Properties

Label 504.3.l.h.181.18
Level $504$
Weight $3$
Character 504.181
Analytic conductor $13.733$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(181,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.18
Character \(\chi\) \(=\) 504.181
Dual form 504.3.l.h.181.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.606108 - 1.90595i) q^{2} +(-3.26527 - 2.31042i) q^{4} +5.53884 q^{5} +(-5.95316 + 3.68238i) q^{7} +(-6.38264 + 4.82306i) q^{8} +(3.35714 - 10.5567i) q^{10} +16.1324i q^{11} -14.1524 q^{13} +(3.41016 + 13.5783i) q^{14} +(5.32392 + 15.0883i) q^{16} +7.47600i q^{17} -28.5884 q^{19} +(-18.0858 - 12.7970i) q^{20} +(30.7475 + 9.77800i) q^{22} -8.09656 q^{23} +5.67874 q^{25} +(-8.57789 + 26.9737i) q^{26} +(27.9465 + 1.73036i) q^{28} +5.91522i q^{29} +27.0356i q^{31} +(31.9843 - 1.00199i) q^{32} +(14.2488 + 4.53126i) q^{34} +(-32.9736 + 20.3961i) q^{35} -20.5381i q^{37} +(-17.3277 + 54.4879i) q^{38} +(-35.3524 + 26.7141i) q^{40} -49.1096i q^{41} +42.4974i q^{43} +(37.2727 - 52.6767i) q^{44} +(-4.90739 + 15.4316i) q^{46} -48.6891i q^{47} +(21.8802 - 43.8435i) q^{49} +(3.44193 - 10.8234i) q^{50} +(46.2114 + 32.6980i) q^{52} +77.1902i q^{53} +89.3549i q^{55} +(20.2366 - 52.2157i) q^{56} +(11.2741 + 3.58527i) q^{58} +40.7234 q^{59} +10.9064 q^{61} +(51.5284 + 16.3865i) q^{62} +(17.4762 - 61.5677i) q^{64} -78.3879 q^{65} +116.132i q^{67} +(17.2727 - 24.4111i) q^{68} +(18.8883 + 75.2081i) q^{70} +104.767 q^{71} -82.8647i q^{73} +(-39.1444 - 12.4483i) q^{74} +(93.3487 + 66.0512i) q^{76} +(-59.4057 - 96.0389i) q^{77} -44.7667 q^{79} +(29.4883 + 83.5715i) q^{80} +(-93.6002 - 29.7657i) q^{82} -65.8500 q^{83} +41.4083i q^{85} +(80.9977 + 25.7580i) q^{86} +(-77.8076 - 102.968i) q^{88} +134.189i q^{89} +(84.2515 - 52.1145i) q^{91} +(26.4374 + 18.7065i) q^{92} +(-92.7989 - 29.5109i) q^{94} -158.346 q^{95} +37.4629i q^{97} +(-70.3017 - 68.2764i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 6 q^{4} + 2 q^{8} - 38 q^{14} - 46 q^{16} + 16 q^{22} - 64 q^{23} + 160 q^{25} - 122 q^{28} + 122 q^{32} + 216 q^{44} - 260 q^{46} - 16 q^{49} - 122 q^{50} - 98 q^{56} - 160 q^{58} - 174 q^{64}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.606108 1.90595i 0.303054 0.952973i
\(3\) 0 0
\(4\) −3.26527 2.31042i −0.816316 0.577605i
\(5\) 5.53884 1.10777 0.553884 0.832594i \(-0.313145\pi\)
0.553884 + 0.832594i \(0.313145\pi\)
\(6\) 0 0
\(7\) −5.95316 + 3.68238i −0.850451 + 0.526054i
\(8\) −6.38264 + 4.82306i −0.797830 + 0.602882i
\(9\) 0 0
\(10\) 3.35714 10.5567i 0.335714 1.05567i
\(11\) 16.1324i 1.46658i 0.679914 + 0.733292i \(0.262017\pi\)
−0.679914 + 0.733292i \(0.737983\pi\)
\(12\) 0 0
\(13\) −14.1524 −1.08865 −0.544323 0.838876i \(-0.683214\pi\)
−0.544323 + 0.838876i \(0.683214\pi\)
\(14\) 3.41016 + 13.5783i 0.243583 + 0.969880i
\(15\) 0 0
\(16\) 5.32392 + 15.0883i 0.332745 + 0.943017i
\(17\) 7.47600i 0.439764i 0.975526 + 0.219882i \(0.0705673\pi\)
−0.975526 + 0.219882i \(0.929433\pi\)
\(18\) 0 0
\(19\) −28.5884 −1.50465 −0.752326 0.658791i \(-0.771068\pi\)
−0.752326 + 0.658791i \(0.771068\pi\)
\(20\) −18.0858 12.7970i −0.904289 0.639852i
\(21\) 0 0
\(22\) 30.7475 + 9.77800i 1.39762 + 0.444454i
\(23\) −8.09656 −0.352024 −0.176012 0.984388i \(-0.556320\pi\)
−0.176012 + 0.984388i \(0.556320\pi\)
\(24\) 0 0
\(25\) 5.67874 0.227150
\(26\) −8.57789 + 26.9737i −0.329919 + 1.03745i
\(27\) 0 0
\(28\) 27.9465 + 1.73036i 0.998089 + 0.0617985i
\(29\) 5.91522i 0.203973i 0.994786 + 0.101987i \(0.0325199\pi\)
−0.994786 + 0.101987i \(0.967480\pi\)
\(30\) 0 0
\(31\) 27.0356i 0.872116i 0.899919 + 0.436058i \(0.143626\pi\)
−0.899919 + 0.436058i \(0.856374\pi\)
\(32\) 31.9843 1.00199i 0.999510 0.0313121i
\(33\) 0 0
\(34\) 14.2488 + 4.53126i 0.419084 + 0.133272i
\(35\) −32.9736 + 20.3961i −0.942103 + 0.582745i
\(36\) 0 0
\(37\) 20.5381i 0.555083i −0.960714 0.277541i \(-0.910480\pi\)
0.960714 0.277541i \(-0.0895196\pi\)
\(38\) −17.3277 + 54.4879i −0.455991 + 1.43389i
\(39\) 0 0
\(40\) −35.3524 + 26.7141i −0.883811 + 0.667854i
\(41\) 49.1096i 1.19779i −0.800826 0.598897i \(-0.795606\pi\)
0.800826 0.598897i \(-0.204394\pi\)
\(42\) 0 0
\(43\) 42.4974i 0.988311i 0.869374 + 0.494155i \(0.164523\pi\)
−0.869374 + 0.494155i \(0.835477\pi\)
\(44\) 37.2727 52.6767i 0.847106 1.19720i
\(45\) 0 0
\(46\) −4.90739 + 15.4316i −0.106682 + 0.335470i
\(47\) 48.6891i 1.03594i −0.855399 0.517969i \(-0.826688\pi\)
0.855399 0.517969i \(-0.173312\pi\)
\(48\) 0 0
\(49\) 21.8802 43.8435i 0.446535 0.894766i
\(50\) 3.44193 10.8234i 0.0688386 0.216468i
\(51\) 0 0
\(52\) 46.2114 + 32.6980i 0.888680 + 0.628808i
\(53\) 77.1902i 1.45642i 0.685355 + 0.728209i \(0.259647\pi\)
−0.685355 + 0.728209i \(0.740353\pi\)
\(54\) 0 0
\(55\) 89.3549i 1.62464i
\(56\) 20.2366 52.2157i 0.361367 0.932424i
\(57\) 0 0
\(58\) 11.2741 + 3.58527i 0.194381 + 0.0618149i
\(59\) 40.7234 0.690228 0.345114 0.938561i \(-0.387840\pi\)
0.345114 + 0.938561i \(0.387840\pi\)
\(60\) 0 0
\(61\) 10.9064 0.178794 0.0893969 0.995996i \(-0.471506\pi\)
0.0893969 + 0.995996i \(0.471506\pi\)
\(62\) 51.5284 + 16.3865i 0.831103 + 0.264298i
\(63\) 0 0
\(64\) 17.4762 61.5677i 0.273066 0.961995i
\(65\) −78.3879 −1.20597
\(66\) 0 0
\(67\) 116.132i 1.73331i 0.498909 + 0.866655i \(0.333734\pi\)
−0.498909 + 0.866655i \(0.666266\pi\)
\(68\) 17.2727 24.4111i 0.254010 0.358987i
\(69\) 0 0
\(70\) 18.8883 + 75.2081i 0.269833 + 1.07440i
\(71\) 104.767 1.47560 0.737799 0.675021i \(-0.235865\pi\)
0.737799 + 0.675021i \(0.235865\pi\)
\(72\) 0 0
\(73\) 82.8647i 1.13513i −0.823328 0.567566i \(-0.807885\pi\)
0.823328 0.567566i \(-0.192115\pi\)
\(74\) −39.1444 12.4483i −0.528979 0.168220i
\(75\) 0 0
\(76\) 93.3487 + 66.0512i 1.22827 + 0.869094i
\(77\) −59.4057 96.0389i −0.771502 1.24726i
\(78\) 0 0
\(79\) −44.7667 −0.566667 −0.283333 0.959022i \(-0.591440\pi\)
−0.283333 + 0.959022i \(0.591440\pi\)
\(80\) 29.4883 + 83.5715i 0.368604 + 1.04464i
\(81\) 0 0
\(82\) −93.6002 29.7657i −1.14147 0.362996i
\(83\) −65.8500 −0.793374 −0.396687 0.917954i \(-0.629840\pi\)
−0.396687 + 0.917954i \(0.629840\pi\)
\(84\) 0 0
\(85\) 41.4083i 0.487157i
\(86\) 80.9977 + 25.7580i 0.941834 + 0.299512i
\(87\) 0 0
\(88\) −77.8076 102.968i −0.884178 1.17009i
\(89\) 134.189i 1.50774i 0.657025 + 0.753869i \(0.271815\pi\)
−0.657025 + 0.753869i \(0.728185\pi\)
\(90\) 0 0
\(91\) 84.2515 52.1145i 0.925841 0.572687i
\(92\) 26.4374 + 18.7065i 0.287363 + 0.203331i
\(93\) 0 0
\(94\) −92.7989 29.5109i −0.987222 0.313945i
\(95\) −158.346 −1.66680
\(96\) 0 0
\(97\) 37.4629i 0.386215i 0.981178 + 0.193107i \(0.0618566\pi\)
−0.981178 + 0.193107i \(0.938143\pi\)
\(98\) −70.3017 68.2764i −0.717364 0.696698i
\(99\) 0 0
\(100\) −18.5426 13.1203i −0.185426 0.131203i
\(101\) 140.538 1.39147 0.695734 0.718299i \(-0.255079\pi\)
0.695734 + 0.718299i \(0.255079\pi\)
\(102\) 0 0
\(103\) 198.347i 1.92570i −0.270033 0.962851i \(-0.587035\pi\)
0.270033 0.962851i \(-0.412965\pi\)
\(104\) 90.3297 68.2579i 0.868555 0.656326i
\(105\) 0 0
\(106\) 147.120 + 46.7856i 1.38793 + 0.441374i
\(107\) 21.1655i 0.197809i 0.995097 + 0.0989044i \(0.0315338\pi\)
−0.995097 + 0.0989044i \(0.968466\pi\)
\(108\) 0 0
\(109\) 107.388i 0.985210i −0.870253 0.492605i \(-0.836045\pi\)
0.870253 0.492605i \(-0.163955\pi\)
\(110\) 170.306 + 54.1587i 1.54823 + 0.492352i
\(111\) 0 0
\(112\) −87.2548 70.2182i −0.779061 0.626948i
\(113\) −112.913 −0.999234 −0.499617 0.866247i \(-0.666526\pi\)
−0.499617 + 0.866247i \(0.666526\pi\)
\(114\) 0 0
\(115\) −44.8455 −0.389961
\(116\) 13.6667 19.3148i 0.117816 0.166507i
\(117\) 0 0
\(118\) 24.6828 77.6167i 0.209176 0.657769i
\(119\) −27.5294 44.5058i −0.231340 0.373998i
\(120\) 0 0
\(121\) −139.255 −1.15087
\(122\) 6.61047 20.7871i 0.0541842 0.170386i
\(123\) 0 0
\(124\) 62.4635 88.2784i 0.503738 0.711922i
\(125\) −107.017 −0.856139
\(126\) 0 0
\(127\) 166.247 1.30903 0.654515 0.756049i \(-0.272873\pi\)
0.654515 + 0.756049i \(0.272873\pi\)
\(128\) −106.752 70.6254i −0.834002 0.551761i
\(129\) 0 0
\(130\) −47.5115 + 149.403i −0.365473 + 1.14926i
\(131\) −156.297 −1.19311 −0.596553 0.802574i \(-0.703464\pi\)
−0.596553 + 0.802574i \(0.703464\pi\)
\(132\) 0 0
\(133\) 170.191 105.273i 1.27963 0.791528i
\(134\) 221.341 + 70.3884i 1.65180 + 0.525286i
\(135\) 0 0
\(136\) −36.0572 47.7166i −0.265126 0.350857i
\(137\) −68.1911 −0.497746 −0.248873 0.968536i \(-0.580060\pi\)
−0.248873 + 0.968536i \(0.580060\pi\)
\(138\) 0 0
\(139\) −190.458 −1.37020 −0.685101 0.728448i \(-0.740242\pi\)
−0.685101 + 0.728448i \(0.740242\pi\)
\(140\) 154.791 + 9.58417i 1.10565 + 0.0684584i
\(141\) 0 0
\(142\) 63.5004 199.681i 0.447186 1.40621i
\(143\) 228.313i 1.59659i
\(144\) 0 0
\(145\) 32.7635i 0.225955i
\(146\) −157.936 50.2250i −1.08175 0.344007i
\(147\) 0 0
\(148\) −47.4515 + 67.0622i −0.320619 + 0.453123i
\(149\) 41.6094i 0.279257i −0.990204 0.139629i \(-0.955409\pi\)
0.990204 0.139629i \(-0.0445909\pi\)
\(150\) 0 0
\(151\) −149.930 −0.992914 −0.496457 0.868061i \(-0.665366\pi\)
−0.496457 + 0.868061i \(0.665366\pi\)
\(152\) 182.469 137.883i 1.20046 0.907128i
\(153\) 0 0
\(154\) −219.051 + 55.0141i −1.42241 + 0.357234i
\(155\) 149.746i 0.966102i
\(156\) 0 0
\(157\) −81.7752 −0.520861 −0.260431 0.965493i \(-0.583865\pi\)
−0.260431 + 0.965493i \(0.583865\pi\)
\(158\) −27.1334 + 85.3229i −0.171731 + 0.540018i
\(159\) 0 0
\(160\) 177.156 5.54985i 1.10722 0.0346866i
\(161\) 48.2001 29.8146i 0.299380 0.185184i
\(162\) 0 0
\(163\) 275.383i 1.68946i 0.535190 + 0.844732i \(0.320240\pi\)
−0.535190 + 0.844732i \(0.679760\pi\)
\(164\) −113.464 + 160.356i −0.691852 + 0.977779i
\(165\) 0 0
\(166\) −39.9122 + 125.507i −0.240435 + 0.756064i
\(167\) 263.827i 1.57980i 0.613233 + 0.789902i \(0.289868\pi\)
−0.613233 + 0.789902i \(0.710132\pi\)
\(168\) 0 0
\(169\) 31.2906 0.185152
\(170\) 78.9221 + 25.0979i 0.464248 + 0.147635i
\(171\) 0 0
\(172\) 98.1867 138.765i 0.570853 0.806774i
\(173\) 54.6502 0.315897 0.157949 0.987447i \(-0.449512\pi\)
0.157949 + 0.987447i \(0.449512\pi\)
\(174\) 0 0
\(175\) −33.8064 + 20.9113i −0.193180 + 0.119493i
\(176\) −243.410 + 85.8878i −1.38301 + 0.487999i
\(177\) 0 0
\(178\) 255.756 + 81.3328i 1.43683 + 0.456926i
\(179\) 105.555i 0.589691i 0.955545 + 0.294845i \(0.0952681\pi\)
−0.955545 + 0.294845i \(0.904732\pi\)
\(180\) 0 0
\(181\) 135.753 0.750018 0.375009 0.927021i \(-0.377640\pi\)
0.375009 + 0.927021i \(0.377640\pi\)
\(182\) −48.2619 192.166i −0.265175 1.05586i
\(183\) 0 0
\(184\) 51.6774 39.0502i 0.280856 0.212229i
\(185\) 113.757i 0.614903i
\(186\) 0 0
\(187\) −120.606 −0.644952
\(188\) −112.492 + 158.983i −0.598363 + 0.845654i
\(189\) 0 0
\(190\) −95.9751 + 301.800i −0.505132 + 1.58842i
\(191\) −21.5720 −0.112943 −0.0564713 0.998404i \(-0.517985\pi\)
−0.0564713 + 0.998404i \(0.517985\pi\)
\(192\) 0 0
\(193\) −318.072 −1.64804 −0.824021 0.566560i \(-0.808274\pi\)
−0.824021 + 0.566560i \(0.808274\pi\)
\(194\) 71.4022 + 22.7065i 0.368053 + 0.117044i
\(195\) 0 0
\(196\) −172.742 + 92.6084i −0.881335 + 0.472492i
\(197\) 0.244515i 0.00124119i 1.00000 0.000620597i \(0.000197542\pi\)
−1.00000 0.000620597i \(0.999802\pi\)
\(198\) 0 0
\(199\) 236.282i 1.18735i 0.804706 + 0.593674i \(0.202323\pi\)
−0.804706 + 0.593674i \(0.797677\pi\)
\(200\) −36.2454 + 27.3889i −0.181227 + 0.136944i
\(201\) 0 0
\(202\) 85.1814 267.859i 0.421690 1.32603i
\(203\) −21.7821 35.2143i −0.107301 0.173469i
\(204\) 0 0
\(205\) 272.010i 1.32688i
\(206\) −378.039 120.220i −1.83514 0.583592i
\(207\) 0 0
\(208\) −75.3463 213.535i −0.362242 1.02661i
\(209\) 461.200i 2.20670i
\(210\) 0 0
\(211\) 100.465i 0.476140i 0.971248 + 0.238070i \(0.0765147\pi\)
−0.971248 + 0.238070i \(0.923485\pi\)
\(212\) 178.342 252.046i 0.841234 1.18890i
\(213\) 0 0
\(214\) 40.3404 + 12.8286i 0.188506 + 0.0599467i
\(215\) 235.386i 1.09482i
\(216\) 0 0
\(217\) −99.5552 160.947i −0.458780 0.741692i
\(218\) −204.676 65.0887i −0.938879 0.298572i
\(219\) 0 0
\(220\) 206.447 291.768i 0.938397 1.32622i
\(221\) 105.803i 0.478748i
\(222\) 0 0
\(223\) 378.232i 1.69611i −0.529912 0.848053i \(-0.677775\pi\)
0.529912 0.848053i \(-0.322225\pi\)
\(224\) −186.718 + 123.743i −0.833562 + 0.552425i
\(225\) 0 0
\(226\) −68.4377 + 215.207i −0.302822 + 0.952243i
\(227\) 56.6476 0.249549 0.124774 0.992185i \(-0.460179\pi\)
0.124774 + 0.992185i \(0.460179\pi\)
\(228\) 0 0
\(229\) 296.565 1.29504 0.647522 0.762047i \(-0.275805\pi\)
0.647522 + 0.762047i \(0.275805\pi\)
\(230\) −27.1813 + 85.4732i −0.118179 + 0.371623i
\(231\) 0 0
\(232\) −28.5295 37.7548i −0.122972 0.162736i
\(233\) 112.373 0.482289 0.241145 0.970489i \(-0.422477\pi\)
0.241145 + 0.970489i \(0.422477\pi\)
\(234\) 0 0
\(235\) 269.681i 1.14758i
\(236\) −132.973 94.0883i −0.563444 0.398679i
\(237\) 0 0
\(238\) −101.511 + 25.4943i −0.426519 + 0.107119i
\(239\) 94.4921 0.395364 0.197682 0.980266i \(-0.436659\pi\)
0.197682 + 0.980266i \(0.436659\pi\)
\(240\) 0 0
\(241\) 87.7294i 0.364022i 0.983296 + 0.182011i \(0.0582607\pi\)
−0.983296 + 0.182011i \(0.941739\pi\)
\(242\) −84.4037 + 265.413i −0.348776 + 1.09675i
\(243\) 0 0
\(244\) −35.6124 25.1984i −0.145952 0.103272i
\(245\) 121.191 242.842i 0.494657 0.991193i
\(246\) 0 0
\(247\) 404.594 1.63803
\(248\) −130.394 172.558i −0.525783 0.695800i
\(249\) 0 0
\(250\) −64.8641 + 203.969i −0.259456 + 0.815878i
\(251\) 344.939 1.37426 0.687130 0.726534i \(-0.258870\pi\)
0.687130 + 0.726534i \(0.258870\pi\)
\(252\) 0 0
\(253\) 130.617i 0.516273i
\(254\) 100.764 316.858i 0.396707 1.24747i
\(255\) 0 0
\(256\) −199.312 + 160.658i −0.778561 + 0.627568i
\(257\) 75.7961i 0.294927i 0.989068 + 0.147463i \(0.0471108\pi\)
−0.989068 + 0.147463i \(0.952889\pi\)
\(258\) 0 0
\(259\) 75.6289 + 122.266i 0.292003 + 0.472071i
\(260\) 255.957 + 181.109i 0.984451 + 0.696573i
\(261\) 0 0
\(262\) −94.7328 + 297.894i −0.361576 + 1.13700i
\(263\) 19.8005 0.0752872 0.0376436 0.999291i \(-0.488015\pi\)
0.0376436 + 0.999291i \(0.488015\pi\)
\(264\) 0 0
\(265\) 427.544i 1.61337i
\(266\) −97.4908 388.182i −0.366507 1.45933i
\(267\) 0 0
\(268\) 268.313 379.201i 1.00117 1.41493i
\(269\) 185.601 0.689966 0.344983 0.938609i \(-0.387885\pi\)
0.344983 + 0.938609i \(0.387885\pi\)
\(270\) 0 0
\(271\) 138.260i 0.510185i 0.966917 + 0.255093i \(0.0821059\pi\)
−0.966917 + 0.255093i \(0.917894\pi\)
\(272\) −112.800 + 39.8016i −0.414705 + 0.146329i
\(273\) 0 0
\(274\) −41.3312 + 129.969i −0.150844 + 0.474338i
\(275\) 91.6119i 0.333134i
\(276\) 0 0
\(277\) 110.650i 0.399457i 0.979851 + 0.199728i \(0.0640060\pi\)
−0.979851 + 0.199728i \(0.935994\pi\)
\(278\) −115.438 + 363.003i −0.415245 + 1.30577i
\(279\) 0 0
\(280\) 112.087 289.214i 0.400311 1.03291i
\(281\) 531.686 1.89212 0.946061 0.323989i \(-0.105024\pi\)
0.946061 + 0.323989i \(0.105024\pi\)
\(282\) 0 0
\(283\) −439.139 −1.55173 −0.775864 0.630900i \(-0.782686\pi\)
−0.775864 + 0.630900i \(0.782686\pi\)
\(284\) −342.094 242.057i −1.20455 0.852313i
\(285\) 0 0
\(286\) −435.152 138.382i −1.52151 0.483854i
\(287\) 180.840 + 292.357i 0.630104 + 1.01867i
\(288\) 0 0
\(289\) 233.109 0.806607
\(290\) 62.4454 + 19.8582i 0.215329 + 0.0684766i
\(291\) 0 0
\(292\) −191.452 + 270.575i −0.655658 + 0.926627i
\(293\) 122.938 0.419585 0.209793 0.977746i \(-0.432721\pi\)
0.209793 + 0.977746i \(0.432721\pi\)
\(294\) 0 0
\(295\) 225.561 0.764612
\(296\) 99.0563 + 131.087i 0.334650 + 0.442862i
\(297\) 0 0
\(298\) −79.3052 25.2198i −0.266125 0.0846301i
\(299\) 114.586 0.383230
\(300\) 0 0
\(301\) −156.491 252.994i −0.519905 0.840510i
\(302\) −90.8738 + 285.759i −0.300907 + 0.946221i
\(303\) 0 0
\(304\) −152.202 431.349i −0.500666 1.41891i
\(305\) 60.4089 0.198062
\(306\) 0 0
\(307\) 5.82104 0.0189611 0.00948053 0.999955i \(-0.496982\pi\)
0.00948053 + 0.999955i \(0.496982\pi\)
\(308\) −27.9149 + 450.845i −0.0906327 + 1.46378i
\(309\) 0 0
\(310\) 285.407 + 90.7621i 0.920669 + 0.292781i
\(311\) 208.552i 0.670585i −0.942114 0.335293i \(-0.891165\pi\)
0.942114 0.335293i \(-0.108835\pi\)
\(312\) 0 0
\(313\) 25.0482i 0.0800261i 0.999199 + 0.0400130i \(0.0127399\pi\)
−0.999199 + 0.0400130i \(0.987260\pi\)
\(314\) −49.5646 + 155.859i −0.157849 + 0.496367i
\(315\) 0 0
\(316\) 146.175 + 103.430i 0.462579 + 0.327309i
\(317\) 172.733i 0.544899i 0.962170 + 0.272449i \(0.0878338\pi\)
−0.962170 + 0.272449i \(0.912166\pi\)
\(318\) 0 0
\(319\) −95.4269 −0.299144
\(320\) 96.7979 341.014i 0.302494 1.06567i
\(321\) 0 0
\(322\) −27.6105 109.938i −0.0857470 0.341421i
\(323\) 213.727i 0.661692i
\(324\) 0 0
\(325\) −80.3678 −0.247286
\(326\) 524.865 + 166.912i 1.61001 + 0.511999i
\(327\) 0 0
\(328\) 236.858 + 313.449i 0.722129 + 0.955636i
\(329\) 179.292 + 289.854i 0.544959 + 0.881015i
\(330\) 0 0
\(331\) 285.098i 0.861323i 0.902513 + 0.430662i \(0.141720\pi\)
−0.902513 + 0.430662i \(0.858280\pi\)
\(332\) 215.018 + 152.141i 0.647644 + 0.458257i
\(333\) 0 0
\(334\) 502.841 + 159.908i 1.50551 + 0.478766i
\(335\) 643.235i 1.92010i
\(336\) 0 0
\(337\) 507.150 1.50490 0.752448 0.658652i \(-0.228873\pi\)
0.752448 + 0.658652i \(0.228873\pi\)
\(338\) 18.9655 59.6382i 0.0561109 0.176445i
\(339\) 0 0
\(340\) 95.6706 135.209i 0.281384 0.397674i
\(341\) −436.150 −1.27903
\(342\) 0 0
\(343\) 31.1921 + 341.579i 0.0909391 + 0.995856i
\(344\) −204.967 271.245i −0.595835 0.788504i
\(345\) 0 0
\(346\) 33.1239 104.160i 0.0957339 0.301042i
\(347\) 4.14103i 0.0119338i −0.999982 0.00596691i \(-0.998101\pi\)
0.999982 0.00596691i \(-0.00189934\pi\)
\(348\) 0 0
\(349\) −231.206 −0.662481 −0.331240 0.943546i \(-0.607467\pi\)
−0.331240 + 0.943546i \(0.607467\pi\)
\(350\) 19.3654 + 77.1078i 0.0553297 + 0.220308i
\(351\) 0 0
\(352\) 16.1645 + 515.985i 0.0459219 + 1.46587i
\(353\) 543.259i 1.53898i 0.638660 + 0.769489i \(0.279489\pi\)
−0.638660 + 0.769489i \(0.720511\pi\)
\(354\) 0 0
\(355\) 580.290 1.63462
\(356\) 310.032 438.162i 0.870877 1.23079i
\(357\) 0 0
\(358\) 201.182 + 63.9775i 0.561960 + 0.178708i
\(359\) −270.411 −0.753235 −0.376618 0.926369i \(-0.622913\pi\)
−0.376618 + 0.926369i \(0.622913\pi\)
\(360\) 0 0
\(361\) 456.296 1.26398
\(362\) 82.2811 258.738i 0.227296 0.714747i
\(363\) 0 0
\(364\) −395.510 24.4887i −1.08657 0.0672767i
\(365\) 458.974i 1.25746i
\(366\) 0 0
\(367\) 192.315i 0.524019i 0.965065 + 0.262010i \(0.0843852\pi\)
−0.965065 + 0.262010i \(0.915615\pi\)
\(368\) −43.1055 122.163i −0.117134 0.331965i
\(369\) 0 0
\(370\) −216.815 68.9491i −0.585986 0.186349i
\(371\) −284.243 459.525i −0.766154 1.23861i
\(372\) 0 0
\(373\) 73.8655i 0.198031i 0.995086 + 0.0990155i \(0.0315693\pi\)
−0.995086 + 0.0990155i \(0.968431\pi\)
\(374\) −73.1003 + 229.869i −0.195455 + 0.614622i
\(375\) 0 0
\(376\) 234.830 + 310.765i 0.624549 + 0.826503i
\(377\) 83.7147i 0.222055i
\(378\) 0 0
\(379\) 10.9952i 0.0290111i 0.999895 + 0.0145056i \(0.00461742\pi\)
−0.999895 + 0.0145056i \(0.995383\pi\)
\(380\) 517.043 + 365.847i 1.36064 + 0.962755i
\(381\) 0 0
\(382\) −13.0750 + 41.1152i −0.0342277 + 0.107631i
\(383\) 557.586i 1.45584i −0.685663 0.727919i \(-0.740488\pi\)
0.685663 0.727919i \(-0.259512\pi\)
\(384\) 0 0
\(385\) −329.038 531.944i −0.854645 1.38167i
\(386\) −192.786 + 606.228i −0.499446 + 1.57054i
\(387\) 0 0
\(388\) 86.5549 122.326i 0.223080 0.315274i
\(389\) 41.0393i 0.105499i −0.998608 0.0527497i \(-0.983201\pi\)
0.998608 0.0527497i \(-0.0167986\pi\)
\(390\) 0 0
\(391\) 60.5299i 0.154808i
\(392\) 71.8065 + 385.367i 0.183180 + 0.983079i
\(393\) 0 0
\(394\) 0.466033 + 0.148203i 0.00118283 + 0.000376149i
\(395\) −247.955 −0.627735
\(396\) 0 0
\(397\) 228.169 0.574733 0.287366 0.957821i \(-0.407220\pi\)
0.287366 + 0.957821i \(0.407220\pi\)
\(398\) 450.341 + 143.212i 1.13151 + 0.359830i
\(399\) 0 0
\(400\) 30.2332 + 85.6823i 0.0755829 + 0.214206i
\(401\) −582.508 −1.45264 −0.726319 0.687357i \(-0.758771\pi\)
−0.726319 + 0.687357i \(0.758771\pi\)
\(402\) 0 0
\(403\) 382.619i 0.949426i
\(404\) −458.895 324.702i −1.13588 0.803719i
\(405\) 0 0
\(406\) −80.3188 + 20.1718i −0.197830 + 0.0496843i
\(407\) 331.329 0.814076
\(408\) 0 0
\(409\) 4.68899i 0.0114645i 0.999984 + 0.00573226i \(0.00182465\pi\)
−0.999984 + 0.00573226i \(0.998175\pi\)
\(410\) −518.437 164.867i −1.26448 0.402116i
\(411\) 0 0
\(412\) −458.265 + 647.657i −1.11229 + 1.57198i
\(413\) −242.433 + 149.959i −0.587005 + 0.363097i
\(414\) 0 0
\(415\) −364.733 −0.878874
\(416\) −452.655 + 14.1806i −1.08811 + 0.0340879i
\(417\) 0 0
\(418\) −879.023 279.537i −2.10293 0.668749i
\(419\) 105.256 0.251208 0.125604 0.992080i \(-0.459913\pi\)
0.125604 + 0.992080i \(0.459913\pi\)
\(420\) 0 0
\(421\) 619.528i 1.47156i 0.677220 + 0.735781i \(0.263185\pi\)
−0.677220 + 0.735781i \(0.736815\pi\)
\(422\) 191.482 + 60.8929i 0.453748 + 0.144296i
\(423\) 0 0
\(424\) −372.293 492.677i −0.878049 1.16197i
\(425\) 42.4542i 0.0998923i
\(426\) 0 0
\(427\) −64.9277 + 40.1616i −0.152055 + 0.0940552i
\(428\) 48.9013 69.1111i 0.114255 0.161475i
\(429\) 0 0
\(430\) 448.633 + 142.669i 1.04333 + 0.331789i
\(431\) 438.654 1.01776 0.508879 0.860838i \(-0.330060\pi\)
0.508879 + 0.860838i \(0.330060\pi\)
\(432\) 0 0
\(433\) 43.0393i 0.0993979i −0.998764 0.0496990i \(-0.984174\pi\)
0.998764 0.0496990i \(-0.0158262\pi\)
\(434\) −367.098 + 92.1956i −0.845848 + 0.212432i
\(435\) 0 0
\(436\) −248.111 + 350.650i −0.569062 + 0.804243i
\(437\) 231.468 0.529674
\(438\) 0 0
\(439\) 206.214i 0.469736i −0.972027 0.234868i \(-0.924534\pi\)
0.972027 0.234868i \(-0.0754658\pi\)
\(440\) −430.964 570.320i −0.979464 1.29618i
\(441\) 0 0
\(442\) −201.656 64.1283i −0.456234 0.145087i
\(443\) 611.291i 1.37989i 0.723862 + 0.689945i \(0.242365\pi\)
−0.723862 + 0.689945i \(0.757635\pi\)
\(444\) 0 0
\(445\) 743.249i 1.67022i
\(446\) −720.889 229.249i −1.61634 0.514012i
\(447\) 0 0
\(448\) 122.677 + 430.876i 0.273832 + 0.961778i
\(449\) 597.695 1.33117 0.665585 0.746322i \(-0.268182\pi\)
0.665585 + 0.746322i \(0.268182\pi\)
\(450\) 0 0
\(451\) 792.257 1.75667
\(452\) 368.692 + 260.877i 0.815691 + 0.577162i
\(453\) 0 0
\(454\) 34.3345 107.967i 0.0756268 0.237813i
\(455\) 466.656 288.654i 1.02562 0.634404i
\(456\) 0 0
\(457\) −350.459 −0.766868 −0.383434 0.923568i \(-0.625259\pi\)
−0.383434 + 0.923568i \(0.625259\pi\)
\(458\) 179.750 565.237i 0.392468 1.23414i
\(459\) 0 0
\(460\) 146.433 + 103.612i 0.318332 + 0.225244i
\(461\) −182.865 −0.396671 −0.198335 0.980134i \(-0.563553\pi\)
−0.198335 + 0.980134i \(0.563553\pi\)
\(462\) 0 0
\(463\) 62.8699 0.135788 0.0678941 0.997693i \(-0.478372\pi\)
0.0678941 + 0.997693i \(0.478372\pi\)
\(464\) −89.2505 + 31.4922i −0.192350 + 0.0678711i
\(465\) 0 0
\(466\) 68.1104 214.178i 0.146160 0.459609i
\(467\) −645.253 −1.38170 −0.690849 0.722999i \(-0.742763\pi\)
−0.690849 + 0.722999i \(0.742763\pi\)
\(468\) 0 0
\(469\) −427.641 691.350i −0.911814 1.47409i
\(470\) −513.998 163.456i −1.09361 0.347779i
\(471\) 0 0
\(472\) −259.923 + 196.412i −0.550685 + 0.416126i
\(473\) −685.586 −1.44944
\(474\) 0 0
\(475\) −162.346 −0.341781
\(476\) −12.9361 + 208.928i −0.0271768 + 0.438924i
\(477\) 0 0
\(478\) 57.2724 180.097i 0.119817 0.376772i
\(479\) 437.654i 0.913684i −0.889548 0.456842i \(-0.848981\pi\)
0.889548 0.456842i \(-0.151019\pi\)
\(480\) 0 0
\(481\) 290.663i 0.604289i
\(482\) 167.208 + 53.1735i 0.346904 + 0.110318i
\(483\) 0 0
\(484\) 454.705 + 321.738i 0.939474 + 0.664748i
\(485\) 207.501i 0.427837i
\(486\) 0 0
\(487\) −14.7391 −0.0302650 −0.0151325 0.999885i \(-0.504817\pi\)
−0.0151325 + 0.999885i \(0.504817\pi\)
\(488\) −69.6118 + 52.6023i −0.142647 + 0.107792i
\(489\) 0 0
\(490\) −389.390 378.172i −0.794673 0.771780i
\(491\) 120.149i 0.244702i −0.992487 0.122351i \(-0.960957\pi\)
0.992487 0.122351i \(-0.0390434\pi\)
\(492\) 0 0
\(493\) −44.2222 −0.0897002
\(494\) 245.228 771.135i 0.496413 1.56100i
\(495\) 0 0
\(496\) −407.920 + 143.935i −0.822420 + 0.290192i
\(497\) −623.697 + 385.793i −1.25492 + 0.776244i
\(498\) 0 0
\(499\) 4.70185i 0.00942254i −0.999989 0.00471127i \(-0.998500\pi\)
0.999989 0.00471127i \(-0.00149965\pi\)
\(500\) 349.440 + 247.255i 0.698880 + 0.494510i
\(501\) 0 0
\(502\) 209.071 657.436i 0.416475 1.30963i
\(503\) 112.427i 0.223512i −0.993736 0.111756i \(-0.964352\pi\)
0.993736 0.111756i \(-0.0356475\pi\)
\(504\) 0 0
\(505\) 778.419 1.54142
\(506\) −248.949 79.1681i −0.491995 0.156459i
\(507\) 0 0
\(508\) −542.840 384.100i −1.06858 0.756102i
\(509\) 764.966 1.50288 0.751440 0.659801i \(-0.229360\pi\)
0.751440 + 0.659801i \(0.229360\pi\)
\(510\) 0 0
\(511\) 305.139 + 493.307i 0.597141 + 0.965375i
\(512\) 185.400 + 477.253i 0.362110 + 0.932135i
\(513\) 0 0
\(514\) 144.463 + 45.9406i 0.281057 + 0.0893787i
\(515\) 1098.61i 2.13323i
\(516\) 0 0
\(517\) 785.474 1.51929
\(518\) 278.872 70.0380i 0.538364 0.135208i
\(519\) 0 0
\(520\) 500.322 378.069i 0.962157 0.727057i
\(521\) 993.978i 1.90783i 0.300083 + 0.953913i \(0.402986\pi\)
−0.300083 + 0.953913i \(0.597014\pi\)
\(522\) 0 0
\(523\) −460.338 −0.880188 −0.440094 0.897952i \(-0.645055\pi\)
−0.440094 + 0.897952i \(0.645055\pi\)
\(524\) 510.351 + 361.111i 0.973952 + 0.689144i
\(525\) 0 0
\(526\) 12.0013 37.7388i 0.0228161 0.0717467i
\(527\) −202.118 −0.383525
\(528\) 0 0
\(529\) −463.446 −0.876079
\(530\) 814.876 + 259.138i 1.53750 + 0.488939i
\(531\) 0 0
\(532\) −798.945 49.4681i −1.50178 0.0929852i
\(533\) 695.019i 1.30397i
\(534\) 0 0
\(535\) 117.232i 0.219126i
\(536\) −560.110 741.227i −1.04498 1.38289i
\(537\) 0 0
\(538\) 112.494 353.745i 0.209097 0.657519i
\(539\) 707.303 + 352.981i 1.31225 + 0.654881i
\(540\) 0 0
\(541\) 411.334i 0.760321i 0.924921 + 0.380160i \(0.124131\pi\)
−0.924921 + 0.380160i \(0.875869\pi\)
\(542\) 263.516 + 83.8006i 0.486193 + 0.154614i
\(543\) 0 0
\(544\) 7.49086 + 239.115i 0.0137700 + 0.439549i
\(545\) 594.804i 1.09138i
\(546\) 0 0
\(547\) 30.2891i 0.0553732i 0.999617 + 0.0276866i \(0.00881404\pi\)
−0.999617 + 0.0276866i \(0.991186\pi\)
\(548\) 222.662 + 157.550i 0.406318 + 0.287500i
\(549\) 0 0
\(550\) 174.607 + 55.5267i 0.317468 + 0.100958i
\(551\) 169.107i 0.306909i
\(552\) 0 0
\(553\) 266.503 164.848i 0.481922 0.298097i
\(554\) 210.892 + 67.0656i 0.380672 + 0.121057i
\(555\) 0 0
\(556\) 621.896 + 440.038i 1.11852 + 0.791435i
\(557\) 763.819i 1.37131i 0.727927 + 0.685655i \(0.240484\pi\)
−0.727927 + 0.685655i \(0.759516\pi\)
\(558\) 0 0
\(559\) 601.440i 1.07592i
\(560\) −483.291 388.927i −0.863019 0.694513i
\(561\) 0 0
\(562\) 322.259 1013.37i 0.573415 1.80314i
\(563\) −40.3472 −0.0716646 −0.0358323 0.999358i \(-0.511408\pi\)
−0.0358323 + 0.999358i \(0.511408\pi\)
\(564\) 0 0
\(565\) −625.409 −1.10692
\(566\) −266.166 + 836.976i −0.470258 + 1.47876i
\(567\) 0 0
\(568\) −668.693 + 505.299i −1.17728 + 0.889612i
\(569\) −186.637 −0.328008 −0.164004 0.986460i \(-0.552441\pi\)
−0.164004 + 0.986460i \(0.552441\pi\)
\(570\) 0 0
\(571\) 901.865i 1.57945i −0.613462 0.789724i \(-0.710224\pi\)
0.613462 0.789724i \(-0.289776\pi\)
\(572\) −527.498 + 745.502i −0.922200 + 1.30332i
\(573\) 0 0
\(574\) 666.826 167.471i 1.16172 0.291762i
\(575\) −45.9783 −0.0799622
\(576\) 0 0
\(577\) 742.756i 1.28727i −0.765332 0.643636i \(-0.777425\pi\)
0.765332 0.643636i \(-0.222575\pi\)
\(578\) 141.290 444.294i 0.244446 0.768675i
\(579\) 0 0
\(580\) 75.6974 106.981i 0.130513 0.184451i
\(581\) 392.016 242.485i 0.674726 0.417357i
\(582\) 0 0
\(583\) −1245.27 −2.13596
\(584\) 399.661 + 528.896i 0.684351 + 0.905643i
\(585\) 0 0
\(586\) 74.5140 234.314i 0.127157 0.399854i
\(587\) 514.288 0.876130 0.438065 0.898943i \(-0.355664\pi\)
0.438065 + 0.898943i \(0.355664\pi\)
\(588\) 0 0
\(589\) 772.904i 1.31223i
\(590\) 136.714 429.907i 0.231719 0.728655i
\(591\) 0 0
\(592\) 309.884 109.343i 0.523452 0.184701i
\(593\) 466.087i 0.785982i −0.919542 0.392991i \(-0.871440\pi\)
0.919542 0.392991i \(-0.128560\pi\)
\(594\) 0 0
\(595\) −152.481 246.510i −0.256271 0.414303i
\(596\) −96.1351 + 135.866i −0.161300 + 0.227962i
\(597\) 0 0
\(598\) 69.4514 218.394i 0.116139 0.365208i
\(599\) −947.796 −1.58230 −0.791149 0.611624i \(-0.790517\pi\)
−0.791149 + 0.611624i \(0.790517\pi\)
\(600\) 0 0
\(601\) 153.107i 0.254754i −0.991854 0.127377i \(-0.959344\pi\)
0.991854 0.127377i \(-0.0406559\pi\)
\(602\) −577.043 + 144.923i −0.958543 + 0.240735i
\(603\) 0 0
\(604\) 489.561 + 346.401i 0.810532 + 0.573512i
\(605\) −771.312 −1.27490
\(606\) 0 0
\(607\) 298.930i 0.492471i −0.969210 0.246236i \(-0.920806\pi\)
0.969210 0.246236i \(-0.0791937\pi\)
\(608\) −914.380 + 28.6452i −1.50391 + 0.0471139i
\(609\) 0 0
\(610\) 36.6143 115.136i 0.0600235 0.188748i
\(611\) 689.068i 1.12777i
\(612\) 0 0
\(613\) 291.497i 0.475525i −0.971323 0.237762i \(-0.923586\pi\)
0.971323 0.237762i \(-0.0764140\pi\)
\(614\) 3.52818 11.0946i 0.00574622 0.0180694i
\(615\) 0 0
\(616\) 842.366 + 326.465i 1.36748 + 0.529975i
\(617\) 359.433 0.582549 0.291275 0.956639i \(-0.405921\pi\)
0.291275 + 0.956639i \(0.405921\pi\)
\(618\) 0 0
\(619\) −57.2368 −0.0924666 −0.0462333 0.998931i \(-0.514722\pi\)
−0.0462333 + 0.998931i \(0.514722\pi\)
\(620\) 345.976 488.960i 0.558025 0.788645i
\(621\) 0 0
\(622\) −397.489 126.405i −0.639050 0.203224i
\(623\) −494.133 798.846i −0.793151 1.28226i
\(624\) 0 0
\(625\) −734.720 −1.17555
\(626\) 47.7405 + 15.1819i 0.0762627 + 0.0242522i
\(627\) 0 0
\(628\) 267.018 + 188.935i 0.425188 + 0.300852i
\(629\) 153.542 0.244106
\(630\) 0 0
\(631\) −55.9357 −0.0886461 −0.0443230 0.999017i \(-0.514113\pi\)
−0.0443230 + 0.999017i \(0.514113\pi\)
\(632\) 285.729 215.912i 0.452104 0.341633i
\(633\) 0 0
\(634\) 329.220 + 104.695i 0.519274 + 0.165134i
\(635\) 920.815 1.45010
\(636\) 0 0
\(637\) −309.658 + 620.492i −0.486119 + 0.974084i
\(638\) −57.8390 + 181.879i −0.0906568 + 0.285076i
\(639\) 0 0
\(640\) −591.284 391.183i −0.923881 0.611223i
\(641\) 459.772 0.717273 0.358636 0.933477i \(-0.383242\pi\)
0.358636 + 0.933477i \(0.383242\pi\)
\(642\) 0 0
\(643\) 712.301 1.10778 0.553888 0.832591i \(-0.313143\pi\)
0.553888 + 0.832591i \(0.313143\pi\)
\(644\) −226.270 14.0099i −0.351352 0.0217546i
\(645\) 0 0
\(646\) −407.352 129.541i −0.630575 0.200529i
\(647\) 10.9490i 0.0169228i 0.999964 + 0.00846139i \(0.00269338\pi\)
−0.999964 + 0.00846139i \(0.997307\pi\)
\(648\) 0 0
\(649\) 656.968i 1.01228i
\(650\) −48.7116 + 153.177i −0.0749409 + 0.235657i
\(651\) 0 0
\(652\) 636.249 899.197i 0.975843 1.37914i
\(653\) 257.268i 0.393979i −0.980406 0.196989i \(-0.936884\pi\)
0.980406 0.196989i \(-0.0631164\pi\)
\(654\) 0 0
\(655\) −865.704 −1.32168
\(656\) 740.978 261.455i 1.12954 0.398560i
\(657\) 0 0
\(658\) 661.116 166.037i 1.00474 0.252337i
\(659\) 1016.92i 1.54312i −0.636157 0.771560i \(-0.719477\pi\)
0.636157 0.771560i \(-0.280523\pi\)
\(660\) 0 0
\(661\) −740.204 −1.11982 −0.559912 0.828552i \(-0.689165\pi\)
−0.559912 + 0.828552i \(0.689165\pi\)
\(662\) 543.382 + 172.800i 0.820818 + 0.261027i
\(663\) 0 0
\(664\) 420.297 317.599i 0.632978 0.478311i
\(665\) 942.662 583.091i 1.41754 0.876829i
\(666\) 0 0
\(667\) 47.8930i 0.0718036i
\(668\) 609.552 861.466i 0.912502 1.28962i
\(669\) 0 0
\(670\) 1225.97 + 389.870i 1.82981 + 0.581895i
\(671\) 175.947i 0.262216i
\(672\) 0 0
\(673\) −1037.02 −1.54089 −0.770445 0.637506i \(-0.779966\pi\)
−0.770445 + 0.637506i \(0.779966\pi\)
\(674\) 307.388 966.601i 0.456065 1.43413i
\(675\) 0 0
\(676\) −102.172 72.2945i −0.151142 0.106944i
\(677\) −809.104 −1.19513 −0.597566 0.801820i \(-0.703865\pi\)
−0.597566 + 0.801820i \(0.703865\pi\)
\(678\) 0 0
\(679\) −137.952 223.022i −0.203170 0.328457i
\(680\) −199.715 264.295i −0.293698 0.388668i
\(681\) 0 0
\(682\) −264.354 + 831.278i −0.387616 + 1.21888i
\(683\) 306.279i 0.448432i −0.974539 0.224216i \(-0.928018\pi\)
0.974539 0.224216i \(-0.0719822\pi\)
\(684\) 0 0
\(685\) −377.700 −0.551386
\(686\) 669.937 + 147.583i 0.976584 + 0.215136i
\(687\) 0 0
\(688\) −641.212 + 226.253i −0.931993 + 0.328856i
\(689\) 1092.43i 1.58553i
\(690\) 0 0
\(691\) −77.2654 −0.111817 −0.0559084 0.998436i \(-0.517805\pi\)
−0.0559084 + 0.998436i \(0.517805\pi\)
\(692\) −178.447 126.265i −0.257872 0.182464i
\(693\) 0 0
\(694\) −7.89259 2.50991i −0.0113726 0.00361659i
\(695\) −1054.92 −1.51787
\(696\) 0 0
\(697\) 367.143 0.526747
\(698\) −140.136 + 440.666i −0.200767 + 0.631326i
\(699\) 0 0
\(700\) 158.701 + 9.82625i 0.226715 + 0.0140375i
\(701\) 57.3914i 0.0818708i −0.999162 0.0409354i \(-0.986966\pi\)
0.999162 0.0409354i \(-0.0130338\pi\)
\(702\) 0 0
\(703\) 587.150i 0.835206i
\(704\) 993.237 + 281.934i 1.41085 + 0.400474i
\(705\) 0 0
\(706\) 1035.42 + 329.274i 1.46660 + 0.466393i
\(707\) −836.647 + 517.515i −1.18338 + 0.731987i
\(708\) 0 0
\(709\) 759.488i 1.07121i 0.844468 + 0.535605i \(0.179916\pi\)
−0.844468 + 0.535605i \(0.820084\pi\)
\(710\) 351.718 1106.00i 0.495378 1.55775i
\(711\) 0 0
\(712\) −647.200 856.478i −0.908988 1.20292i
\(713\) 218.895i 0.307006i
\(714\) 0 0
\(715\) 1264.59i 1.76865i
\(716\) 243.876 344.664i 0.340608 0.481374i
\(717\) 0 0
\(718\) −163.899 + 515.390i −0.228271 + 0.717813i
\(719\) 1249.77i 1.73821i 0.494632 + 0.869103i \(0.335303\pi\)
−0.494632 + 0.869103i \(0.664697\pi\)
\(720\) 0 0
\(721\) 730.389 + 1180.79i 1.01302 + 1.63772i
\(722\) 276.565 869.676i 0.383053 1.20454i
\(723\) 0 0
\(724\) −443.270 313.647i −0.612252 0.433214i
\(725\) 33.5910i 0.0463324i
\(726\) 0 0
\(727\) 980.653i 1.34890i −0.738319 0.674452i \(-0.764380\pi\)
0.738319 0.674452i \(-0.235620\pi\)
\(728\) −286.396 + 738.978i −0.393401 + 1.01508i
\(729\) 0 0
\(730\) −874.780 278.188i −1.19833 0.381079i
\(731\) −317.710 −0.434624
\(732\) 0 0
\(733\) −532.385 −0.726309 −0.363155 0.931729i \(-0.618300\pi\)
−0.363155 + 0.931729i \(0.618300\pi\)
\(734\) 366.542 + 116.564i 0.499376 + 0.158806i
\(735\) 0 0
\(736\) −258.963 + 8.11266i −0.351852 + 0.0110226i
\(737\) −1873.49 −2.54204
\(738\) 0 0
\(739\) 1061.19i 1.43599i −0.696049 0.717994i \(-0.745061\pi\)
0.696049 0.717994i \(-0.254939\pi\)
\(740\) −262.826 + 371.447i −0.355171 + 0.501955i
\(741\) 0 0
\(742\) −1048.11 + 263.231i −1.41255 + 0.354758i
\(743\) 237.425 0.319549 0.159774 0.987154i \(-0.448923\pi\)
0.159774 + 0.987154i \(0.448923\pi\)
\(744\) 0 0
\(745\) 230.468i 0.309352i
\(746\) 140.784 + 44.7705i 0.188718 + 0.0600141i
\(747\) 0 0
\(748\) 393.811 + 278.650i 0.526485 + 0.372527i
\(749\) −77.9395 126.002i −0.104058 0.168227i
\(750\) 0 0
\(751\) 572.550 0.762384 0.381192 0.924496i \(-0.375514\pi\)
0.381192 + 0.924496i \(0.375514\pi\)
\(752\) 734.634 259.217i 0.976908 0.344704i
\(753\) 0 0
\(754\) −159.556 50.7401i −0.211612 0.0672946i
\(755\) −830.438 −1.09992
\(756\) 0 0
\(757\) 1232.38i 1.62798i 0.580876 + 0.813992i \(0.302710\pi\)
−0.580876 + 0.813992i \(0.697290\pi\)
\(758\) 20.9563 + 6.66428i 0.0276468 + 0.00879193i
\(759\) 0 0
\(760\) 1010.67 763.714i 1.32983 1.00489i
\(761\) 474.738i 0.623834i −0.950109 0.311917i \(-0.899029\pi\)
0.950109 0.311917i \(-0.100971\pi\)
\(762\) 0 0
\(763\) 395.443 + 639.297i 0.518273 + 0.837873i
\(764\) 70.4385 + 49.8405i 0.0921969 + 0.0652362i
\(765\) 0 0
\(766\) −1062.73 337.957i −1.38737 0.441198i
\(767\) −576.335 −0.751414
\(768\) 0 0
\(769\) 812.878i 1.05706i 0.848915 + 0.528529i \(0.177256\pi\)
−0.848915 + 0.528529i \(0.822744\pi\)
\(770\) −1213.29 + 304.714i −1.57570 + 0.395733i
\(771\) 0 0
\(772\) 1038.59 + 734.880i 1.34532 + 0.951917i
\(773\) −864.876 −1.11886 −0.559428 0.828879i \(-0.688979\pi\)
−0.559428 + 0.828879i \(0.688979\pi\)
\(774\) 0 0
\(775\) 153.528i 0.198101i
\(776\) −180.686 239.112i −0.232842 0.308134i
\(777\) 0 0
\(778\) −78.2187 24.8742i −0.100538 0.0319720i
\(779\) 1403.96i 1.80226i
\(780\) 0 0
\(781\) 1690.15i 2.16409i
\(782\) −115.367 36.6876i −0.147528 0.0469151i
\(783\) 0 0
\(784\) 778.012 + 96.7148i 0.992362 + 0.123361i
\(785\) −452.940 −0.576993
\(786\) 0 0
\(787\) 1030.93 1.30995 0.654975 0.755651i \(-0.272679\pi\)
0.654975 + 0.755651i \(0.272679\pi\)
\(788\) 0.564933 0.798408i 0.000716920 0.00101321i
\(789\) 0 0
\(790\) −150.288 + 472.590i −0.190238 + 0.598215i
\(791\) 672.191 415.790i 0.849799 0.525651i
\(792\) 0 0
\(793\) −154.352 −0.194643
\(794\) 138.295 434.878i 0.174175 0.547705i
\(795\) 0 0
\(796\) 545.911 771.524i 0.685818 0.969251i
\(797\) −742.857 −0.932067 −0.466033 0.884767i \(-0.654317\pi\)
−0.466033 + 0.884767i \(0.654317\pi\)
\(798\) 0 0
\(799\) 364.000 0.455569
\(800\) 181.631 5.69003i 0.227038 0.00711254i
\(801\) 0 0
\(802\) −353.063 + 1110.23i −0.440228 + 1.38433i
\(803\) 1336.81 1.66477
\(804\) 0 0
\(805\) 266.973 165.138i 0.331643 0.205141i
\(806\) −729.251 231.908i −0.904778 0.287727i
\(807\) 0 0
\(808\) −897.006 + 677.825i −1.11016 + 0.838892i
\(809\) 947.608 1.17133 0.585667 0.810552i \(-0.300833\pi\)
0.585667 + 0.810552i \(0.300833\pi\)
\(810\) 0 0
\(811\) 580.571 0.715870 0.357935 0.933747i \(-0.383481\pi\)
0.357935 + 0.933747i \(0.383481\pi\)
\(812\) −10.2354 + 165.310i −0.0126052 + 0.203583i
\(813\) 0 0
\(814\) 200.821 631.495i 0.246709 0.775792i
\(815\) 1525.30i 1.87153i
\(816\) 0 0
\(817\) 1214.93i 1.48706i
\(818\) 8.93697 + 2.84204i 0.0109254 + 0.00347437i
\(819\) 0 0
\(820\) −628.457 + 888.185i −0.766411 + 1.08315i
\(821\) 1364.03i 1.66143i 0.556700 + 0.830714i \(0.312067\pi\)
−0.556700 + 0.830714i \(0.687933\pi\)
\(822\) 0 0
\(823\) −246.998 −0.300119 −0.150059 0.988677i \(-0.547947\pi\)
−0.150059 + 0.988677i \(0.547947\pi\)
\(824\) 956.641 + 1265.98i 1.16097 + 1.53638i
\(825\) 0 0
\(826\) 138.873 + 552.956i 0.168127 + 0.669438i
\(827\) 737.549i 0.891837i −0.895074 0.445918i \(-0.852877\pi\)
0.895074 0.445918i \(-0.147123\pi\)
\(828\) 0 0
\(829\) 1260.35 1.52032 0.760162 0.649733i \(-0.225119\pi\)
0.760162 + 0.649733i \(0.225119\pi\)
\(830\) −221.067 + 695.161i −0.266346 + 0.837544i
\(831\) 0 0
\(832\) −247.330 + 871.331i −0.297272 + 1.04727i
\(833\) 327.774 + 163.576i 0.393486 + 0.196370i
\(834\) 0 0
\(835\) 1461.30i 1.75006i
\(836\) −1065.57 + 1505.94i −1.27460 + 1.80136i
\(837\) 0 0
\(838\) 63.7965 200.612i 0.0761295 0.239394i
\(839\) 272.430i 0.324708i 0.986733 + 0.162354i \(0.0519087\pi\)
−0.986733 + 0.162354i \(0.948091\pi\)
\(840\) 0 0
\(841\) 806.010 0.958395
\(842\) 1180.79 + 375.501i 1.40236 + 0.445963i
\(843\) 0 0
\(844\) 232.117 328.046i 0.275021 0.388681i
\(845\) 173.314 0.205105
\(846\) 0 0
\(847\) 829.009 512.790i 0.978759 0.605419i
\(848\) −1164.67 + 410.954i −1.37343 + 0.484616i
\(849\) 0 0
\(850\) 80.9155 + 25.7319i 0.0951947 + 0.0302728i
\(851\) 166.288i 0.195403i
\(852\) 0 0
\(853\) −167.153 −0.195959 −0.0979794 0.995188i \(-0.531238\pi\)
−0.0979794 + 0.995188i \(0.531238\pi\)
\(854\) 37.1926 + 148.091i 0.0435511 + 0.173409i
\(855\) 0 0
\(856\) −102.083 135.092i −0.119255 0.157818i
\(857\) 13.0480i 0.0152252i −0.999971 0.00761258i \(-0.997577\pi\)
0.999971 0.00761258i \(-0.00242318\pi\)
\(858\) 0 0
\(859\) −872.946 −1.01624 −0.508118 0.861288i \(-0.669658\pi\)
−0.508118 + 0.861288i \(0.669658\pi\)
\(860\) 543.840 768.598i 0.632373 0.893719i
\(861\) 0 0
\(862\) 265.872 836.051i 0.308436 0.969896i
\(863\) −560.236 −0.649173 −0.324587 0.945856i \(-0.605225\pi\)
−0.324587 + 0.945856i \(0.605225\pi\)
\(864\) 0 0
\(865\) 302.699 0.349941
\(866\) −82.0306 26.0865i −0.0947236 0.0301230i
\(867\) 0 0
\(868\) −46.7812 + 755.550i −0.0538954 + 0.870449i
\(869\) 722.195i 0.831064i
\(870\) 0 0
\(871\) 1643.54i 1.88696i
\(872\) 517.938 + 685.418i 0.593966 + 0.786030i
\(873\) 0 0
\(874\) 140.294 441.165i 0.160520 0.504765i
\(875\) 637.091 394.078i 0.728104 0.450375i
\(876\) 0 0
\(877\) 819.789i 0.934766i −0.884055 0.467383i \(-0.845197\pi\)
0.884055 0.467383i \(-0.154803\pi\)
\(878\) −393.033 124.988i −0.447646 0.142356i
\(879\) 0 0
\(880\) −1348.21 + 475.719i −1.53206 + 0.540589i
\(881\) 930.214i 1.05586i 0.849287 + 0.527931i \(0.177032\pi\)
−0.849287 + 0.527931i \(0.822968\pi\)
\(882\) 0 0
\(883\) 444.483i 0.503378i −0.967808 0.251689i \(-0.919014\pi\)
0.967808 0.251689i \(-0.0809860\pi\)
\(884\) −244.450 + 345.476i −0.276527 + 0.390810i
\(885\) 0 0
\(886\) 1165.09 + 370.508i 1.31500 + 0.418181i
\(887\) 159.932i 0.180307i 0.995928 + 0.0901536i \(0.0287358\pi\)
−0.995928 + 0.0901536i \(0.971264\pi\)
\(888\) 0 0
\(889\) −989.694 + 612.183i −1.11327 + 0.688620i
\(890\) 1416.59 + 450.490i 1.59168 + 0.506168i
\(891\) 0 0
\(892\) −873.874 + 1235.03i −0.979679 + 1.38456i
\(893\) 1391.94i 1.55873i
\(894\) 0 0
\(895\) 584.650i 0.653240i
\(896\) 895.583 + 27.3422i 0.999534 + 0.0305159i
\(897\) 0 0
\(898\) 362.268 1139.18i 0.403417 1.26857i
\(899\) −159.922 −0.177888
\(900\) 0 0
\(901\) −577.073 −0.640481
\(902\) 480.193 1510.00i 0.532365 1.67406i
\(903\) 0 0
\(904\) 720.686 544.588i 0.797219 0.602420i
\(905\) 751.915 0.830845
\(906\) 0 0
\(907\) 66.5490i 0.0733727i 0.999327 + 0.0366863i \(0.0116802\pi\)
−0.999327 + 0.0366863i \(0.988320\pi\)
\(908\) −184.969 130.880i −0.203711 0.144141i
\(909\) 0 0
\(910\) −267.315 1064.38i −0.293753 1.16964i
\(911\) 254.406 0.279260 0.139630 0.990204i \(-0.455409\pi\)
0.139630 + 0.990204i \(0.455409\pi\)
\(912\) 0 0
\(913\) 1062.32i 1.16355i
\(914\) −212.416 + 667.956i −0.232403 + 0.730805i
\(915\) 0 0
\(916\) −968.363 685.190i −1.05717 0.748024i
\(917\) 930.460 575.544i 1.01468 0.627638i
\(918\) 0 0
\(919\) 1688.22 1.83702 0.918511 0.395395i \(-0.129392\pi\)
0.918511 + 0.395395i \(0.129392\pi\)
\(920\) 286.233 216.293i 0.311123 0.235101i
\(921\) 0 0
\(922\) −110.836 + 348.531i −0.120213 + 0.378016i
\(923\) −1482.71 −1.60640
\(924\) 0 0
\(925\) 116.630i 0.126087i
\(926\) 38.1060 119.827i 0.0411512 0.129402i
\(927\) 0 0
\(928\) 5.92699 + 189.194i 0.00638684 + 0.203873i
\(929\) 905.524i 0.974730i −0.873198 0.487365i \(-0.837958\pi\)
0.873198 0.487365i \(-0.162042\pi\)
\(930\) 0 0
\(931\) −625.520 + 1253.42i −0.671879 + 1.34631i
\(932\) −366.929 259.630i −0.393701 0.278573i
\(933\) 0 0
\(934\) −391.093 + 1229.82i −0.418729 + 1.31672i
\(935\) −668.017 −0.714457
\(936\) 0 0
\(937\) 1465.43i 1.56396i 0.623301 + 0.781982i \(0.285791\pi\)
−0.623301 + 0.781982i \(0.714209\pi\)
\(938\) −1576.87 + 396.027i −1.68110 + 0.422204i
\(939\) 0 0
\(940\) −623.077 + 880.581i −0.662848 + 0.936788i
\(941\) 250.000 0.265675 0.132837 0.991138i \(-0.457591\pi\)
0.132837 + 0.991138i \(0.457591\pi\)
\(942\) 0 0
\(943\) 397.619i 0.421653i
\(944\) 216.808 + 614.446i 0.229670 + 0.650897i
\(945\) 0 0
\(946\) −415.539 + 1306.69i −0.439259 + 1.38128i
\(947\) 638.465i 0.674197i −0.941469 0.337099i \(-0.890554\pi\)
0.941469 0.337099i \(-0.109446\pi\)
\(948\) 0 0
\(949\) 1172.73i 1.23576i
\(950\) −98.3992 + 309.423i −0.103578 + 0.325708i
\(951\) 0 0
\(952\) 390.365 + 151.288i 0.410047 + 0.158916i
\(953\) −436.356 −0.457876 −0.228938 0.973441i \(-0.573525\pi\)
−0.228938 + 0.973441i \(0.573525\pi\)
\(954\) 0 0
\(955\) −119.484 −0.125114
\(956\) −308.542 218.316i −0.322742 0.228364i
\(957\) 0 0
\(958\) −834.146 265.266i −0.870716 0.276896i
\(959\) 405.953 251.105i 0.423308 0.261841i
\(960\) 0 0
\(961\) 230.077 0.239414
\(962\) 553.988 + 176.173i 0.575871 + 0.183132i
\(963\) 0 0
\(964\) 202.692 286.460i 0.210261 0.297157i
\(965\) −1761.75 −1.82565
\(966\) 0 0
\(967\) −891.342 −0.921760 −0.460880 0.887463i \(-0.652466\pi\)
−0.460880 + 0.887463i \(0.652466\pi\)
\(968\) 888.816 671.636i 0.918199 0.693839i
\(969\) 0 0
\(970\) 395.485 + 125.768i 0.407717 + 0.129658i
\(971\) 162.475 0.167327 0.0836635 0.996494i \(-0.473338\pi\)
0.0836635 + 0.996494i \(0.473338\pi\)
\(972\) 0 0
\(973\) 1133.83 701.338i 1.16529 0.720800i
\(974\) −8.93346 + 28.0918i −0.00917193 + 0.0288417i
\(975\) 0 0
\(976\) 58.0650 + 164.559i 0.0594928 + 0.168606i
\(977\) −499.904 −0.511673 −0.255836 0.966720i \(-0.582351\pi\)
−0.255836 + 0.966720i \(0.582351\pi\)
\(978\) 0 0
\(979\) −2164.79 −2.21122
\(980\) −956.788 + 512.943i −0.976315 + 0.523411i
\(981\) 0 0
\(982\) −228.997 72.8232i −0.233195 0.0741580i
\(983\) 544.456i 0.553872i −0.960888 0.276936i \(-0.910681\pi\)
0.960888 0.276936i \(-0.0893190\pi\)
\(984\) 0 0
\(985\) 1.35433i 0.00137496i
\(986\) −26.8034 + 84.2851i −0.0271840 + 0.0854819i
\(987\) 0 0
\(988\) −1321.11 934.783i −1.33715 0.946137i
\(989\) 344.082i 0.347909i
\(990\) 0 0
\(991\) 778.083 0.785149 0.392575 0.919720i \(-0.371585\pi\)
0.392575 + 0.919720i \(0.371585\pi\)
\(992\) 27.0894 + 864.715i 0.0273078 + 0.871688i
\(993\) 0 0
\(994\) 357.273 + 1422.57i 0.359430 + 1.43115i
\(995\) 1308.73i 1.31530i
\(996\) 0 0
\(997\) 366.247 0.367349 0.183674 0.982987i \(-0.441201\pi\)
0.183674 + 0.982987i \(0.441201\pi\)
\(998\) −8.96147 2.84983i −0.00897943 0.00285554i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.l.h.181.18 32
3.2 odd 2 168.3.l.a.13.16 yes 32
4.3 odd 2 2016.3.l.h.433.26 32
7.6 odd 2 inner 504.3.l.h.181.17 32
8.3 odd 2 2016.3.l.h.433.7 32
8.5 even 2 inner 504.3.l.h.181.19 32
12.11 even 2 672.3.l.a.433.14 32
21.20 even 2 168.3.l.a.13.15 yes 32
24.5 odd 2 168.3.l.a.13.13 32
24.11 even 2 672.3.l.a.433.19 32
28.27 even 2 2016.3.l.h.433.8 32
56.13 odd 2 inner 504.3.l.h.181.20 32
56.27 even 2 2016.3.l.h.433.25 32
84.83 odd 2 672.3.l.a.433.30 32
168.83 odd 2 672.3.l.a.433.3 32
168.125 even 2 168.3.l.a.13.14 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.13 32 24.5 odd 2
168.3.l.a.13.14 yes 32 168.125 even 2
168.3.l.a.13.15 yes 32 21.20 even 2
168.3.l.a.13.16 yes 32 3.2 odd 2
504.3.l.h.181.17 32 7.6 odd 2 inner
504.3.l.h.181.18 32 1.1 even 1 trivial
504.3.l.h.181.19 32 8.5 even 2 inner
504.3.l.h.181.20 32 56.13 odd 2 inner
672.3.l.a.433.3 32 168.83 odd 2
672.3.l.a.433.14 32 12.11 even 2
672.3.l.a.433.19 32 24.11 even 2
672.3.l.a.433.30 32 84.83 odd 2
2016.3.l.h.433.7 32 8.3 odd 2
2016.3.l.h.433.8 32 28.27 even 2
2016.3.l.h.433.25 32 56.27 even 2
2016.3.l.h.433.26 32 4.3 odd 2