Properties

Label 672.3.l.a.433.18
Level $672$
Weight $3$
Character 672.433
Analytic conductor $18.311$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(433,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.433"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 433.18
Character \(\chi\) \(=\) 672.433
Dual form 672.3.l.a.433.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{3} +9.09019 q^{5} +(-3.83254 + 5.85761i) q^{7} +3.00000 q^{9} -14.8648i q^{11} +4.25079 q^{13} +15.7447 q^{15} +4.31083i q^{17} +26.9453 q^{19} +(-6.63815 + 10.1457i) q^{21} -9.33910 q^{23} +57.6315 q^{25} +5.19615 q^{27} -34.2521i q^{29} -4.01283i q^{31} -25.7467i q^{33} +(-34.8385 + 53.2468i) q^{35} +64.5914i q^{37} +7.36258 q^{39} -36.7189i q^{41} +74.7186i q^{43} +27.2706 q^{45} +52.5115i q^{47} +(-19.6233 - 44.8991i) q^{49} +7.46658i q^{51} -19.3795i q^{53} -135.124i q^{55} +46.6707 q^{57} -3.71348 q^{59} -79.8128 q^{61} +(-11.4976 + 17.5728i) q^{63} +38.6404 q^{65} -66.3899i q^{67} -16.1758 q^{69} -0.994759 q^{71} -8.78191i q^{73} +99.8206 q^{75} +(87.0725 + 56.9701i) q^{77} +31.1944 q^{79} +9.00000 q^{81} +44.7600 q^{83} +39.1863i q^{85} -59.3264i q^{87} -11.6296i q^{89} +(-16.2913 + 24.8995i) q^{91} -6.95043i q^{93} +244.938 q^{95} +91.4731i q^{97} -44.5945i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 96 q^{9} - 64 q^{23} + 160 q^{25} - 16 q^{49} + 96 q^{57} + 640 q^{71} + 64 q^{79} + 288 q^{81} + 768 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 0.577350
\(4\) 0 0
\(5\) 9.09019 1.81804 0.909019 0.416756i \(-0.136833\pi\)
0.909019 + 0.416756i \(0.136833\pi\)
\(6\) 0 0
\(7\) −3.83254 + 5.85761i −0.547506 + 0.836802i
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 14.8648i 1.35135i −0.737200 0.675675i \(-0.763852\pi\)
0.737200 0.675675i \(-0.236148\pi\)
\(12\) 0 0
\(13\) 4.25079 0.326984 0.163492 0.986545i \(-0.447724\pi\)
0.163492 + 0.986545i \(0.447724\pi\)
\(14\) 0 0
\(15\) 15.7447 1.04964
\(16\) 0 0
\(17\) 4.31083i 0.253578i 0.991930 + 0.126789i \(0.0404672\pi\)
−0.991930 + 0.126789i \(0.959533\pi\)
\(18\) 0 0
\(19\) 26.9453 1.41818 0.709088 0.705120i \(-0.249107\pi\)
0.709088 + 0.705120i \(0.249107\pi\)
\(20\) 0 0
\(21\) −6.63815 + 10.1457i −0.316103 + 0.483128i
\(22\) 0 0
\(23\) −9.33910 −0.406048 −0.203024 0.979174i \(-0.565077\pi\)
−0.203024 + 0.979174i \(0.565077\pi\)
\(24\) 0 0
\(25\) 57.6315 2.30526
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) 0 0
\(29\) 34.2521i 1.18111i −0.806999 0.590553i \(-0.798910\pi\)
0.806999 0.590553i \(-0.201090\pi\)
\(30\) 0 0
\(31\) 4.01283i 0.129446i −0.997903 0.0647231i \(-0.979384\pi\)
0.997903 0.0647231i \(-0.0206164\pi\)
\(32\) 0 0
\(33\) 25.7467i 0.780202i
\(34\) 0 0
\(35\) −34.8385 + 53.2468i −0.995386 + 1.52134i
\(36\) 0 0
\(37\) 64.5914i 1.74571i 0.487976 + 0.872857i \(0.337735\pi\)
−0.487976 + 0.872857i \(0.662265\pi\)
\(38\) 0 0
\(39\) 7.36258 0.188784
\(40\) 0 0
\(41\) 36.7189i 0.895583i −0.894138 0.447792i \(-0.852211\pi\)
0.894138 0.447792i \(-0.147789\pi\)
\(42\) 0 0
\(43\) 74.7186i 1.73764i 0.495127 + 0.868821i \(0.335122\pi\)
−0.495127 + 0.868821i \(0.664878\pi\)
\(44\) 0 0
\(45\) 27.2706 0.606012
\(46\) 0 0
\(47\) 52.5115i 1.11727i 0.829415 + 0.558633i \(0.188674\pi\)
−0.829415 + 0.558633i \(0.811326\pi\)
\(48\) 0 0
\(49\) −19.6233 44.8991i −0.400475 0.916308i
\(50\) 0 0
\(51\) 7.46658i 0.146404i
\(52\) 0 0
\(53\) 19.3795i 0.365650i −0.983145 0.182825i \(-0.941476\pi\)
0.983145 0.182825i \(-0.0585242\pi\)
\(54\) 0 0
\(55\) 135.124i 2.45680i
\(56\) 0 0
\(57\) 46.6707 0.818784
\(58\) 0 0
\(59\) −3.71348 −0.0629404 −0.0314702 0.999505i \(-0.510019\pi\)
−0.0314702 + 0.999505i \(0.510019\pi\)
\(60\) 0 0
\(61\) −79.8128 −1.30841 −0.654203 0.756319i \(-0.726996\pi\)
−0.654203 + 0.756319i \(0.726996\pi\)
\(62\) 0 0
\(63\) −11.4976 + 17.5728i −0.182502 + 0.278934i
\(64\) 0 0
\(65\) 38.6404 0.594468
\(66\) 0 0
\(67\) 66.3899i 0.990894i −0.868638 0.495447i \(-0.835004\pi\)
0.868638 0.495447i \(-0.164996\pi\)
\(68\) 0 0
\(69\) −16.1758 −0.234432
\(70\) 0 0
\(71\) −0.994759 −0.0140107 −0.00700535 0.999975i \(-0.502230\pi\)
−0.00700535 + 0.999975i \(0.502230\pi\)
\(72\) 0 0
\(73\) 8.78191i 0.120300i −0.998189 0.0601501i \(-0.980842\pi\)
0.998189 0.0601501i \(-0.0191579\pi\)
\(74\) 0 0
\(75\) 99.8206 1.33094
\(76\) 0 0
\(77\) 87.0725 + 56.9701i 1.13081 + 0.739871i
\(78\) 0 0
\(79\) 31.1944 0.394866 0.197433 0.980316i \(-0.436740\pi\)
0.197433 + 0.980316i \(0.436740\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 44.7600 0.539277 0.269639 0.962962i \(-0.413096\pi\)
0.269639 + 0.962962i \(0.413096\pi\)
\(84\) 0 0
\(85\) 39.1863i 0.461015i
\(86\) 0 0
\(87\) 59.3264i 0.681912i
\(88\) 0 0
\(89\) 11.6296i 0.130669i −0.997863 0.0653347i \(-0.979188\pi\)
0.997863 0.0653347i \(-0.0208115\pi\)
\(90\) 0 0
\(91\) −16.2913 + 24.8995i −0.179025 + 0.273621i
\(92\) 0 0
\(93\) 6.95043i 0.0747358i
\(94\) 0 0
\(95\) 244.938 2.57830
\(96\) 0 0
\(97\) 91.4731i 0.943021i 0.881860 + 0.471511i \(0.156291\pi\)
−0.881860 + 0.471511i \(0.843709\pi\)
\(98\) 0 0
\(99\) 44.5945i 0.450450i
\(100\) 0 0
\(101\) 35.1617 0.348136 0.174068 0.984734i \(-0.444309\pi\)
0.174068 + 0.984734i \(0.444309\pi\)
\(102\) 0 0
\(103\) 45.5116i 0.441860i −0.975290 0.220930i \(-0.929091\pi\)
0.975290 0.220930i \(-0.0709093\pi\)
\(104\) 0 0
\(105\) −60.3420 + 92.2262i −0.574686 + 0.878344i
\(106\) 0 0
\(107\) 64.2360i 0.600336i 0.953886 + 0.300168i \(0.0970428\pi\)
−0.953886 + 0.300168i \(0.902957\pi\)
\(108\) 0 0
\(109\) 39.3165i 0.360702i −0.983602 0.180351i \(-0.942277\pi\)
0.983602 0.180351i \(-0.0577234\pi\)
\(110\) 0 0
\(111\) 111.876i 1.00789i
\(112\) 0 0
\(113\) −72.5108 −0.641688 −0.320844 0.947132i \(-0.603967\pi\)
−0.320844 + 0.947132i \(0.603967\pi\)
\(114\) 0 0
\(115\) −84.8941 −0.738210
\(116\) 0 0
\(117\) 12.7524 0.108995
\(118\) 0 0
\(119\) −25.2512 16.5214i −0.212195 0.138836i
\(120\) 0 0
\(121\) −99.9635 −0.826145
\(122\) 0 0
\(123\) 63.5990i 0.517065i
\(124\) 0 0
\(125\) 296.626 2.37301
\(126\) 0 0
\(127\) 78.5274 0.618326 0.309163 0.951009i \(-0.399951\pi\)
0.309163 + 0.951009i \(0.399951\pi\)
\(128\) 0 0
\(129\) 129.416i 1.00323i
\(130\) 0 0
\(131\) −13.2698 −0.101296 −0.0506479 0.998717i \(-0.516129\pi\)
−0.0506479 + 0.998717i \(0.516129\pi\)
\(132\) 0 0
\(133\) −103.269 + 157.835i −0.776460 + 1.18673i
\(134\) 0 0
\(135\) 47.2340 0.349881
\(136\) 0 0
\(137\) 101.465 0.740623 0.370311 0.928908i \(-0.379251\pi\)
0.370311 + 0.928908i \(0.379251\pi\)
\(138\) 0 0
\(139\) −163.338 −1.17509 −0.587546 0.809191i \(-0.699906\pi\)
−0.587546 + 0.809191i \(0.699906\pi\)
\(140\) 0 0
\(141\) 90.9526i 0.645054i
\(142\) 0 0
\(143\) 63.1873i 0.441869i
\(144\) 0 0
\(145\) 311.358i 2.14730i
\(146\) 0 0
\(147\) −33.9885 77.7675i −0.231214 0.529030i
\(148\) 0 0
\(149\) 95.5068i 0.640985i −0.947251 0.320492i \(-0.896152\pi\)
0.947251 0.320492i \(-0.103848\pi\)
\(150\) 0 0
\(151\) −194.643 −1.28902 −0.644512 0.764594i \(-0.722940\pi\)
−0.644512 + 0.764594i \(0.722940\pi\)
\(152\) 0 0
\(153\) 12.9325i 0.0845261i
\(154\) 0 0
\(155\) 36.4774i 0.235338i
\(156\) 0 0
\(157\) −247.603 −1.57709 −0.788545 0.614977i \(-0.789165\pi\)
−0.788545 + 0.614977i \(0.789165\pi\)
\(158\) 0 0
\(159\) 33.5662i 0.211108i
\(160\) 0 0
\(161\) 35.7925 54.7048i 0.222313 0.339781i
\(162\) 0 0
\(163\) 42.2893i 0.259444i 0.991550 + 0.129722i \(0.0414085\pi\)
−0.991550 + 0.129722i \(0.958592\pi\)
\(164\) 0 0
\(165\) 234.042i 1.41844i
\(166\) 0 0
\(167\) 218.408i 1.30783i −0.756568 0.653915i \(-0.773126\pi\)
0.756568 0.653915i \(-0.226874\pi\)
\(168\) 0 0
\(169\) −150.931 −0.893082
\(170\) 0 0
\(171\) 80.8360 0.472725
\(172\) 0 0
\(173\) −270.029 −1.56086 −0.780431 0.625242i \(-0.785000\pi\)
−0.780431 + 0.625242i \(0.785000\pi\)
\(174\) 0 0
\(175\) −220.875 + 337.583i −1.26214 + 1.92905i
\(176\) 0 0
\(177\) −6.43194 −0.0363387
\(178\) 0 0
\(179\) 150.910i 0.843071i −0.906812 0.421535i \(-0.861491\pi\)
0.906812 0.421535i \(-0.138509\pi\)
\(180\) 0 0
\(181\) 62.7742 0.346819 0.173409 0.984850i \(-0.444522\pi\)
0.173409 + 0.984850i \(0.444522\pi\)
\(182\) 0 0
\(183\) −138.240 −0.755409
\(184\) 0 0
\(185\) 587.148i 3.17377i
\(186\) 0 0
\(187\) 64.0798 0.342673
\(188\) 0 0
\(189\) −19.9145 + 30.4371i −0.105368 + 0.161043i
\(190\) 0 0
\(191\) −152.844 −0.800231 −0.400115 0.916465i \(-0.631030\pi\)
−0.400115 + 0.916465i \(0.631030\pi\)
\(192\) 0 0
\(193\) −196.995 −1.02070 −0.510350 0.859967i \(-0.670484\pi\)
−0.510350 + 0.859967i \(0.670484\pi\)
\(194\) 0 0
\(195\) 66.9272 0.343216
\(196\) 0 0
\(197\) 58.4171i 0.296533i −0.988947 0.148267i \(-0.952631\pi\)
0.988947 0.148267i \(-0.0473694\pi\)
\(198\) 0 0
\(199\) 31.9014i 0.160309i −0.996782 0.0801543i \(-0.974459\pi\)
0.996782 0.0801543i \(-0.0255413\pi\)
\(200\) 0 0
\(201\) 114.991i 0.572093i
\(202\) 0 0
\(203\) 200.636 + 131.273i 0.988352 + 0.646663i
\(204\) 0 0
\(205\) 333.782i 1.62820i
\(206\) 0 0
\(207\) −28.0173 −0.135349
\(208\) 0 0
\(209\) 400.538i 1.91645i
\(210\) 0 0
\(211\) 77.3310i 0.366498i −0.983067 0.183249i \(-0.941339\pi\)
0.983067 0.183249i \(-0.0586614\pi\)
\(212\) 0 0
\(213\) −1.72297 −0.00808908
\(214\) 0 0
\(215\) 679.206i 3.15910i
\(216\) 0 0
\(217\) 23.5056 + 15.3793i 0.108321 + 0.0708725i
\(218\) 0 0
\(219\) 15.2107i 0.0694553i
\(220\) 0 0
\(221\) 18.3244i 0.0829160i
\(222\) 0 0
\(223\) 145.310i 0.651614i −0.945436 0.325807i \(-0.894364\pi\)
0.945436 0.325807i \(-0.105636\pi\)
\(224\) 0 0
\(225\) 172.894 0.768420
\(226\) 0 0
\(227\) −357.567 −1.57519 −0.787593 0.616196i \(-0.788673\pi\)
−0.787593 + 0.616196i \(0.788673\pi\)
\(228\) 0 0
\(229\) 127.298 0.555886 0.277943 0.960598i \(-0.410347\pi\)
0.277943 + 0.960598i \(0.410347\pi\)
\(230\) 0 0
\(231\) 150.814 + 98.6751i 0.652874 + 0.427165i
\(232\) 0 0
\(233\) 80.4881 0.345442 0.172721 0.984971i \(-0.444744\pi\)
0.172721 + 0.984971i \(0.444744\pi\)
\(234\) 0 0
\(235\) 477.340i 2.03123i
\(236\) 0 0
\(237\) 54.0303 0.227976
\(238\) 0 0
\(239\) −343.515 −1.43730 −0.718650 0.695372i \(-0.755240\pi\)
−0.718650 + 0.695372i \(0.755240\pi\)
\(240\) 0 0
\(241\) 201.772i 0.837229i 0.908164 + 0.418614i \(0.137484\pi\)
−0.908164 + 0.418614i \(0.862516\pi\)
\(242\) 0 0
\(243\) 15.5885 0.0641500
\(244\) 0 0
\(245\) −178.379 408.141i −0.728079 1.66588i
\(246\) 0 0
\(247\) 114.539 0.463720
\(248\) 0 0
\(249\) 77.5266 0.311352
\(250\) 0 0
\(251\) 388.278 1.54692 0.773461 0.633844i \(-0.218524\pi\)
0.773461 + 0.633844i \(0.218524\pi\)
\(252\) 0 0
\(253\) 138.824i 0.548712i
\(254\) 0 0
\(255\) 67.8726i 0.266167i
\(256\) 0 0
\(257\) 290.061i 1.12864i 0.825555 + 0.564322i \(0.190862\pi\)
−0.825555 + 0.564322i \(0.809138\pi\)
\(258\) 0 0
\(259\) −378.352 247.549i −1.46082 0.955788i
\(260\) 0 0
\(261\) 102.756i 0.393702i
\(262\) 0 0
\(263\) −289.474 −1.10066 −0.550331 0.834947i \(-0.685498\pi\)
−0.550331 + 0.834947i \(0.685498\pi\)
\(264\) 0 0
\(265\) 176.163i 0.664765i
\(266\) 0 0
\(267\) 20.1430i 0.0754421i
\(268\) 0 0
\(269\) −130.290 −0.484348 −0.242174 0.970233i \(-0.577861\pi\)
−0.242174 + 0.970233i \(0.577861\pi\)
\(270\) 0 0
\(271\) 317.150i 1.17030i −0.810927 0.585148i \(-0.801036\pi\)
0.810927 0.585148i \(-0.198964\pi\)
\(272\) 0 0
\(273\) −28.2174 + 43.1271i −0.103360 + 0.157975i
\(274\) 0 0
\(275\) 856.683i 3.11521i
\(276\) 0 0
\(277\) 526.555i 1.90092i 0.310843 + 0.950461i \(0.399389\pi\)
−0.310843 + 0.950461i \(0.600611\pi\)
\(278\) 0 0
\(279\) 12.0385i 0.0431487i
\(280\) 0 0
\(281\) 165.241 0.588046 0.294023 0.955798i \(-0.405006\pi\)
0.294023 + 0.955798i \(0.405006\pi\)
\(282\) 0 0
\(283\) −170.636 −0.602953 −0.301477 0.953474i \(-0.597480\pi\)
−0.301477 + 0.953474i \(0.597480\pi\)
\(284\) 0 0
\(285\) 424.245 1.48858
\(286\) 0 0
\(287\) 215.085 + 140.727i 0.749426 + 0.490337i
\(288\) 0 0
\(289\) 270.417 0.935698
\(290\) 0 0
\(291\) 158.436i 0.544454i
\(292\) 0 0
\(293\) 16.1118 0.0549892 0.0274946 0.999622i \(-0.491247\pi\)
0.0274946 + 0.999622i \(0.491247\pi\)
\(294\) 0 0
\(295\) −33.7562 −0.114428
\(296\) 0 0
\(297\) 77.2400i 0.260067i
\(298\) 0 0
\(299\) −39.6985 −0.132771
\(300\) 0 0
\(301\) −437.673 286.362i −1.45406 0.951369i
\(302\) 0 0
\(303\) 60.9019 0.200996
\(304\) 0 0
\(305\) −725.513 −2.37873
\(306\) 0 0
\(307\) 5.96095 0.0194168 0.00970839 0.999953i \(-0.496910\pi\)
0.00970839 + 0.999953i \(0.496910\pi\)
\(308\) 0 0
\(309\) 78.8284i 0.255108i
\(310\) 0 0
\(311\) 261.056i 0.839408i 0.907661 + 0.419704i \(0.137866\pi\)
−0.907661 + 0.419704i \(0.862134\pi\)
\(312\) 0 0
\(313\) 285.715i 0.912826i −0.889768 0.456413i \(-0.849134\pi\)
0.889768 0.456413i \(-0.150866\pi\)
\(314\) 0 0
\(315\) −104.515 + 159.740i −0.331795 + 0.507112i
\(316\) 0 0
\(317\) 593.885i 1.87345i 0.350060 + 0.936727i \(0.386161\pi\)
−0.350060 + 0.936727i \(0.613839\pi\)
\(318\) 0 0
\(319\) −509.152 −1.59609
\(320\) 0 0
\(321\) 111.260i 0.346604i
\(322\) 0 0
\(323\) 116.157i 0.359619i
\(324\) 0 0
\(325\) 244.979 0.753782
\(326\) 0 0
\(327\) 68.0982i 0.208252i
\(328\) 0 0
\(329\) −307.592 201.253i −0.934931 0.611710i
\(330\) 0 0
\(331\) 25.5772i 0.0772725i −0.999253 0.0386362i \(-0.987699\pi\)
0.999253 0.0386362i \(-0.0123014\pi\)
\(332\) 0 0
\(333\) 193.774i 0.581905i
\(334\) 0 0
\(335\) 603.496i 1.80148i
\(336\) 0 0
\(337\) −565.903 −1.67924 −0.839619 0.543176i \(-0.817222\pi\)
−0.839619 + 0.543176i \(0.817222\pi\)
\(338\) 0 0
\(339\) −125.592 −0.370479
\(340\) 0 0
\(341\) −59.6501 −0.174927
\(342\) 0 0
\(343\) 338.208 + 57.1319i 0.986030 + 0.166565i
\(344\) 0 0
\(345\) −147.041 −0.426206
\(346\) 0 0
\(347\) 85.1612i 0.245421i 0.992442 + 0.122711i \(0.0391587\pi\)
−0.992442 + 0.122711i \(0.960841\pi\)
\(348\) 0 0
\(349\) −275.035 −0.788066 −0.394033 0.919096i \(-0.628920\pi\)
−0.394033 + 0.919096i \(0.628920\pi\)
\(350\) 0 0
\(351\) 22.0877 0.0629280
\(352\) 0 0
\(353\) 145.204i 0.411342i 0.978621 + 0.205671i \(0.0659376\pi\)
−0.978621 + 0.205671i \(0.934062\pi\)
\(354\) 0 0
\(355\) −9.04255 −0.0254720
\(356\) 0 0
\(357\) −43.7363 28.6160i −0.122511 0.0801568i
\(358\) 0 0
\(359\) 40.1294 0.111781 0.0558906 0.998437i \(-0.482200\pi\)
0.0558906 + 0.998437i \(0.482200\pi\)
\(360\) 0 0
\(361\) 365.052 1.01122
\(362\) 0 0
\(363\) −173.142 −0.476975
\(364\) 0 0
\(365\) 79.8292i 0.218710i
\(366\) 0 0
\(367\) 373.965i 1.01898i −0.860477 0.509489i \(-0.829834\pi\)
0.860477 0.509489i \(-0.170166\pi\)
\(368\) 0 0
\(369\) 110.157i 0.298528i
\(370\) 0 0
\(371\) 113.517 + 74.2725i 0.305977 + 0.200195i
\(372\) 0 0
\(373\) 222.942i 0.597699i −0.954300 0.298849i \(-0.903397\pi\)
0.954300 0.298849i \(-0.0966028\pi\)
\(374\) 0 0
\(375\) 513.771 1.37006
\(376\) 0 0
\(377\) 145.598i 0.386203i
\(378\) 0 0
\(379\) 445.711i 1.17602i 0.808854 + 0.588010i \(0.200088\pi\)
−0.808854 + 0.588010i \(0.799912\pi\)
\(380\) 0 0
\(381\) 136.013 0.356991
\(382\) 0 0
\(383\) 463.682i 1.21066i −0.795975 0.605329i \(-0.793042\pi\)
0.795975 0.605329i \(-0.206958\pi\)
\(384\) 0 0
\(385\) 791.505 + 517.869i 2.05586 + 1.34511i
\(386\) 0 0
\(387\) 224.156i 0.579214i
\(388\) 0 0
\(389\) 170.836i 0.439167i 0.975594 + 0.219584i \(0.0704699\pi\)
−0.975594 + 0.219584i \(0.929530\pi\)
\(390\) 0 0
\(391\) 40.2593i 0.102965i
\(392\) 0 0
\(393\) −22.9839 −0.0584832
\(394\) 0 0
\(395\) 283.563 0.717881
\(396\) 0 0
\(397\) 537.521 1.35396 0.676979 0.736003i \(-0.263289\pi\)
0.676979 + 0.736003i \(0.263289\pi\)
\(398\) 0 0
\(399\) −178.867 + 273.379i −0.448289 + 0.685160i
\(400\) 0 0
\(401\) 490.979 1.22439 0.612193 0.790709i \(-0.290288\pi\)
0.612193 + 0.790709i \(0.290288\pi\)
\(402\) 0 0
\(403\) 17.0577i 0.0423268i
\(404\) 0 0
\(405\) 81.8117 0.202004
\(406\) 0 0
\(407\) 960.141 2.35907
\(408\) 0 0
\(409\) 426.048i 1.04168i 0.853654 + 0.520841i \(0.174382\pi\)
−0.853654 + 0.520841i \(0.825618\pi\)
\(410\) 0 0
\(411\) 175.743 0.427599
\(412\) 0 0
\(413\) 14.2321 21.7521i 0.0344602 0.0526686i
\(414\) 0 0
\(415\) 406.877 0.980426
\(416\) 0 0
\(417\) −282.909 −0.678440
\(418\) 0 0
\(419\) 725.389 1.73124 0.865619 0.500704i \(-0.166925\pi\)
0.865619 + 0.500704i \(0.166925\pi\)
\(420\) 0 0
\(421\) 30.0999i 0.0714963i 0.999361 + 0.0357481i \(0.0113814\pi\)
−0.999361 + 0.0357481i \(0.988619\pi\)
\(422\) 0 0
\(423\) 157.535i 0.372422i
\(424\) 0 0
\(425\) 248.440i 0.584564i
\(426\) 0 0
\(427\) 305.886 467.513i 0.716360 1.09488i
\(428\) 0 0
\(429\) 109.444i 0.255113i
\(430\) 0 0
\(431\) 265.508 0.616027 0.308013 0.951382i \(-0.400336\pi\)
0.308013 + 0.951382i \(0.400336\pi\)
\(432\) 0 0
\(433\) 716.150i 1.65393i −0.562256 0.826963i \(-0.690067\pi\)
0.562256 0.826963i \(-0.309933\pi\)
\(434\) 0 0
\(435\) 539.288i 1.23974i
\(436\) 0 0
\(437\) −251.645 −0.575847
\(438\) 0 0
\(439\) 294.401i 0.670617i 0.942108 + 0.335308i \(0.108840\pi\)
−0.942108 + 0.335308i \(0.891160\pi\)
\(440\) 0 0
\(441\) −58.8698 134.697i −0.133492 0.305436i
\(442\) 0 0
\(443\) 488.734i 1.10324i 0.834096 + 0.551619i \(0.185990\pi\)
−0.834096 + 0.551619i \(0.814010\pi\)
\(444\) 0 0
\(445\) 105.715i 0.237562i
\(446\) 0 0
\(447\) 165.423i 0.370073i
\(448\) 0 0
\(449\) 430.945 0.959788 0.479894 0.877326i \(-0.340675\pi\)
0.479894 + 0.877326i \(0.340675\pi\)
\(450\) 0 0
\(451\) −545.821 −1.21025
\(452\) 0 0
\(453\) −337.131 −0.744219
\(454\) 0 0
\(455\) −148.091 + 226.341i −0.325475 + 0.497452i
\(456\) 0 0
\(457\) −699.398 −1.53041 −0.765206 0.643785i \(-0.777363\pi\)
−0.765206 + 0.643785i \(0.777363\pi\)
\(458\) 0 0
\(459\) 22.3997i 0.0488012i
\(460\) 0 0
\(461\) 387.880 0.841389 0.420695 0.907202i \(-0.361786\pi\)
0.420695 + 0.907202i \(0.361786\pi\)
\(462\) 0 0
\(463\) 293.086 0.633015 0.316508 0.948590i \(-0.397490\pi\)
0.316508 + 0.948590i \(0.397490\pi\)
\(464\) 0 0
\(465\) 63.1807i 0.135872i
\(466\) 0 0
\(467\) −588.136 −1.25939 −0.629696 0.776842i \(-0.716820\pi\)
−0.629696 + 0.776842i \(0.716820\pi\)
\(468\) 0 0
\(469\) 388.886 + 254.442i 0.829182 + 0.542520i
\(470\) 0 0
\(471\) −428.861 −0.910534
\(472\) 0 0
\(473\) 1110.68 2.34816
\(474\) 0 0
\(475\) 1552.90 3.26926
\(476\) 0 0
\(477\) 58.1384i 0.121883i
\(478\) 0 0
\(479\) 389.912i 0.814012i 0.913425 + 0.407006i \(0.133427\pi\)
−0.913425 + 0.407006i \(0.866573\pi\)
\(480\) 0 0
\(481\) 274.564i 0.570820i
\(482\) 0 0
\(483\) 61.9944 94.7515i 0.128353 0.196173i
\(484\) 0 0
\(485\) 831.507i 1.71445i
\(486\) 0 0
\(487\) 307.232 0.630867 0.315433 0.948948i \(-0.397850\pi\)
0.315433 + 0.948948i \(0.397850\pi\)
\(488\) 0 0
\(489\) 73.2473i 0.149790i
\(490\) 0 0
\(491\) 751.084i 1.52970i 0.644207 + 0.764851i \(0.277188\pi\)
−0.644207 + 0.764851i \(0.722812\pi\)
\(492\) 0 0
\(493\) 147.655 0.299503
\(494\) 0 0
\(495\) 405.373i 0.818934i
\(496\) 0 0
\(497\) 3.81246 5.82692i 0.00767094 0.0117242i
\(498\) 0 0
\(499\) 252.238i 0.505487i 0.967533 + 0.252744i \(0.0813329\pi\)
−0.967533 + 0.252744i \(0.918667\pi\)
\(500\) 0 0
\(501\) 378.293i 0.755076i
\(502\) 0 0
\(503\) 840.895i 1.67176i −0.548912 0.835880i \(-0.684958\pi\)
0.548912 0.835880i \(-0.315042\pi\)
\(504\) 0 0
\(505\) 319.626 0.632924
\(506\) 0 0
\(507\) −261.420 −0.515621
\(508\) 0 0
\(509\) 532.050 1.04528 0.522642 0.852552i \(-0.324946\pi\)
0.522642 + 0.852552i \(0.324946\pi\)
\(510\) 0 0
\(511\) 51.4410 + 33.6570i 0.100667 + 0.0658650i
\(512\) 0 0
\(513\) 140.012 0.272928
\(514\) 0 0
\(515\) 413.709i 0.803318i
\(516\) 0 0
\(517\) 780.576 1.50982
\(518\) 0 0
\(519\) −467.704 −0.901164
\(520\) 0 0
\(521\) 673.016i 1.29178i −0.763432 0.645889i \(-0.776487\pi\)
0.763432 0.645889i \(-0.223513\pi\)
\(522\) 0 0
\(523\) −131.940 −0.252276 −0.126138 0.992013i \(-0.540258\pi\)
−0.126138 + 0.992013i \(0.540258\pi\)
\(524\) 0 0
\(525\) −382.567 + 584.711i −0.728698 + 1.11373i
\(526\) 0 0
\(527\) 17.2986 0.0328247
\(528\) 0 0
\(529\) −441.781 −0.835125
\(530\) 0 0
\(531\) −11.1404 −0.0209801
\(532\) 0 0
\(533\) 156.084i 0.292841i
\(534\) 0 0
\(535\) 583.917i 1.09143i
\(536\) 0 0
\(537\) 261.383i 0.486747i
\(538\) 0 0
\(539\) −667.418 + 291.697i −1.23825 + 0.541182i
\(540\) 0 0
\(541\) 413.321i 0.763995i −0.924163 0.381997i \(-0.875236\pi\)
0.924163 0.381997i \(-0.124764\pi\)
\(542\) 0 0
\(543\) 108.728 0.200236
\(544\) 0 0
\(545\) 357.395i 0.655770i
\(546\) 0 0
\(547\) 869.058i 1.58877i −0.607414 0.794385i \(-0.707793\pi\)
0.607414 0.794385i \(-0.292207\pi\)
\(548\) 0 0
\(549\) −239.438 −0.436136
\(550\) 0 0
\(551\) 922.935i 1.67502i
\(552\) 0 0
\(553\) −119.554 + 182.725i −0.216191 + 0.330425i
\(554\) 0 0
\(555\) 1016.97i 1.83238i
\(556\) 0 0
\(557\) 238.943i 0.428982i −0.976726 0.214491i \(-0.931191\pi\)
0.976726 0.214491i \(-0.0688092\pi\)
\(558\) 0 0
\(559\) 317.613i 0.568180i
\(560\) 0 0
\(561\) 110.990 0.197842
\(562\) 0 0
\(563\) −349.331 −0.620481 −0.310240 0.950658i \(-0.600410\pi\)
−0.310240 + 0.950658i \(0.600410\pi\)
\(564\) 0 0
\(565\) −659.136 −1.16661
\(566\) 0 0
\(567\) −34.4929 + 52.7185i −0.0608340 + 0.0929780i
\(568\) 0 0
\(569\) −905.015 −1.59054 −0.795268 0.606258i \(-0.792670\pi\)
−0.795268 + 0.606258i \(0.792670\pi\)
\(570\) 0 0
\(571\) 469.382i 0.822035i 0.911627 + 0.411017i \(0.134826\pi\)
−0.911627 + 0.411017i \(0.865174\pi\)
\(572\) 0 0
\(573\) −264.734 −0.462013
\(574\) 0 0
\(575\) −538.226 −0.936045
\(576\) 0 0
\(577\) 607.599i 1.05303i 0.850165 + 0.526516i \(0.176502\pi\)
−0.850165 + 0.526516i \(0.823498\pi\)
\(578\) 0 0
\(579\) −341.205 −0.589301
\(580\) 0 0
\(581\) −171.544 + 262.187i −0.295257 + 0.451268i
\(582\) 0 0
\(583\) −288.073 −0.494121
\(584\) 0 0
\(585\) 115.921 0.198156
\(586\) 0 0
\(587\) −374.034 −0.637196 −0.318598 0.947890i \(-0.603212\pi\)
−0.318598 + 0.947890i \(0.603212\pi\)
\(588\) 0 0
\(589\) 108.127i 0.183577i
\(590\) 0 0
\(591\) 101.181i 0.171204i
\(592\) 0 0
\(593\) 1159.14i 1.95471i −0.211614 0.977353i \(-0.567872\pi\)
0.211614 0.977353i \(-0.432128\pi\)
\(594\) 0 0
\(595\) −229.538 150.183i −0.385778 0.252408i
\(596\) 0 0
\(597\) 55.2548i 0.0925542i
\(598\) 0 0
\(599\) −154.662 −0.258200 −0.129100 0.991632i \(-0.541209\pi\)
−0.129100 + 0.991632i \(0.541209\pi\)
\(600\) 0 0
\(601\) 924.074i 1.53756i −0.639513 0.768780i \(-0.720864\pi\)
0.639513 0.768780i \(-0.279136\pi\)
\(602\) 0 0
\(603\) 199.170i 0.330298i
\(604\) 0 0
\(605\) −908.687 −1.50196
\(606\) 0 0
\(607\) 61.7356i 0.101706i 0.998706 + 0.0508531i \(0.0161940\pi\)
−0.998706 + 0.0508531i \(0.983806\pi\)
\(608\) 0 0
\(609\) 347.511 + 227.371i 0.570626 + 0.373351i
\(610\) 0 0
\(611\) 223.215i 0.365328i
\(612\) 0 0
\(613\) 661.600i 1.07928i 0.841895 + 0.539641i \(0.181440\pi\)
−0.841895 + 0.539641i \(0.818560\pi\)
\(614\) 0 0
\(615\) 578.127i 0.940044i
\(616\) 0 0
\(617\) 354.372 0.574347 0.287174 0.957879i \(-0.407284\pi\)
0.287174 + 0.957879i \(0.407284\pi\)
\(618\) 0 0
\(619\) 636.341 1.02801 0.514007 0.857786i \(-0.328161\pi\)
0.514007 + 0.857786i \(0.328161\pi\)
\(620\) 0 0
\(621\) −48.5274 −0.0781439
\(622\) 0 0
\(623\) 68.1216 + 44.5708i 0.109344 + 0.0715423i
\(624\) 0 0
\(625\) 1255.60 2.00896
\(626\) 0 0
\(627\) 693.753i 1.10646i
\(628\) 0 0
\(629\) −278.443 −0.442675
\(630\) 0 0
\(631\) 199.202 0.315693 0.157847 0.987464i \(-0.449545\pi\)
0.157847 + 0.987464i \(0.449545\pi\)
\(632\) 0 0
\(633\) 133.941i 0.211598i
\(634\) 0 0
\(635\) 713.829 1.12414
\(636\) 0 0
\(637\) −83.4144 190.856i −0.130949 0.299618i
\(638\) 0 0
\(639\) −2.98428 −0.00467023
\(640\) 0 0
\(641\) 19.2310 0.0300016 0.0150008 0.999887i \(-0.495225\pi\)
0.0150008 + 0.999887i \(0.495225\pi\)
\(642\) 0 0
\(643\) −783.597 −1.21866 −0.609329 0.792918i \(-0.708561\pi\)
−0.609329 + 0.792918i \(0.708561\pi\)
\(644\) 0 0
\(645\) 1176.42i 1.82391i
\(646\) 0 0
\(647\) 321.191i 0.496431i 0.968705 + 0.248216i \(0.0798442\pi\)
−0.968705 + 0.248216i \(0.920156\pi\)
\(648\) 0 0
\(649\) 55.2003i 0.0850544i
\(650\) 0 0
\(651\) 40.7129 + 26.6378i 0.0625390 + 0.0409183i
\(652\) 0 0
\(653\) 567.084i 0.868428i 0.900810 + 0.434214i \(0.142974\pi\)
−0.900810 + 0.434214i \(0.857026\pi\)
\(654\) 0 0
\(655\) −120.625 −0.184160
\(656\) 0 0
\(657\) 26.3457i 0.0401001i
\(658\) 0 0
\(659\) 76.3245i 0.115819i −0.998322 0.0579094i \(-0.981557\pi\)
0.998322 0.0579094i \(-0.0184434\pi\)
\(660\) 0 0
\(661\) −422.507 −0.639193 −0.319597 0.947554i \(-0.603547\pi\)
−0.319597 + 0.947554i \(0.603547\pi\)
\(662\) 0 0
\(663\) 31.7388i 0.0478716i
\(664\) 0 0
\(665\) −938.735 + 1434.75i −1.41163 + 2.15752i
\(666\) 0 0
\(667\) 319.884i 0.479586i
\(668\) 0 0
\(669\) 251.684i 0.376209i
\(670\) 0 0
\(671\) 1186.41i 1.76811i
\(672\) 0 0
\(673\) 523.984 0.778579 0.389289 0.921115i \(-0.372721\pi\)
0.389289 + 0.921115i \(0.372721\pi\)
\(674\) 0 0
\(675\) 299.462 0.443647
\(676\) 0 0
\(677\) 523.084 0.772650 0.386325 0.922363i \(-0.373744\pi\)
0.386325 + 0.922363i \(0.373744\pi\)
\(678\) 0 0
\(679\) −535.814 350.574i −0.789122 0.516310i
\(680\) 0 0
\(681\) −619.324 −0.909434
\(682\) 0 0
\(683\) 243.110i 0.355945i −0.984036 0.177972i \(-0.943046\pi\)
0.984036 0.177972i \(-0.0569537\pi\)
\(684\) 0 0
\(685\) 922.339 1.34648
\(686\) 0 0
\(687\) 220.486 0.320941
\(688\) 0 0
\(689\) 82.3779i 0.119562i
\(690\) 0 0
\(691\) 1129.66 1.63482 0.817409 0.576057i \(-0.195410\pi\)
0.817409 + 0.576057i \(0.195410\pi\)
\(692\) 0 0
\(693\) 261.218 + 170.910i 0.376937 + 0.246624i
\(694\) 0 0
\(695\) −1484.77 −2.13636
\(696\) 0 0
\(697\) 158.289 0.227100
\(698\) 0 0
\(699\) 139.409 0.199441
\(700\) 0 0
\(701\) 1291.80i 1.84280i −0.388616 0.921400i \(-0.627047\pi\)
0.388616 0.921400i \(-0.372953\pi\)
\(702\) 0 0
\(703\) 1740.44i 2.47573i
\(704\) 0 0
\(705\) 826.776i 1.17273i
\(706\) 0 0
\(707\) −134.759 + 205.964i −0.190606 + 0.291321i
\(708\) 0 0
\(709\) 748.254i 1.05537i −0.849442 0.527683i \(-0.823061\pi\)
0.849442 0.527683i \(-0.176939\pi\)
\(710\) 0 0
\(711\) 93.5832 0.131622
\(712\) 0 0
\(713\) 37.4762i 0.0525613i
\(714\) 0 0
\(715\) 574.384i 0.803334i
\(716\) 0 0
\(717\) −594.985 −0.829826
\(718\) 0 0
\(719\) 612.811i 0.852310i 0.904650 + 0.426155i \(0.140132\pi\)
−0.904650 + 0.426155i \(0.859868\pi\)
\(720\) 0 0
\(721\) 266.589 + 174.425i 0.369750 + 0.241921i
\(722\) 0 0
\(723\) 349.480i 0.483374i
\(724\) 0 0
\(725\) 1974.00i 2.72276i
\(726\) 0 0
\(727\) 138.017i 0.189845i −0.995485 0.0949223i \(-0.969740\pi\)
0.995485 0.0949223i \(-0.0302603\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) −322.099 −0.440628
\(732\) 0 0
\(733\) 644.555 0.879338 0.439669 0.898160i \(-0.355096\pi\)
0.439669 + 0.898160i \(0.355096\pi\)
\(734\) 0 0
\(735\) −308.962 706.921i −0.420356 0.961797i
\(736\) 0 0
\(737\) −986.875 −1.33904
\(738\) 0 0
\(739\) 712.278i 0.963841i −0.876215 0.481920i \(-0.839939\pi\)
0.876215 0.481920i \(-0.160061\pi\)
\(740\) 0 0
\(741\) 198.387 0.267729
\(742\) 0 0
\(743\) −10.1719 −0.0136903 −0.00684515 0.999977i \(-0.502179\pi\)
−0.00684515 + 0.999977i \(0.502179\pi\)
\(744\) 0 0
\(745\) 868.174i 1.16533i
\(746\) 0 0
\(747\) 134.280 0.179759
\(748\) 0 0
\(749\) −376.270 246.187i −0.502363 0.328688i
\(750\) 0 0
\(751\) 1079.30 1.43715 0.718573 0.695451i \(-0.244796\pi\)
0.718573 + 0.695451i \(0.244796\pi\)
\(752\) 0 0
\(753\) 672.516 0.893116
\(754\) 0 0
\(755\) −1769.34 −2.34349
\(756\) 0 0
\(757\) 1200.34i 1.58566i −0.609445 0.792828i \(-0.708608\pi\)
0.609445 0.792828i \(-0.291392\pi\)
\(758\) 0 0
\(759\) 240.451i 0.316799i
\(760\) 0 0
\(761\) 965.128i 1.26824i 0.773236 + 0.634118i \(0.218637\pi\)
−0.773236 + 0.634118i \(0.781363\pi\)
\(762\) 0 0
\(763\) 230.301 + 150.682i 0.301836 + 0.197486i
\(764\) 0 0
\(765\) 117.559i 0.153672i
\(766\) 0 0
\(767\) −15.7852 −0.0205805
\(768\) 0 0
\(769\) 999.555i 1.29981i 0.760015 + 0.649906i \(0.225192\pi\)
−0.760015 + 0.649906i \(0.774808\pi\)
\(770\) 0 0
\(771\) 502.401i 0.651623i
\(772\) 0 0
\(773\) 1048.92 1.35694 0.678471 0.734628i \(-0.262643\pi\)
0.678471 + 0.734628i \(0.262643\pi\)
\(774\) 0 0
\(775\) 231.265i 0.298407i
\(776\) 0 0
\(777\) −655.324 428.768i −0.843403 0.551825i
\(778\) 0 0
\(779\) 989.404i 1.27009i
\(780\) 0 0
\(781\) 14.7869i 0.0189333i
\(782\) 0 0
\(783\) 177.979i 0.227304i
\(784\) 0 0
\(785\) −2250.76 −2.86721
\(786\) 0 0
\(787\) 1269.73 1.61338 0.806690 0.590975i \(-0.201257\pi\)
0.806690 + 0.590975i \(0.201257\pi\)
\(788\) 0 0
\(789\) −501.384 −0.635467
\(790\) 0 0
\(791\) 277.900 424.740i 0.351328 0.536966i
\(792\) 0 0
\(793\) −339.267 −0.427828
\(794\) 0 0
\(795\) 305.123i 0.383802i
\(796\) 0 0
\(797\) 792.144 0.993908 0.496954 0.867777i \(-0.334452\pi\)
0.496954 + 0.867777i \(0.334452\pi\)
\(798\) 0 0
\(799\) −226.368 −0.283315
\(800\) 0 0
\(801\) 34.8888i 0.0435565i
\(802\) 0 0
\(803\) −130.542 −0.162568
\(804\) 0 0
\(805\) 325.360 497.277i 0.404174 0.617735i
\(806\) 0 0
\(807\) −225.668 −0.279639
\(808\) 0 0
\(809\) 1282.81 1.58568 0.792838 0.609433i \(-0.208603\pi\)
0.792838 + 0.609433i \(0.208603\pi\)
\(810\) 0 0
\(811\) 272.683 0.336231 0.168115 0.985767i \(-0.446232\pi\)
0.168115 + 0.985767i \(0.446232\pi\)
\(812\) 0 0
\(813\) 549.320i 0.675671i
\(814\) 0 0
\(815\) 384.418i 0.471679i
\(816\) 0 0
\(817\) 2013.32i 2.46428i
\(818\) 0 0
\(819\) −48.8739 + 74.6984i −0.0596751 + 0.0912069i
\(820\) 0 0
\(821\) 1350.30i 1.64470i 0.568985 + 0.822348i \(0.307336\pi\)
−0.568985 + 0.822348i \(0.692664\pi\)
\(822\) 0 0
\(823\) −126.866 −0.154150 −0.0770752 0.997025i \(-0.524558\pi\)
−0.0770752 + 0.997025i \(0.524558\pi\)
\(824\) 0 0
\(825\) 1483.82i 1.79857i
\(826\) 0 0
\(827\) 138.892i 0.167946i 0.996468 + 0.0839731i \(0.0267610\pi\)
−0.996468 + 0.0839731i \(0.973239\pi\)
\(828\) 0 0
\(829\) −951.755 −1.14808 −0.574038 0.818829i \(-0.694624\pi\)
−0.574038 + 0.818829i \(0.694624\pi\)
\(830\) 0 0
\(831\) 912.021i 1.09750i
\(832\) 0 0
\(833\) 193.552 84.5926i 0.232356 0.101552i
\(834\) 0 0
\(835\) 1985.36i 2.37768i
\(836\) 0 0
\(837\) 20.8513i 0.0249119i
\(838\) 0 0
\(839\) 724.563i 0.863603i 0.901969 + 0.431802i \(0.142122\pi\)
−0.901969 + 0.431802i \(0.857878\pi\)
\(840\) 0 0
\(841\) −332.206 −0.395013
\(842\) 0 0
\(843\) 286.206 0.339509
\(844\) 0 0
\(845\) −1371.99 −1.62366
\(846\) 0 0
\(847\) 383.114 585.548i 0.452319 0.691320i
\(848\) 0 0
\(849\) −295.550 −0.348115
\(850\) 0 0
\(851\) 603.225i 0.708843i
\(852\) 0 0
\(853\) −1219.96 −1.43020 −0.715100 0.699022i \(-0.753619\pi\)
−0.715100 + 0.699022i \(0.753619\pi\)
\(854\) 0 0
\(855\) 734.815 0.859432
\(856\) 0 0
\(857\) 169.761i 0.198088i 0.995083 + 0.0990440i \(0.0315785\pi\)
−0.995083 + 0.0990440i \(0.968422\pi\)
\(858\) 0 0
\(859\) −687.207 −0.800009 −0.400004 0.916513i \(-0.630991\pi\)
−0.400004 + 0.916513i \(0.630991\pi\)
\(860\) 0 0
\(861\) 372.538 + 243.746i 0.432681 + 0.283096i
\(862\) 0 0
\(863\) 246.094 0.285161 0.142581 0.989783i \(-0.454460\pi\)
0.142581 + 0.989783i \(0.454460\pi\)
\(864\) 0 0
\(865\) −2454.61 −2.83770
\(866\) 0 0
\(867\) 468.376 0.540226
\(868\) 0 0
\(869\) 463.700i 0.533602i
\(870\) 0 0
\(871\) 282.209i 0.324006i
\(872\) 0 0
\(873\) 274.419i 0.314340i
\(874\) 0 0
\(875\) −1136.83 + 1737.52i −1.29924 + 1.98574i
\(876\) 0 0
\(877\) 487.171i 0.555497i 0.960654 + 0.277749i \(0.0895882\pi\)
−0.960654 + 0.277749i \(0.910412\pi\)
\(878\) 0 0
\(879\) 27.9065 0.0317480
\(880\) 0 0
\(881\) 343.877i 0.390325i 0.980771 + 0.195163i \(0.0625235\pi\)
−0.980771 + 0.195163i \(0.937477\pi\)
\(882\) 0 0
\(883\) 755.288i 0.855366i 0.903929 + 0.427683i \(0.140670\pi\)
−0.903929 + 0.427683i \(0.859330\pi\)
\(884\) 0 0
\(885\) −58.4675 −0.0660650
\(886\) 0 0
\(887\) 1633.02i 1.84106i −0.390668 0.920532i \(-0.627756\pi\)
0.390668 0.920532i \(-0.372244\pi\)
\(888\) 0 0
\(889\) −300.959 + 459.983i −0.338537 + 0.517416i
\(890\) 0 0
\(891\) 133.784i 0.150150i
\(892\) 0 0
\(893\) 1414.94i 1.58448i
\(894\) 0 0
\(895\) 1371.80i 1.53273i
\(896\) 0 0
\(897\) −68.7598 −0.0766553
\(898\) 0 0
\(899\) −137.448 −0.152890
\(900\) 0 0
\(901\) 83.5416 0.0927209
\(902\) 0 0
\(903\) −758.071 495.993i −0.839503 0.549273i
\(904\) 0 0
\(905\) 570.629 0.630530
\(906\) 0 0
\(907\) 579.901i 0.639361i 0.947525 + 0.319681i \(0.103576\pi\)
−0.947525 + 0.319681i \(0.896424\pi\)
\(908\) 0 0
\(909\) 105.485 0.116045
\(910\) 0 0
\(911\) −169.237 −0.185770 −0.0928852 0.995677i \(-0.529609\pi\)
−0.0928852 + 0.995677i \(0.529609\pi\)
\(912\) 0 0
\(913\) 665.350i 0.728752i
\(914\) 0 0
\(915\) −1256.63 −1.37336
\(916\) 0 0
\(917\) 50.8569 77.7291i 0.0554600 0.0847645i
\(918\) 0 0
\(919\) −910.454 −0.990701 −0.495351 0.868693i \(-0.664960\pi\)
−0.495351 + 0.868693i \(0.664960\pi\)
\(920\) 0 0
\(921\) 10.3247 0.0112103
\(922\) 0 0
\(923\) −4.22851 −0.00458127
\(924\) 0 0
\(925\) 3722.50i 4.02432i
\(926\) 0 0
\(927\) 136.535i 0.147287i
\(928\) 0 0
\(929\) 1560.39i 1.67965i −0.542859 0.839824i \(-0.682658\pi\)
0.542859 0.839824i \(-0.317342\pi\)
\(930\) 0 0
\(931\) −528.756 1209.82i −0.567944 1.29949i
\(932\) 0 0
\(933\) 452.162i 0.484633i
\(934\) 0 0
\(935\) 582.498 0.622992
\(936\) 0 0
\(937\) 1529.70i 1.63255i 0.577664 + 0.816275i \(0.303964\pi\)
−0.577664 + 0.816275i \(0.696036\pi\)
\(938\) 0 0
\(939\) 494.872i 0.527021i
\(940\) 0 0
\(941\) 509.889 0.541859 0.270929 0.962599i \(-0.412669\pi\)
0.270929 + 0.962599i \(0.412669\pi\)
\(942\) 0 0
\(943\) 342.921i 0.363649i
\(944\) 0 0
\(945\) −181.026 + 276.678i −0.191562 + 0.292781i
\(946\) 0 0
\(947\) 227.835i 0.240586i −0.992738 0.120293i \(-0.961617\pi\)
0.992738 0.120293i \(-0.0383833\pi\)
\(948\) 0 0
\(949\) 37.3300i 0.0393362i
\(950\) 0 0
\(951\) 1028.64i 1.08164i
\(952\) 0 0
\(953\) 488.011 0.512079 0.256040 0.966666i \(-0.417582\pi\)
0.256040 + 0.966666i \(0.417582\pi\)
\(954\) 0 0
\(955\) −1389.38 −1.45485
\(956\) 0 0
\(957\) −881.877 −0.921502
\(958\) 0 0
\(959\) −388.870 + 594.345i −0.405495 + 0.619755i
\(960\) 0 0
\(961\) 944.897 0.983244
\(962\) 0 0
\(963\) 192.708i 0.200112i
\(964\) 0 0
\(965\) −1790.72 −1.85567
\(966\) 0 0
\(967\) −976.631 −1.00996 −0.504980 0.863131i \(-0.668500\pi\)
−0.504980 + 0.863131i \(0.668500\pi\)
\(968\) 0 0
\(969\) 201.190i 0.207626i
\(970\) 0 0
\(971\) 1709.72 1.76078 0.880390 0.474250i \(-0.157281\pi\)
0.880390 + 0.474250i \(0.157281\pi\)
\(972\) 0 0
\(973\) 625.999 956.770i 0.643370 0.983320i
\(974\) 0 0
\(975\) 424.316 0.435196
\(976\) 0 0
\(977\) −1387.42 −1.42009 −0.710043 0.704158i \(-0.751325\pi\)
−0.710043 + 0.704158i \(0.751325\pi\)
\(978\) 0 0
\(979\) −172.872 −0.176580
\(980\) 0 0
\(981\) 117.950i 0.120234i
\(982\) 0 0
\(983\) 910.425i 0.926170i −0.886314 0.463085i \(-0.846742\pi\)
0.886314 0.463085i \(-0.153258\pi\)
\(984\) 0 0
\(985\) 531.022i 0.539108i
\(986\) 0 0
\(987\) −532.765 348.580i −0.539783 0.353171i
\(988\) 0 0
\(989\) 697.804i 0.705565i
\(990\) 0 0
\(991\) −474.575 −0.478885 −0.239443 0.970910i \(-0.576965\pi\)
−0.239443 + 0.970910i \(0.576965\pi\)
\(992\) 0 0
\(993\) 44.3010i 0.0446133i
\(994\) 0 0
\(995\) 289.990i 0.291447i
\(996\) 0 0
\(997\) 545.379 0.547020 0.273510 0.961869i \(-0.411815\pi\)
0.273510 + 0.961869i \(0.411815\pi\)
\(998\) 0 0
\(999\) 335.627i 0.335963i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.l.a.433.18 32
3.2 odd 2 2016.3.l.h.433.1 32
4.3 odd 2 168.3.l.a.13.23 yes 32
7.6 odd 2 inner 672.3.l.a.433.2 32
8.3 odd 2 168.3.l.a.13.22 yes 32
8.5 even 2 inner 672.3.l.a.433.15 32
12.11 even 2 504.3.l.h.181.9 32
21.20 even 2 2016.3.l.h.433.31 32
24.5 odd 2 2016.3.l.h.433.32 32
24.11 even 2 504.3.l.h.181.12 32
28.27 even 2 168.3.l.a.13.24 yes 32
56.13 odd 2 inner 672.3.l.a.433.31 32
56.27 even 2 168.3.l.a.13.21 32
84.83 odd 2 504.3.l.h.181.10 32
168.83 odd 2 504.3.l.h.181.11 32
168.125 even 2 2016.3.l.h.433.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.21 32 56.27 even 2
168.3.l.a.13.22 yes 32 8.3 odd 2
168.3.l.a.13.23 yes 32 4.3 odd 2
168.3.l.a.13.24 yes 32 28.27 even 2
504.3.l.h.181.9 32 12.11 even 2
504.3.l.h.181.10 32 84.83 odd 2
504.3.l.h.181.11 32 168.83 odd 2
504.3.l.h.181.12 32 24.11 even 2
672.3.l.a.433.2 32 7.6 odd 2 inner
672.3.l.a.433.15 32 8.5 even 2 inner
672.3.l.a.433.18 32 1.1 even 1 trivial
672.3.l.a.433.31 32 56.13 odd 2 inner
2016.3.l.h.433.1 32 3.2 odd 2
2016.3.l.h.433.2 32 168.125 even 2
2016.3.l.h.433.31 32 21.20 even 2
2016.3.l.h.433.32 32 24.5 odd 2