.246067i
\(707\) −134.759 + 205.964i −0.190606 + 0.291321i
\(708\) 0 0
\(709\) 748.254i 1.05537i −0.849442 0.527683i \(-0.823061\pi\)
0.849442 0.527683i \(-0.176939\pi\)
\(710\) −10.8186 14.4923i −0.0152375 0.0204117i
\(711\) 0 0
\(712\) 32.1631 + 87.3004i 0.0451729 + 0.122613i
\(713\) 37.4762i 0.0525613i
\(714\) 0 0
\(715\) 574.384i 0.803334i
\(716\) 578.730 + 171.613i 0.808282 + 0.239683i
\(717\) 0 0
\(718\) −48.0114 64.3148i −0.0668682 0.0895749i
\(719\) 612.811i 0.852310i 0.904650 + 0.426155i \(0.140132\pi\)
−0.904650 + 0.426155i \(0.859868\pi\)
\(720\) 0 0
\(721\) 266.589 + 174.425i 0.369750 + 0.241921i
\(722\) −436.753 585.063i −0.604921 0.810336i
\(723\) 0 0
\(724\) −71.3861 + 240.736i −0.0985996 + 0.332508i
\(725\) 1974.00i 2.72276i
\(726\) 0 0
\(727\) 138.017i 0.189845i 0.995485 + 0.0949223i \(0.0302603\pi\)
−0.995485 + 0.0949223i \(0.969740\pi\)
\(728\) 53.4322 231.970i 0.0733959 0.318640i
\(729\) 0 0
\(730\) 127.941 95.5087i 0.175262 0.130834i
\(731\) −322.099 −0.440628
\(732\) 0 0
\(733\) 644.555 0.879338 0.439669 0.898160i \(-0.355096\pi\)
0.439669 + 0.898160i \(0.355096\pi\)
\(734\) 599.347 447.417i 0.816550 0.609560i
\(735\) 0 0
\(736\) −19.3266 298.225i −0.0262590 0.405198i
\(737\) 986.875 1.33904
\(738\) 0 0
\(739\) 712.278i 0.963841i 0.876215 + 0.481920i \(0.160061\pi\)
−0.876215 + 0.481920i \(0.839939\pi\)
\(740\) 2251.68 + 667.698i 3.04281 + 0.902295i
\(741\) 0 0
\(742\) −16.7784 270.793i −0.0226123 0.364950i
\(743\) −10.1719 −0.0136903 −0.00684515 0.999977i \(-0.502179\pi\)
−0.00684515 + 0.999977i \(0.502179\pi\)
\(744\) 0 0
\(745\) 868.174i 1.16533i
\(746\) −357.305 + 266.730i −0.478961 + 0.357547i
\(747\) 0 0
\(748\) 72.8709 245.743i 0.0974209 0.328533i
\(749\) 376.270 + 246.187i 0.502363 + 0.328688i
\(750\) 0 0
\(751\) −1079.30 −1.43715 −0.718573 0.695451i \(-0.755204\pi\)
−0.718573 + 0.695451i \(0.755204\pi\)
\(752\) 458.012 704.369i 0.609058 0.936661i
\(753\) 0 0
\(754\) 233.348 174.196i 0.309480 0.231029i
\(755\) −1769.34 −2.34349
\(756\) 0 0
\(757\) 1200.34i 1.58566i −0.609445 0.792828i \(-0.708608\pi\)
0.609445 0.792828i \(-0.291392\pi\)
\(758\) −714.334 + 533.255i −0.942394 + 0.703503i
\(759\) 0 0
\(760\) 1838.69 677.408i 2.41933 0.891326i
\(761\) 965.128i 1.26824i −0.773236 0.634118i \(-0.781363\pi\)
0.773236 0.634118i \(-0.218637\pi\)
\(762\) 0 0
\(763\) −230.301 150.682i −0.301836 0.197486i
\(764\) 173.813 586.149i 0.227503 0.767210i
\(765\) 0 0
\(766\) −743.135 + 554.755i −0.970151 + 0.724224i
\(767\) −15.7852 −0.0205805
\(768\) 0 0
\(769\) 999.555i 1.29981i 0.760015 + 0.649906i \(0.225192\pi\)
−0.760015 + 0.649906i \(0.774808\pi\)
\(770\) −116.988 1888.12i −0.151932 2.45210i
\(771\) 0 0
\(772\) 224.020 755.465i 0.290182 0.978581i
\(773\) −1048.92 −1.35694 −0.678471 0.734628i \(-0.737357\pi\)
−0.678471 + 0.734628i \(0.737357\pi\)
\(774\) 0 0
\(775\) 231.265i 0.298407i
\(776\) 252.980 + 686.666i 0.326006 + 0.884878i
\(777\) 0 0
\(778\) −273.796 + 204.391i −0.351923 + 0.262713i
\(779\) 989.404i 1.27009i
\(780\) 0 0
\(781\) 14.7869i 0.0189333i
\(782\) 64.5229 48.1667i 0.0825101 0.0615943i
\(783\) 0 0
\(784\) −128.396 + 773.415i −0.163770 + 0.986498i
\(785\) 2250.76 2.86721
\(786\) 0 0
\(787\) −1269.73 −1.61338 −0.806690 0.590975i \(-0.798743\pi\)
−0.806690 + 0.590975i \(0.798743\pi\)
\(788\) −224.026 66.4312i −0.284297 0.0843036i
\(789\) 0 0
\(790\) −339.259 454.462i −0.429441 0.575268i
\(791\) 277.900 424.740i 0.351328 0.536966i
\(792\) 0 0
\(793\) −339.267 −0.427828
\(794\) −643.098 861.476i −0.809947 1.08498i
\(795\) 0 0
\(796\) −122.340 36.2779i −0.153694 0.0455753i
\(797\) −792.144 −0.993908 −0.496954 0.867777i \(-0.665548\pi\)
−0.496954 + 0.867777i \(0.665548\pi\)
\(798\) 0 0
\(799\) 226.368 0.283315
\(800\) 119.264 + 1840.35i 0.149080 + 2.30043i
\(801\) 0 0
\(802\) 587.413 + 786.883i 0.732436 + 0.981151i
\(803\) −130.542 −0.162568
\(804\) 0 0
\(805\) 325.360 497.277i 0.404174 0.617735i
\(806\) 27.3381 20.4080i 0.0339182 0.0253202i
\(807\) 0 0
\(808\) −263.950 + 97.2442i −0.326671 + 0.120352i
\(809\) −1282.81 −1.58568 −0.792838 0.609433i \(-0.791397\pi\)
−0.792838 + 0.609433i \(0.791397\pi\)
\(810\) 0 0
\(811\) −272.683 −0.336231 −0.168115 0.985767i \(-0.553768\pi\)
−0.168115 + 0.985767i \(0.553768\pi\)
\(812\) −731.583 + 620.145i −0.900965 + 0.763725i
\(813\) 0 0
\(814\) −1148.73 1538.80i −1.41121 1.89042i
\(815\) 384.418i 0.471679i
\(816\) 0 0
\(817\) 2013.32i 2.46428i
\(818\) 682.820 509.729i 0.834743 0.623141i
\(819\) 0 0
\(820\) 1280.03 + 379.573i 1.56102 + 0.462894i
\(821\) 1350.30i 1.64470i −0.568985 0.822348i \(-0.692664\pi\)
0.568985 0.822348i \(-0.307336\pi\)
\(822\) 0 0
\(823\) 126.866 0.154150 0.0770752 0.997025i \(-0.475442\pi\)
0.0770752 + 0.997025i \(0.475442\pi\)
\(824\) 125.868 + 341.644i 0.152753 + 0.414617i
\(825\) 0 0
\(826\) 51.8893 3.21506i 0.0628199 0.00389233i
\(827\) 138.892i 0.167946i 0.996468 + 0.0839731i \(0.0267610\pi\)
−0.996468 + 0.0839731i \(0.973239\pi\)
\(828\) 0 0
\(829\) −951.755 −1.14808 −0.574038 0.818829i \(-0.694624\pi\)
−0.574038 + 0.818829i \(0.694624\pi\)
\(830\) 486.793 + 652.095i 0.586497 + 0.785656i
\(831\) 0 0
\(832\) 207.024 176.500i 0.248828 0.212140i
\(833\) −193.552 + 84.5926i −0.232356 + 0.101552i
\(834\) 0 0
\(835\) 1985.36i 2.37768i
\(836\) −1536.04 455.488i −1.83737 0.544842i
\(837\) 0 0
\(838\) −867.865 1162.57i −1.03564 1.38731i
\(839\) 724.563i 0.863603i 0.901969 + 0.431802i \(0.142122\pi\)
−0.901969 + 0.431802i \(0.857878\pi\)
\(840\) 0 0
\(841\) −332.206 −0.395013
\(842\) 48.2407 36.0120i 0.0572930 0.0427696i
\(843\) 0 0
\(844\) −296.560 87.9400i −0.351375 0.104194i
\(845\) 1371.99 1.62366
\(846\) 0 0
\(847\) −383.114 + 585.548i −0.452319 + 0.691320i
\(848\) 169.030 259.948i 0.199328 0.306543i
\(849\) 0 0
\(850\) −398.170 + 297.236i −0.468435 + 0.349690i
\(851\) 603.225i 0.708843i
\(852\) 0 0
\(853\) −1219.96 −1.43020 −0.715100 0.699022i \(-0.753619\pi\)
−0.715100 + 0.699022i \(0.753619\pi\)
\(854\) 1115.24 69.1004i 1.30590 0.0809138i
\(855\) 0 0
\(856\) 177.653 + 482.204i 0.207538 + 0.563322i
\(857\) 169.761i 0.198088i −0.995083 0.0990440i \(-0.968422\pi\)
0.995083 0.0990440i \(-0.0315785\pi\)
\(858\) 0 0
\(859\) 687.207 0.800009 0.400004 0.916513i \(-0.369009\pi\)
0.400004 + 0.916513i \(0.369009\pi\)
\(860\) −2604.72 772.385i −3.02874 0.898122i
\(861\) 0 0
\(862\) −317.657 425.525i −0.368511 0.493648i
\(863\) 246.094 0.285161 0.142581 0.989783i \(-0.454460\pi\)
0.142581 + 0.989783i \(0.454460\pi\)
\(864\) 0 0
\(865\) −2454.61 −2.83770
\(866\) −1147.76 + 856.812i −1.32536 + 0.989390i
\(867\) 0 0
\(868\) −85.7092 + 72.6535i −0.0987433 + 0.0837022i
\(869\) 463.700i 0.533602i
\(870\) 0 0
\(871\) 282.209i 0.324006i
\(872\) −108.735 295.139i −0.124696 0.338463i
\(873\) 0 0
\(874\) −301.072 403.308i −0.344476 0.461450i
\(875\) −1136.83 + 1737.52i −1.29924 + 1.98574i
\(876\) 0 0
\(877\) 487.171i 0.555497i 0.960654 + 0.277749i \(0.0895882\pi\)
−0.960654 + 0.277749i \(0.910412\pi\)
\(878\) −471.831 + 352.225i −0.537393 + 0.401167i
\(879\) 0 0
\(880\) 1178.57 1812.50i 1.33928 2.05966i
\(881\) 343.877i 0.390325i −0.980771 0.195163i \(-0.937477\pi\)
0.980771 0.195163i \(-0.0625235\pi\)
\(882\) 0 0
\(883\) 755.288i 0.855366i −0.903929 0.427683i \(-0.859330\pi\)
0.903929 0.427683i \(-0.140670\pi\)
\(884\) 70.2732 + 20.8383i 0.0794945 + 0.0235728i
\(885\) 0 0
\(886\) 783.287 584.729i 0.884071 0.659965i
\(887\) 1633.02i 1.84106i −0.390668 0.920532i \(-0.627756\pi\)
0.390668 0.920532i \(-0.372244\pi\)
\(888\) 0 0
\(889\) −300.959 + 459.983i −0.338537 + 0.517416i
\(890\) −169.428 + 126.479i −0.190368 + 0.142111i
\(891\) 0 0
\(892\) −557.255 165.245i −0.624726 0.185252i
\(893\) 1414.94i 1.58448i
\(894\) 0 0
\(895\) 1371.80i 1.53273i
\(896\) −644.583 + 622.358i −0.719401 + 0.694595i
\(897\) 0 0
\(898\) 515.588 + 690.668i 0.574152 + 0.769119i
\(899\) −137.448 −0.152890
\(900\) 0 0
\(901\) 83.5416 0.0927209
\(902\) −653.027 874.778i −0.723977 0.969820i
\(903\) 0 0
\(904\) 544.320 200.538i 0.602124 0.221834i
\(905\) −570.629 −0.630530
\(906\) 0 0
\(907\) 579.901i 0.639361i −0.947525 0.319681i \(-0.896424\pi\)
0.947525 0.319681i \(-0.103576\pi\)
\(908\) 406.621 1371.25i 0.447821 1.51019i
\(909\) 0 0
\(910\) 539.931 33.4542i 0.593331 0.0367628i
\(911\) −169.237 −0.185770 −0.0928852 0.995677i \(-0.529609\pi\)
−0.0928852 + 0.995677i \(0.529609\pi\)
\(912\) 0 0
\(913\) 665.350i 0.728752i
\(914\) 836.770 + 1120.91i 0.915503 + 1.22638i
\(915\) 0 0
\(916\) −144.762 + 488.180i −0.158037 + 0.532948i
\(917\) −50.8569 + 77.7291i −0.0554600 + 0.0847645i
\(918\) 0 0
\(919\) 910.454 0.990701 0.495351 0.868693i \(-0.335040\pi\)
0.495351 + 0.868693i \(0.335040\pi\)
\(920\) 637.279 234.785i 0.692695 0.255202i
\(921\) 0 0
\(922\) 464.065 + 621.650i 0.503325 + 0.674240i
\(923\) −4.22851 −0.00458127
\(924\) 0 0
\(925\) 3722.50i 4.02432i
\(926\) 350.652 + 469.724i 0.378674 + 0.507261i
\(927\) 0 0
\(928\) −1093.77 + 70.8824i −1.17863 + 0.0763819i
\(929\) 1560.39i 1.67965i 0.542859 + 0.839824i \(0.317342\pi\)
−0.542859 + 0.839824i \(0.682658\pi\)
\(930\) 0 0
\(931\) 528.756 + 1209.82i 0.567944 + 1.29949i
\(932\) 91.5301 308.667i 0.0982083 0.331188i
\(933\) 0 0
\(934\) 703.654 + 942.596i 0.753377 + 1.00920i
\(935\) 582.498 0.622992
\(936\) 0 0
\(937\) 1529.70i 1.63255i 0.577664 + 0.816275i \(0.303964\pi\)
−0.577664 + 0.816275i \(0.696036\pi\)
\(938\) −57.4791 927.679i −0.0612783 0.988997i
\(939\) 0 0
\(940\) 1830.57 + 542.825i 1.94742 + 0.577474i
\(941\) −509.889 −0.541859 −0.270929 0.962599i \(-0.587331\pi\)
−0.270929 + 0.962599i \(0.587331\pi\)
\(942\) 0 0
\(943\) 342.921i 0.363649i
\(944\) 49.8112 + 32.3894i 0.0527661 + 0.0343108i
\(945\) 0 0
\(946\) 1328.83 + 1780.07i 1.40469 + 1.88168i
\(947\) 227.835i 0.240586i −0.992738 0.120293i \(-0.961617\pi\)
0.992738 0.120293i \(-0.0383833\pi\)
\(948\) 0 0
\(949\) 37.3300i 0.0393362i
\(950\) 1857.91 + 2488.81i 1.95570 + 2.61980i
\(951\) 0 0
\(952\) −235.246 54.1869i −0.247108 0.0569191i
\(953\) −488.011 −0.512079 −0.256040 0.966666i \(-0.582418\pi\)
−0.256040 + 0.966666i \(0.582418\pi\)
\(954\) 0 0
\(955\) 1389.38 1.45485
\(956\) 390.641 1317.36i 0.408621 1.37799i
\(957\) 0 0
\(958\) 624.905 466.496i 0.652302 0.486948i
\(959\) −388.870 + 594.345i −0.405495 + 0.619755i
\(960\) 0 0
\(961\) 944.897 0.983244
\(962\) 440.040 328.493i 0.457422 0.341468i
\(963\) 0 0
\(964\) −773.785 229.453i −0.802682 0.238022i
\(965\) 1790.72 1.85567
\(966\) 0 0
\(967\) 976.631 1.00996 0.504980 0.863131i \(-0.331500\pi\)
0.504980 + 0.863131i \(0.331500\pi\)
\(968\) −750.401 + 276.462i −0.775208 + 0.285601i
\(969\) 0 0
\(970\) −1332.64 + 994.827i −1.37386 + 1.02559i
\(971\) 1709.72 1.76078 0.880390 0.474250i \(-0.157281\pi\)
0.880390 + 0.474250i \(0.157281\pi\)
\(972\) 0 0
\(973\) 625.999 956.770i 0.643370 0.983320i
\(974\) 367.577 + 492.396i 0.377389 + 0.505540i
\(975\) 0 0
\(976\) 1070.58 + 696.136i 1.09690 + 0.713255i
\(977\) 1387.42 1.42009 0.710043 0.704158i \(-0.248675\pi\)
0.710043 + 0.704158i \(0.248675\pi\)
\(978\) 0 0
\(979\) 172.872 0.176580
\(980\) −1768.05 + 219.941i −1.80413 + 0.224430i
\(981\) 0 0
\(982\) 1203.75 898.607i 1.22581 0.915079i
\(983\) 910.425i 0.926170i −0.886314 0.463085i \(-0.846742\pi\)
0.886314 0.463085i \(-0.153258\pi\)
\(984\) 0 0
\(985\) 531.022i 0.539108i
\(986\) −176.656 236.644i −0.179165 0.240004i
\(987\) 0 0
\(988\) 130.252 439.251i 0.131834 0.444586i
\(989\) 697.804i 0.705565i
\(990\) 0 0
\(991\) 474.575 0.478885 0.239443 0.970910i \(-0.423035\pi\)
0.239443 + 0.970910i \(0.423035\pi\)
\(992\) −128.142 + 8.30428i −0.129175 + 0.00837125i
\(993\) 0 0
\(994\) 13.9000 0.861244i 0.0139839 0.000866442i
\(995\) 289.990i 0.291447i
\(996\) 0 0
\(997\) 545.379 0.547020 0.273510 0.961869i \(-0.411815\pi\)
0.273510 + 0.961869i \(0.411815\pi\)
\(998\) −404.258 + 301.781i −0.405068 + 0.302386i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.l.h.181.9 32
3.2 odd 2 168.3.l.a.13.23 yes 32
4.3 odd 2 2016.3.l.h.433.1 32
7.6 odd 2 inner 504.3.l.h.181.10 32
8.3 odd 2 2016.3.l.h.433.32 32
8.5 even 2 inner 504.3.l.h.181.12 32
12.11 even 2 672.3.l.a.433.18 32
21.20 even 2 168.3.l.a.13.24 yes 32
24.5 odd 2 168.3.l.a.13.22 yes 32
24.11 even 2 672.3.l.a.433.15 32
28.27 even 2 2016.3.l.h.433.31 32
56.13 odd 2 inner 504.3.l.h.181.11 32
56.27 even 2 2016.3.l.h.433.2 32
84.83 odd 2 672.3.l.a.433.2 32
168.83 odd 2 672.3.l.a.433.31 32
168.125 even 2 168.3.l.a.13.21 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.21 32 168.125 even 2
168.3.l.a.13.22 yes 32 24.5 odd 2
168.3.l.a.13.23 yes 32 3.2 odd 2
168.3.l.a.13.24 yes 32 21.20 even 2
504.3.l.h.181.9 32 1.1 even 1 trivial
504.3.l.h.181.10 32 7.6 odd 2 inner
504.3.l.h.181.11 32 56.13 odd 2 inner
504.3.l.h.181.12 32 8.5 even 2 inner
672.3.l.a.433.2 32 84.83 odd 2
672.3.l.a.433.15 32 24.11 even 2
672.3.l.a.433.18 32 12.11 even 2
672.3.l.a.433.31 32 168.83 odd 2
2016.3.l.h.433.1 32 4.3 odd 2
2016.3.l.h.433.2 32 56.27 even 2
2016.3.l.h.433.31 32 28.27 even 2
2016.3.l.h.433.32 32 8.3 odd 2