Properties

Label 672.3.l.a.433.30
Level $672$
Weight $3$
Character 672.433
Analytic conductor $18.311$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(433,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.433"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 433.30
Character \(\chi\) \(=\) 672.433
Dual form 672.3.l.a.433.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{3} +5.53884 q^{5} +(5.95316 + 3.68238i) q^{7} +3.00000 q^{9} +16.1324i q^{11} +14.1524 q^{13} +9.59355 q^{15} +7.47600i q^{17} -28.5884 q^{19} +(10.3112 + 6.37806i) q^{21} -8.09656 q^{23} +5.67874 q^{25} +5.19615 q^{27} -5.91522i q^{29} +27.0356i q^{31} +27.9422i q^{33} +(32.9736 + 20.3961i) q^{35} -20.5381i q^{37} +24.5127 q^{39} -49.1096i q^{41} -42.4974i q^{43} +16.6165 q^{45} +48.6891i q^{47} +(21.8802 + 43.8435i) q^{49} +12.9488i q^{51} -77.1902i q^{53} +89.3549i q^{55} -49.5165 q^{57} -40.7234 q^{59} -10.9064 q^{61} +(17.8595 + 11.0471i) q^{63} +78.3879 q^{65} -116.132i q^{67} -14.0237 q^{69} +104.767 q^{71} +82.8647i q^{73} +9.83587 q^{75} +(-59.4057 + 96.0389i) q^{77} +44.7667 q^{79} +9.00000 q^{81} +65.8500 q^{83} +41.4083i q^{85} -10.2455i q^{87} +134.189i q^{89} +(84.2515 + 52.1145i) q^{91} +46.8270i q^{93} -158.346 q^{95} -37.4629i q^{97} +48.3973i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 96 q^{9} - 64 q^{23} + 160 q^{25} - 16 q^{49} + 96 q^{57} + 640 q^{71} + 64 q^{79} + 288 q^{81} + 768 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 0.577350
\(4\) 0 0
\(5\) 5.53884 1.10777 0.553884 0.832594i \(-0.313145\pi\)
0.553884 + 0.832594i \(0.313145\pi\)
\(6\) 0 0
\(7\) 5.95316 + 3.68238i 0.850451 + 0.526054i
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 16.1324i 1.46658i 0.679914 + 0.733292i \(0.262017\pi\)
−0.679914 + 0.733292i \(0.737983\pi\)
\(12\) 0 0
\(13\) 14.1524 1.08865 0.544323 0.838876i \(-0.316786\pi\)
0.544323 + 0.838876i \(0.316786\pi\)
\(14\) 0 0
\(15\) 9.59355 0.639570
\(16\) 0 0
\(17\) 7.47600i 0.439764i 0.975526 + 0.219882i \(0.0705673\pi\)
−0.975526 + 0.219882i \(0.929433\pi\)
\(18\) 0 0
\(19\) −28.5884 −1.50465 −0.752326 0.658791i \(-0.771068\pi\)
−0.752326 + 0.658791i \(0.771068\pi\)
\(20\) 0 0
\(21\) 10.3112 + 6.37806i 0.491008 + 0.303717i
\(22\) 0 0
\(23\) −8.09656 −0.352024 −0.176012 0.984388i \(-0.556320\pi\)
−0.176012 + 0.984388i \(0.556320\pi\)
\(24\) 0 0
\(25\) 5.67874 0.227150
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) 0 0
\(29\) 5.91522i 0.203973i −0.994786 0.101987i \(-0.967480\pi\)
0.994786 0.101987i \(-0.0325199\pi\)
\(30\) 0 0
\(31\) 27.0356i 0.872116i 0.899919 + 0.436058i \(0.143626\pi\)
−0.899919 + 0.436058i \(0.856374\pi\)
\(32\) 0 0
\(33\) 27.9422i 0.846733i
\(34\) 0 0
\(35\) 32.9736 + 20.3961i 0.942103 + 0.582745i
\(36\) 0 0
\(37\) 20.5381i 0.555083i −0.960714 0.277541i \(-0.910480\pi\)
0.960714 0.277541i \(-0.0895196\pi\)
\(38\) 0 0
\(39\) 24.5127 0.628530
\(40\) 0 0
\(41\) 49.1096i 1.19779i −0.800826 0.598897i \(-0.795606\pi\)
0.800826 0.598897i \(-0.204394\pi\)
\(42\) 0 0
\(43\) 42.4974i 0.988311i −0.869374 0.494155i \(-0.835477\pi\)
0.869374 0.494155i \(-0.164523\pi\)
\(44\) 0 0
\(45\) 16.6165 0.369256
\(46\) 0 0
\(47\) 48.6891i 1.03594i 0.855399 + 0.517969i \(0.173312\pi\)
−0.855399 + 0.517969i \(0.826688\pi\)
\(48\) 0 0
\(49\) 21.8802 + 43.8435i 0.446535 + 0.894766i
\(50\) 0 0
\(51\) 12.9488i 0.253898i
\(52\) 0 0
\(53\) 77.1902i 1.45642i −0.685355 0.728209i \(-0.740353\pi\)
0.685355 0.728209i \(-0.259647\pi\)
\(54\) 0 0
\(55\) 89.3549i 1.62464i
\(56\) 0 0
\(57\) −49.5165 −0.868711
\(58\) 0 0
\(59\) −40.7234 −0.690228 −0.345114 0.938561i \(-0.612160\pi\)
−0.345114 + 0.938561i \(0.612160\pi\)
\(60\) 0 0
\(61\) −10.9064 −0.178794 −0.0893969 0.995996i \(-0.528494\pi\)
−0.0893969 + 0.995996i \(0.528494\pi\)
\(62\) 0 0
\(63\) 17.8595 + 11.0471i 0.283484 + 0.175351i
\(64\) 0 0
\(65\) 78.3879 1.20597
\(66\) 0 0
\(67\) 116.132i 1.73331i −0.498909 0.866655i \(-0.666266\pi\)
0.498909 0.866655i \(-0.333734\pi\)
\(68\) 0 0
\(69\) −14.0237 −0.203241
\(70\) 0 0
\(71\) 104.767 1.47560 0.737799 0.675021i \(-0.235865\pi\)
0.737799 + 0.675021i \(0.235865\pi\)
\(72\) 0 0
\(73\) 82.8647i 1.13513i 0.823328 + 0.567566i \(0.192115\pi\)
−0.823328 + 0.567566i \(0.807885\pi\)
\(74\) 0 0
\(75\) 9.83587 0.131145
\(76\) 0 0
\(77\) −59.4057 + 96.0389i −0.771502 + 1.24726i
\(78\) 0 0
\(79\) 44.7667 0.566667 0.283333 0.959022i \(-0.408560\pi\)
0.283333 + 0.959022i \(0.408560\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 65.8500 0.793374 0.396687 0.917954i \(-0.370160\pi\)
0.396687 + 0.917954i \(0.370160\pi\)
\(84\) 0 0
\(85\) 41.4083i 0.487157i
\(86\) 0 0
\(87\) 10.2455i 0.117764i
\(88\) 0 0
\(89\) 134.189i 1.50774i 0.657025 + 0.753869i \(0.271815\pi\)
−0.657025 + 0.753869i \(0.728185\pi\)
\(90\) 0 0
\(91\) 84.2515 + 52.1145i 0.925841 + 0.572687i
\(92\) 0 0
\(93\) 46.8270i 0.503516i
\(94\) 0 0
\(95\) −158.346 −1.66680
\(96\) 0 0
\(97\) 37.4629i 0.386215i −0.981178 0.193107i \(-0.938143\pi\)
0.981178 0.193107i \(-0.0618566\pi\)
\(98\) 0 0
\(99\) 48.3973i 0.488861i
\(100\) 0 0
\(101\) 140.538 1.39147 0.695734 0.718299i \(-0.255079\pi\)
0.695734 + 0.718299i \(0.255079\pi\)
\(102\) 0 0
\(103\) 198.347i 1.92570i −0.270033 0.962851i \(-0.587035\pi\)
0.270033 0.962851i \(-0.412965\pi\)
\(104\) 0 0
\(105\) 57.1119 + 35.3271i 0.543923 + 0.336448i
\(106\) 0 0
\(107\) 21.1655i 0.197809i 0.995097 + 0.0989044i \(0.0315338\pi\)
−0.995097 + 0.0989044i \(0.968466\pi\)
\(108\) 0 0
\(109\) 107.388i 0.985210i −0.870253 0.492605i \(-0.836045\pi\)
0.870253 0.492605i \(-0.163955\pi\)
\(110\) 0 0
\(111\) 35.5730i 0.320477i
\(112\) 0 0
\(113\) 112.913 0.999234 0.499617 0.866247i \(-0.333474\pi\)
0.499617 + 0.866247i \(0.333474\pi\)
\(114\) 0 0
\(115\) −44.8455 −0.389961
\(116\) 0 0
\(117\) 42.4572 0.362882
\(118\) 0 0
\(119\) −27.5294 + 44.5058i −0.231340 + 0.373998i
\(120\) 0 0
\(121\) −139.255 −1.15087
\(122\) 0 0
\(123\) 85.0603i 0.691547i
\(124\) 0 0
\(125\) −107.017 −0.856139
\(126\) 0 0
\(127\) −166.247 −1.30903 −0.654515 0.756049i \(-0.727127\pi\)
−0.654515 + 0.756049i \(0.727127\pi\)
\(128\) 0 0
\(129\) 73.6076i 0.570601i
\(130\) 0 0
\(131\) 156.297 1.19311 0.596553 0.802574i \(-0.296536\pi\)
0.596553 + 0.802574i \(0.296536\pi\)
\(132\) 0 0
\(133\) −170.191 105.273i −1.27963 0.791528i
\(134\) 0 0
\(135\) 28.7807 0.213190
\(136\) 0 0
\(137\) 68.1911 0.497746 0.248873 0.968536i \(-0.419940\pi\)
0.248873 + 0.968536i \(0.419940\pi\)
\(138\) 0 0
\(139\) −190.458 −1.37020 −0.685101 0.728448i \(-0.740242\pi\)
−0.685101 + 0.728448i \(0.740242\pi\)
\(140\) 0 0
\(141\) 84.3320i 0.598099i
\(142\) 0 0
\(143\) 228.313i 1.59659i
\(144\) 0 0
\(145\) 32.7635i 0.225955i
\(146\) 0 0
\(147\) 37.8976 + 75.9393i 0.257807 + 0.516594i
\(148\) 0 0
\(149\) 41.6094i 0.279257i 0.990204 + 0.139629i \(0.0445909\pi\)
−0.990204 + 0.139629i \(0.955409\pi\)
\(150\) 0 0
\(151\) 149.930 0.992914 0.496457 0.868061i \(-0.334634\pi\)
0.496457 + 0.868061i \(0.334634\pi\)
\(152\) 0 0
\(153\) 22.4280i 0.146588i
\(154\) 0 0
\(155\) 149.746i 0.966102i
\(156\) 0 0
\(157\) 81.7752 0.520861 0.260431 0.965493i \(-0.416135\pi\)
0.260431 + 0.965493i \(0.416135\pi\)
\(158\) 0 0
\(159\) 133.697i 0.840864i
\(160\) 0 0
\(161\) −48.2001 29.8146i −0.299380 0.185184i
\(162\) 0 0
\(163\) 275.383i 1.68946i −0.535190 0.844732i \(-0.679760\pi\)
0.535190 0.844732i \(-0.320240\pi\)
\(164\) 0 0
\(165\) 154.767i 0.937983i
\(166\) 0 0
\(167\) 263.827i 1.57980i −0.613233 0.789902i \(-0.710132\pi\)
0.613233 0.789902i \(-0.289868\pi\)
\(168\) 0 0
\(169\) 31.2906 0.185152
\(170\) 0 0
\(171\) −85.7652 −0.501551
\(172\) 0 0
\(173\) 54.6502 0.315897 0.157949 0.987447i \(-0.449512\pi\)
0.157949 + 0.987447i \(0.449512\pi\)
\(174\) 0 0
\(175\) 33.8064 + 20.9113i 0.193180 + 0.119493i
\(176\) 0 0
\(177\) −70.5351 −0.398503
\(178\) 0 0
\(179\) 105.555i 0.589691i 0.955545 + 0.294845i \(0.0952681\pi\)
−0.955545 + 0.294845i \(0.904732\pi\)
\(180\) 0 0
\(181\) −135.753 −0.750018 −0.375009 0.927021i \(-0.622360\pi\)
−0.375009 + 0.927021i \(0.622360\pi\)
\(182\) 0 0
\(183\) −18.8905 −0.103227
\(184\) 0 0
\(185\) 113.757i 0.614903i
\(186\) 0 0
\(187\) −120.606 −0.644952
\(188\) 0 0
\(189\) 30.9335 + 19.1342i 0.163669 + 0.101239i
\(190\) 0 0
\(191\) −21.5720 −0.112943 −0.0564713 0.998404i \(-0.517985\pi\)
−0.0564713 + 0.998404i \(0.517985\pi\)
\(192\) 0 0
\(193\) −318.072 −1.64804 −0.824021 0.566560i \(-0.808274\pi\)
−0.824021 + 0.566560i \(0.808274\pi\)
\(194\) 0 0
\(195\) 135.772 0.696266
\(196\) 0 0
\(197\) 0.244515i 0.00124119i −1.00000 0.000620597i \(-0.999802\pi\)
1.00000 0.000620597i \(-0.000197542\pi\)
\(198\) 0 0
\(199\) 236.282i 1.18735i 0.804706 + 0.593674i \(0.202323\pi\)
−0.804706 + 0.593674i \(0.797677\pi\)
\(200\) 0 0
\(201\) 201.146i 1.00073i
\(202\) 0 0
\(203\) 21.7821 35.2143i 0.107301 0.173469i
\(204\) 0 0
\(205\) 272.010i 1.32688i
\(206\) 0 0
\(207\) −24.2897 −0.117341
\(208\) 0 0
\(209\) 461.200i 2.20670i
\(210\) 0 0
\(211\) 100.465i 0.476140i −0.971248 0.238070i \(-0.923485\pi\)
0.971248 0.238070i \(-0.0765147\pi\)
\(212\) 0 0
\(213\) 181.463 0.851937
\(214\) 0 0
\(215\) 235.386i 1.09482i
\(216\) 0 0
\(217\) −99.5552 + 160.947i −0.458780 + 0.741692i
\(218\) 0 0
\(219\) 143.526i 0.655369i
\(220\) 0 0
\(221\) 105.803i 0.478748i
\(222\) 0 0
\(223\) 378.232i 1.69611i −0.529912 0.848053i \(-0.677775\pi\)
0.529912 0.848053i \(-0.322225\pi\)
\(224\) 0 0
\(225\) 17.0362 0.0757165
\(226\) 0 0
\(227\) −56.6476 −0.249549 −0.124774 0.992185i \(-0.539821\pi\)
−0.124774 + 0.992185i \(0.539821\pi\)
\(228\) 0 0
\(229\) −296.565 −1.29504 −0.647522 0.762047i \(-0.724195\pi\)
−0.647522 + 0.762047i \(0.724195\pi\)
\(230\) 0 0
\(231\) −102.894 + 166.344i −0.445427 + 0.720105i
\(232\) 0 0
\(233\) −112.373 −0.482289 −0.241145 0.970489i \(-0.577523\pi\)
−0.241145 + 0.970489i \(0.577523\pi\)
\(234\) 0 0
\(235\) 269.681i 1.14758i
\(236\) 0 0
\(237\) 77.5381 0.327165
\(238\) 0 0
\(239\) 94.4921 0.395364 0.197682 0.980266i \(-0.436659\pi\)
0.197682 + 0.980266i \(0.436659\pi\)
\(240\) 0 0
\(241\) 87.7294i 0.364022i −0.983296 0.182011i \(-0.941739\pi\)
0.983296 0.182011i \(-0.0582607\pi\)
\(242\) 0 0
\(243\) 15.5885 0.0641500
\(244\) 0 0
\(245\) 121.191 + 242.842i 0.494657 + 0.991193i
\(246\) 0 0
\(247\) −404.594 −1.63803
\(248\) 0 0
\(249\) 114.056 0.458055
\(250\) 0 0
\(251\) −344.939 −1.37426 −0.687130 0.726534i \(-0.741130\pi\)
−0.687130 + 0.726534i \(0.741130\pi\)
\(252\) 0 0
\(253\) 130.617i 0.516273i
\(254\) 0 0
\(255\) 71.7213i 0.281260i
\(256\) 0 0
\(257\) 75.7961i 0.294927i 0.989068 + 0.147463i \(0.0471108\pi\)
−0.989068 + 0.147463i \(0.952889\pi\)
\(258\) 0 0
\(259\) 75.6289 122.266i 0.292003 0.472071i
\(260\) 0 0
\(261\) 17.7457i 0.0679911i
\(262\) 0 0
\(263\) 19.8005 0.0752872 0.0376436 0.999291i \(-0.488015\pi\)
0.0376436 + 0.999291i \(0.488015\pi\)
\(264\) 0 0
\(265\) 427.544i 1.61337i
\(266\) 0 0
\(267\) 232.422i 0.870493i
\(268\) 0 0
\(269\) 185.601 0.689966 0.344983 0.938609i \(-0.387885\pi\)
0.344983 + 0.938609i \(0.387885\pi\)
\(270\) 0 0
\(271\) 138.260i 0.510185i 0.966917 + 0.255093i \(0.0821059\pi\)
−0.966917 + 0.255093i \(0.917894\pi\)
\(272\) 0 0
\(273\) 145.928 + 90.2649i 0.534535 + 0.330641i
\(274\) 0 0
\(275\) 91.6119i 0.333134i
\(276\) 0 0
\(277\) 110.650i 0.399457i 0.979851 + 0.199728i \(0.0640060\pi\)
−0.979851 + 0.199728i \(0.935994\pi\)
\(278\) 0 0
\(279\) 81.1068i 0.290705i
\(280\) 0 0
\(281\) −531.686 −1.89212 −0.946061 0.323989i \(-0.894976\pi\)
−0.946061 + 0.323989i \(0.894976\pi\)
\(282\) 0 0
\(283\) −439.139 −1.55173 −0.775864 0.630900i \(-0.782686\pi\)
−0.775864 + 0.630900i \(0.782686\pi\)
\(284\) 0 0
\(285\) −274.264 −0.962330
\(286\) 0 0
\(287\) 180.840 292.357i 0.630104 1.01867i
\(288\) 0 0
\(289\) 233.109 0.806607
\(290\) 0 0
\(291\) 64.8876i 0.222981i
\(292\) 0 0
\(293\) 122.938 0.419585 0.209793 0.977746i \(-0.432721\pi\)
0.209793 + 0.977746i \(0.432721\pi\)
\(294\) 0 0
\(295\) −225.561 −0.764612
\(296\) 0 0
\(297\) 83.8266i 0.282244i
\(298\) 0 0
\(299\) −114.586 −0.383230
\(300\) 0 0
\(301\) 156.491 252.994i 0.519905 0.840510i
\(302\) 0 0
\(303\) 243.420 0.803365
\(304\) 0 0
\(305\) −60.4089 −0.198062
\(306\) 0 0
\(307\) 5.82104 0.0189611 0.00948053 0.999955i \(-0.496982\pi\)
0.00948053 + 0.999955i \(0.496982\pi\)
\(308\) 0 0
\(309\) 343.548i 1.11180i
\(310\) 0 0
\(311\) 208.552i 0.670585i 0.942114 + 0.335293i \(0.108835\pi\)
−0.942114 + 0.335293i \(0.891165\pi\)
\(312\) 0 0
\(313\) 25.0482i 0.0800261i −0.999199 0.0400130i \(-0.987260\pi\)
0.999199 0.0400130i \(-0.0127399\pi\)
\(314\) 0 0
\(315\) 98.9208 + 61.1883i 0.314034 + 0.194248i
\(316\) 0 0
\(317\) 172.733i 0.544899i −0.962170 0.272449i \(-0.912166\pi\)
0.962170 0.272449i \(-0.0878338\pi\)
\(318\) 0 0
\(319\) 95.4269 0.299144
\(320\) 0 0
\(321\) 36.6598i 0.114205i
\(322\) 0 0
\(323\) 213.727i 0.661692i
\(324\) 0 0
\(325\) 80.3678 0.247286
\(326\) 0 0
\(327\) 186.001i 0.568811i
\(328\) 0 0
\(329\) −179.292 + 289.854i −0.544959 + 0.881015i
\(330\) 0 0
\(331\) 285.098i 0.861323i −0.902513 0.430662i \(-0.858280\pi\)
0.902513 0.430662i \(-0.141720\pi\)
\(332\) 0 0
\(333\) 61.6142i 0.185028i
\(334\) 0 0
\(335\) 643.235i 1.92010i
\(336\) 0 0
\(337\) 507.150 1.50490 0.752448 0.658652i \(-0.228873\pi\)
0.752448 + 0.658652i \(0.228873\pi\)
\(338\) 0 0
\(339\) 195.572 0.576908
\(340\) 0 0
\(341\) −436.150 −1.27903
\(342\) 0 0
\(343\) −31.1921 + 341.579i −0.0909391 + 0.995856i
\(344\) 0 0
\(345\) −77.6748 −0.225144
\(346\) 0 0
\(347\) 4.14103i 0.0119338i −0.999982 0.00596691i \(-0.998101\pi\)
0.999982 0.00596691i \(-0.00189934\pi\)
\(348\) 0 0
\(349\) 231.206 0.662481 0.331240 0.943546i \(-0.392533\pi\)
0.331240 + 0.943546i \(0.392533\pi\)
\(350\) 0 0
\(351\) 73.5381 0.209510
\(352\) 0 0
\(353\) 543.259i 1.53898i 0.638660 + 0.769489i \(0.279489\pi\)
−0.638660 + 0.769489i \(0.720511\pi\)
\(354\) 0 0
\(355\) 580.290 1.63462
\(356\) 0 0
\(357\) −47.6824 + 77.0863i −0.133564 + 0.215928i
\(358\) 0 0
\(359\) −270.411 −0.753235 −0.376618 0.926369i \(-0.622913\pi\)
−0.376618 + 0.926369i \(0.622913\pi\)
\(360\) 0 0
\(361\) 456.296 1.26398
\(362\) 0 0
\(363\) −241.197 −0.664455
\(364\) 0 0
\(365\) 458.974i 1.25746i
\(366\) 0 0
\(367\) 192.315i 0.524019i 0.965065 + 0.262010i \(0.0843852\pi\)
−0.965065 + 0.262010i \(0.915615\pi\)
\(368\) 0 0
\(369\) 147.329i 0.399265i
\(370\) 0 0
\(371\) 284.243 459.525i 0.766154 1.23861i
\(372\) 0 0
\(373\) 73.8655i 0.198031i 0.995086 + 0.0990155i \(0.0315693\pi\)
−0.995086 + 0.0990155i \(0.968431\pi\)
\(374\) 0 0
\(375\) −185.359 −0.494292
\(376\) 0 0
\(377\) 83.7147i 0.222055i
\(378\) 0 0
\(379\) 10.9952i 0.0290111i −0.999895 0.0145056i \(-0.995383\pi\)
0.999895 0.0145056i \(-0.00461742\pi\)
\(380\) 0 0
\(381\) −287.948 −0.755769
\(382\) 0 0
\(383\) 557.586i 1.45584i 0.685663 + 0.727919i \(0.259512\pi\)
−0.685663 + 0.727919i \(0.740488\pi\)
\(384\) 0 0
\(385\) −329.038 + 531.944i −0.854645 + 1.38167i
\(386\) 0 0
\(387\) 127.492i 0.329437i
\(388\) 0 0
\(389\) 41.0393i 0.105499i 0.998608 + 0.0527497i \(0.0167986\pi\)
−0.998608 + 0.0527497i \(0.983201\pi\)
\(390\) 0 0
\(391\) 60.5299i 0.154808i
\(392\) 0 0
\(393\) 270.714 0.688840
\(394\) 0 0
\(395\) 247.955 0.627735
\(396\) 0 0
\(397\) −228.169 −0.574733 −0.287366 0.957821i \(-0.592780\pi\)
−0.287366 + 0.957821i \(0.592780\pi\)
\(398\) 0 0
\(399\) −294.780 182.339i −0.738797 0.456989i
\(400\) 0 0
\(401\) 582.508 1.45264 0.726319 0.687357i \(-0.241229\pi\)
0.726319 + 0.687357i \(0.241229\pi\)
\(402\) 0 0
\(403\) 382.619i 0.949426i
\(404\) 0 0
\(405\) 49.8496 0.123085
\(406\) 0 0
\(407\) 331.329 0.814076
\(408\) 0 0
\(409\) 4.68899i 0.0114645i −0.999984 0.00573226i \(-0.998175\pi\)
0.999984 0.00573226i \(-0.00182465\pi\)
\(410\) 0 0
\(411\) 118.111 0.287373
\(412\) 0 0
\(413\) −242.433 149.959i −0.587005 0.363097i
\(414\) 0 0
\(415\) 364.733 0.878874
\(416\) 0 0
\(417\) −329.883 −0.791086
\(418\) 0 0
\(419\) −105.256 −0.251208 −0.125604 0.992080i \(-0.540087\pi\)
−0.125604 + 0.992080i \(0.540087\pi\)
\(420\) 0 0
\(421\) 619.528i 1.47156i 0.677220 + 0.735781i \(0.263185\pi\)
−0.677220 + 0.735781i \(0.736815\pi\)
\(422\) 0 0
\(423\) 146.067i 0.345313i
\(424\) 0 0
\(425\) 42.4542i 0.0998923i
\(426\) 0 0
\(427\) −64.9277 40.1616i −0.152055 0.0940552i
\(428\) 0 0
\(429\) 395.449i 0.921793i
\(430\) 0 0
\(431\) 438.654 1.01776 0.508879 0.860838i \(-0.330060\pi\)
0.508879 + 0.860838i \(0.330060\pi\)
\(432\) 0 0
\(433\) 43.0393i 0.0993979i 0.998764 + 0.0496990i \(0.0158262\pi\)
−0.998764 + 0.0496990i \(0.984174\pi\)
\(434\) 0 0
\(435\) 56.7480i 0.130455i
\(436\) 0 0
\(437\) 231.468 0.529674
\(438\) 0 0
\(439\) 206.214i 0.469736i −0.972027 0.234868i \(-0.924534\pi\)
0.972027 0.234868i \(-0.0754658\pi\)
\(440\) 0 0
\(441\) 65.6406 + 131.531i 0.148845 + 0.298255i
\(442\) 0 0
\(443\) 611.291i 1.37989i 0.723862 + 0.689945i \(0.242365\pi\)
−0.723862 + 0.689945i \(0.757635\pi\)
\(444\) 0 0
\(445\) 743.249i 1.67022i
\(446\) 0 0
\(447\) 72.0695i 0.161229i
\(448\) 0 0
\(449\) −597.695 −1.33117 −0.665585 0.746322i \(-0.731818\pi\)
−0.665585 + 0.746322i \(0.731818\pi\)
\(450\) 0 0
\(451\) 792.257 1.75667
\(452\) 0 0
\(453\) 259.686 0.573259
\(454\) 0 0
\(455\) 466.656 + 288.654i 1.02562 + 0.634404i
\(456\) 0 0
\(457\) −350.459 −0.766868 −0.383434 0.923568i \(-0.625259\pi\)
−0.383434 + 0.923568i \(0.625259\pi\)
\(458\) 0 0
\(459\) 38.8464i 0.0846327i
\(460\) 0 0
\(461\) −182.865 −0.396671 −0.198335 0.980134i \(-0.563553\pi\)
−0.198335 + 0.980134i \(0.563553\pi\)
\(462\) 0 0
\(463\) −62.8699 −0.135788 −0.0678941 0.997693i \(-0.521628\pi\)
−0.0678941 + 0.997693i \(0.521628\pi\)
\(464\) 0 0
\(465\) 259.367i 0.557779i
\(466\) 0 0
\(467\) 645.253 1.38170 0.690849 0.722999i \(-0.257237\pi\)
0.690849 + 0.722999i \(0.257237\pi\)
\(468\) 0 0
\(469\) 427.641 691.350i 0.911814 1.47409i
\(470\) 0 0
\(471\) 141.639 0.300719
\(472\) 0 0
\(473\) 685.586 1.44944
\(474\) 0 0
\(475\) −162.346 −0.341781
\(476\) 0 0
\(477\) 231.571i 0.485473i
\(478\) 0 0
\(479\) 437.654i 0.913684i 0.889548 + 0.456842i \(0.151019\pi\)
−0.889548 + 0.456842i \(0.848981\pi\)
\(480\) 0 0
\(481\) 290.663i 0.604289i
\(482\) 0 0
\(483\) −83.4850 51.6404i −0.172847 0.106916i
\(484\) 0 0
\(485\) 207.501i 0.427837i
\(486\) 0 0
\(487\) 14.7391 0.0302650 0.0151325 0.999885i \(-0.495183\pi\)
0.0151325 + 0.999885i \(0.495183\pi\)
\(488\) 0 0
\(489\) 476.977i 0.975412i
\(490\) 0 0
\(491\) 120.149i 0.244702i −0.992487 0.122351i \(-0.960957\pi\)
0.992487 0.122351i \(-0.0390434\pi\)
\(492\) 0 0
\(493\) 44.2222 0.0897002
\(494\) 0 0
\(495\) 268.065i 0.541545i
\(496\) 0 0
\(497\) 623.697 + 385.793i 1.25492 + 0.776244i
\(498\) 0 0
\(499\) 4.70185i 0.00942254i 0.999989 + 0.00471127i \(0.00149965\pi\)
−0.999989 + 0.00471127i \(0.998500\pi\)
\(500\) 0 0
\(501\) 456.962i 0.912100i
\(502\) 0 0
\(503\) 112.427i 0.223512i 0.993736 + 0.111756i \(0.0356475\pi\)
−0.993736 + 0.111756i \(0.964352\pi\)
\(504\) 0 0
\(505\) 778.419 1.54142
\(506\) 0 0
\(507\) 54.1969 0.106897
\(508\) 0 0
\(509\) 764.966 1.50288 0.751440 0.659801i \(-0.229360\pi\)
0.751440 + 0.659801i \(0.229360\pi\)
\(510\) 0 0
\(511\) −305.139 + 493.307i −0.597141 + 0.965375i
\(512\) 0 0
\(513\) −148.550 −0.289570
\(514\) 0 0
\(515\) 1098.61i 2.13323i
\(516\) 0 0
\(517\) −785.474 −1.51929
\(518\) 0 0
\(519\) 94.6569 0.182383
\(520\) 0 0
\(521\) 993.978i 1.90783i 0.300083 + 0.953913i \(0.402986\pi\)
−0.300083 + 0.953913i \(0.597014\pi\)
\(522\) 0 0
\(523\) −460.338 −0.880188 −0.440094 0.897952i \(-0.645055\pi\)
−0.440094 + 0.897952i \(0.645055\pi\)
\(524\) 0 0
\(525\) 58.5545 + 36.2194i 0.111532 + 0.0689893i
\(526\) 0 0
\(527\) −202.118 −0.383525
\(528\) 0 0
\(529\) −463.446 −0.876079
\(530\) 0 0
\(531\) −122.170 −0.230076
\(532\) 0 0
\(533\) 695.019i 1.30397i
\(534\) 0 0
\(535\) 117.232i 0.219126i
\(536\) 0 0
\(537\) 182.826i 0.340458i
\(538\) 0 0
\(539\) −707.303 + 352.981i −1.31225 + 0.654881i
\(540\) 0 0
\(541\) 411.334i 0.760321i 0.924921 + 0.380160i \(0.124131\pi\)
−0.924921 + 0.380160i \(0.875869\pi\)
\(542\) 0 0
\(543\) −235.131 −0.433023
\(544\) 0 0
\(545\) 594.804i 1.09138i
\(546\) 0 0
\(547\) 30.2891i 0.0553732i −0.999617 0.0276866i \(-0.991186\pi\)
0.999617 0.0276866i \(-0.00881404\pi\)
\(548\) 0 0
\(549\) −32.7193 −0.0595980
\(550\) 0 0
\(551\) 169.107i 0.306909i
\(552\) 0 0
\(553\) 266.503 + 164.848i 0.481922 + 0.298097i
\(554\) 0 0
\(555\) 197.033i 0.355014i
\(556\) 0 0
\(557\) 763.819i 1.37131i −0.727927 0.685655i \(-0.759516\pi\)
0.727927 0.685655i \(-0.240484\pi\)
\(558\) 0 0
\(559\) 601.440i 1.07592i
\(560\) 0 0
\(561\) −208.896 −0.372363
\(562\) 0 0
\(563\) 40.3472 0.0716646 0.0358323 0.999358i \(-0.488592\pi\)
0.0358323 + 0.999358i \(0.488592\pi\)
\(564\) 0 0
\(565\) 625.409 1.10692
\(566\) 0 0
\(567\) 53.5784 + 33.1414i 0.0944946 + 0.0584504i
\(568\) 0 0
\(569\) 186.637 0.328008 0.164004 0.986460i \(-0.447559\pi\)
0.164004 + 0.986460i \(0.447559\pi\)
\(570\) 0 0
\(571\) 901.865i 1.57945i 0.613462 + 0.789724i \(0.289776\pi\)
−0.613462 + 0.789724i \(0.710224\pi\)
\(572\) 0 0
\(573\) −37.3639 −0.0652075
\(574\) 0 0
\(575\) −45.9783 −0.0799622
\(576\) 0 0
\(577\) 742.756i 1.28727i 0.765332 + 0.643636i \(0.222575\pi\)
−0.765332 + 0.643636i \(0.777425\pi\)
\(578\) 0 0
\(579\) −550.917 −0.951497
\(580\) 0 0
\(581\) 392.016 + 242.485i 0.674726 + 0.417357i
\(582\) 0 0
\(583\) 1245.27 2.13596
\(584\) 0 0
\(585\) 235.164 0.401989
\(586\) 0 0
\(587\) −514.288 −0.876130 −0.438065 0.898943i \(-0.644336\pi\)
−0.438065 + 0.898943i \(0.644336\pi\)
\(588\) 0 0
\(589\) 772.904i 1.31223i
\(590\) 0 0
\(591\) 0.423513i 0.000716604i
\(592\) 0 0
\(593\) 466.087i 0.785982i −0.919542 0.392991i \(-0.871440\pi\)
0.919542 0.392991i \(-0.128560\pi\)
\(594\) 0 0
\(595\) −152.481 + 246.510i −0.256271 + 0.414303i
\(596\) 0 0
\(597\) 409.253i 0.685515i
\(598\) 0 0
\(599\) −947.796 −1.58230 −0.791149 0.611624i \(-0.790517\pi\)
−0.791149 + 0.611624i \(0.790517\pi\)
\(600\) 0 0
\(601\) 153.107i 0.254754i 0.991854 + 0.127377i \(0.0406559\pi\)
−0.991854 + 0.127377i \(0.959344\pi\)
\(602\) 0 0
\(603\) 348.395i 0.577770i
\(604\) 0 0
\(605\) −771.312 −1.27490
\(606\) 0 0
\(607\) 298.930i 0.492471i −0.969210 0.246236i \(-0.920806\pi\)
0.969210 0.246236i \(-0.0791937\pi\)
\(608\) 0 0
\(609\) 37.7277 60.9929i 0.0619502 0.100153i
\(610\) 0 0
\(611\) 689.068i 1.12777i
\(612\) 0 0
\(613\) 291.497i 0.475525i −0.971323 0.237762i \(-0.923586\pi\)
0.971323 0.237762i \(-0.0764140\pi\)
\(614\) 0 0
\(615\) 471.135i 0.766073i
\(616\) 0 0
\(617\) −359.433 −0.582549 −0.291275 0.956639i \(-0.594079\pi\)
−0.291275 + 0.956639i \(0.594079\pi\)
\(618\) 0 0
\(619\) −57.2368 −0.0924666 −0.0462333 0.998931i \(-0.514722\pi\)
−0.0462333 + 0.998931i \(0.514722\pi\)
\(620\) 0 0
\(621\) −42.0710 −0.0677471
\(622\) 0 0
\(623\) −494.133 + 798.846i −0.793151 + 1.28226i
\(624\) 0 0
\(625\) −734.720 −1.17555
\(626\) 0 0
\(627\) 798.822i 1.27404i
\(628\) 0 0
\(629\) 153.542 0.244106
\(630\) 0 0
\(631\) 55.9357 0.0886461 0.0443230 0.999017i \(-0.485887\pi\)
0.0443230 + 0.999017i \(0.485887\pi\)
\(632\) 0 0
\(633\) 174.011i 0.274899i
\(634\) 0 0
\(635\) −920.815 −1.45010
\(636\) 0 0
\(637\) 309.658 + 620.492i 0.486119 + 0.974084i
\(638\) 0 0
\(639\) 314.302 0.491866
\(640\) 0 0
\(641\) −459.772 −0.717273 −0.358636 0.933477i \(-0.616758\pi\)
−0.358636 + 0.933477i \(0.616758\pi\)
\(642\) 0 0
\(643\) 712.301 1.10778 0.553888 0.832591i \(-0.313143\pi\)
0.553888 + 0.832591i \(0.313143\pi\)
\(644\) 0 0
\(645\) 407.701i 0.632094i
\(646\) 0 0
\(647\) 10.9490i 0.0169228i −0.999964 0.00846139i \(-0.997307\pi\)
0.999964 0.00846139i \(-0.00269338\pi\)
\(648\) 0 0
\(649\) 656.968i 1.01228i
\(650\) 0 0
\(651\) −172.435 + 278.769i −0.264877 + 0.428216i
\(652\) 0 0
\(653\) 257.268i 0.393979i 0.980406 + 0.196989i \(0.0631164\pi\)
−0.980406 + 0.196989i \(0.936884\pi\)
\(654\) 0 0
\(655\) 865.704 1.32168
\(656\) 0 0
\(657\) 248.594i 0.378378i
\(658\) 0 0
\(659\) 1016.92i 1.54312i −0.636157 0.771560i \(-0.719477\pi\)
0.636157 0.771560i \(-0.280523\pi\)
\(660\) 0 0
\(661\) 740.204 1.11982 0.559912 0.828552i \(-0.310835\pi\)
0.559912 + 0.828552i \(0.310835\pi\)
\(662\) 0 0
\(663\) 183.257i 0.276405i
\(664\) 0 0
\(665\) −942.662 583.091i −1.41754 0.876829i
\(666\) 0 0
\(667\) 47.8930i 0.0718036i
\(668\) 0 0
\(669\) 655.116i 0.979247i
\(670\) 0 0
\(671\) 175.947i 0.262216i
\(672\) 0 0
\(673\) −1037.02 −1.54089 −0.770445 0.637506i \(-0.779966\pi\)
−0.770445 + 0.637506i \(0.779966\pi\)
\(674\) 0 0
\(675\) 29.5076 0.0437150
\(676\) 0 0
\(677\) −809.104 −1.19513 −0.597566 0.801820i \(-0.703865\pi\)
−0.597566 + 0.801820i \(0.703865\pi\)
\(678\) 0 0
\(679\) 137.952 223.022i 0.203170 0.328457i
\(680\) 0 0
\(681\) −98.1165 −0.144077
\(682\) 0 0
\(683\) 306.279i 0.448432i −0.974539 0.224216i \(-0.928018\pi\)
0.974539 0.224216i \(-0.0719822\pi\)
\(684\) 0 0
\(685\) 377.700 0.551386
\(686\) 0 0
\(687\) −513.666 −0.747694
\(688\) 0 0
\(689\) 1092.43i 1.58553i
\(690\) 0 0
\(691\) −77.2654 −0.111817 −0.0559084 0.998436i \(-0.517805\pi\)
−0.0559084 + 0.998436i \(0.517805\pi\)
\(692\) 0 0
\(693\) −178.217 + 288.117i −0.257167 + 0.415753i
\(694\) 0 0
\(695\) −1054.92 −1.51787
\(696\) 0 0
\(697\) 367.143 0.526747
\(698\) 0 0
\(699\) −194.636 −0.278450
\(700\) 0 0
\(701\) 57.3914i 0.0818708i 0.999162 + 0.0409354i \(0.0130338\pi\)
−0.999162 + 0.0409354i \(0.986966\pi\)
\(702\) 0 0
\(703\) 587.150i 0.835206i
\(704\) 0 0
\(705\) 467.102i 0.662555i
\(706\) 0 0
\(707\) 836.647 + 517.515i 1.18338 + 0.731987i
\(708\) 0 0
\(709\) 759.488i 1.07121i 0.844468 + 0.535605i \(0.179916\pi\)
−0.844468 + 0.535605i \(0.820084\pi\)
\(710\) 0 0
\(711\) 134.300 0.188889
\(712\) 0 0
\(713\) 218.895i 0.307006i
\(714\) 0 0
\(715\) 1264.59i 1.76865i
\(716\) 0 0
\(717\) 163.665 0.228264
\(718\) 0 0
\(719\) 1249.77i 1.73821i −0.494632 0.869103i \(-0.664697\pi\)
0.494632 0.869103i \(-0.335303\pi\)
\(720\) 0 0
\(721\) 730.389 1180.79i 1.01302 1.63772i
\(722\) 0 0
\(723\) 151.952i 0.210168i
\(724\) 0 0
\(725\) 33.5910i 0.0463324i
\(726\) 0 0
\(727\) 980.653i 1.34890i −0.738319 0.674452i \(-0.764380\pi\)
0.738319 0.674452i \(-0.235620\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 317.710 0.434624
\(732\) 0 0
\(733\) 532.385 0.726309 0.363155 0.931729i \(-0.381700\pi\)
0.363155 + 0.931729i \(0.381700\pi\)
\(734\) 0 0
\(735\) 209.909 + 420.615i 0.285590 + 0.572266i
\(736\) 0 0
\(737\) 1873.49 2.54204
\(738\) 0 0
\(739\) 1061.19i 1.43599i 0.696049 + 0.717994i \(0.254939\pi\)
−0.696049 + 0.717994i \(0.745061\pi\)
\(740\) 0 0
\(741\) −700.778 −0.945720
\(742\) 0 0
\(743\) 237.425 0.319549 0.159774 0.987154i \(-0.448923\pi\)
0.159774 + 0.987154i \(0.448923\pi\)
\(744\) 0 0
\(745\) 230.468i 0.309352i
\(746\) 0 0
\(747\) 197.550 0.264458
\(748\) 0 0
\(749\) −77.9395 + 126.002i −0.104058 + 0.168227i
\(750\) 0 0
\(751\) −572.550 −0.762384 −0.381192 0.924496i \(-0.624486\pi\)
−0.381192 + 0.924496i \(0.624486\pi\)
\(752\) 0 0
\(753\) −597.453 −0.793430
\(754\) 0 0
\(755\) 830.438 1.09992
\(756\) 0 0
\(757\) 1232.38i 1.62798i 0.580876 + 0.813992i \(0.302710\pi\)
−0.580876 + 0.813992i \(0.697290\pi\)
\(758\) 0 0
\(759\) 226.236i 0.298071i
\(760\) 0 0
\(761\) 474.738i 0.623834i −0.950109 0.311917i \(-0.899029\pi\)
0.950109 0.311917i \(-0.100971\pi\)
\(762\) 0 0
\(763\) 395.443 639.297i 0.518273 0.837873i
\(764\) 0 0
\(765\) 124.225i 0.162386i
\(766\) 0 0
\(767\) −576.335 −0.751414
\(768\) 0 0
\(769\) 812.878i 1.05706i −0.848915 0.528529i \(-0.822744\pi\)
0.848915 0.528529i \(-0.177256\pi\)
\(770\) 0 0
\(771\) 131.283i 0.170276i
\(772\) 0 0
\(773\) −864.876 −1.11886 −0.559428 0.828879i \(-0.688979\pi\)
−0.559428 + 0.828879i \(0.688979\pi\)
\(774\) 0 0
\(775\) 153.528i 0.198101i
\(776\) 0 0
\(777\) 130.993 211.772i 0.168588 0.272550i
\(778\) 0 0
\(779\) 1403.96i 1.80226i
\(780\) 0 0
\(781\) 1690.15i 2.16409i
\(782\) 0 0
\(783\) 30.7364i 0.0392547i
\(784\) 0 0
\(785\) 452.940 0.576993
\(786\) 0 0
\(787\) 1030.93 1.30995 0.654975 0.755651i \(-0.272679\pi\)
0.654975 + 0.755651i \(0.272679\pi\)
\(788\) 0 0
\(789\) 34.2955 0.0434671
\(790\) 0 0
\(791\) 672.191 + 415.790i 0.849799 + 0.525651i
\(792\) 0 0
\(793\) −154.352 −0.194643
\(794\) 0 0
\(795\) 740.528i 0.931482i
\(796\) 0 0
\(797\) −742.857 −0.932067 −0.466033 0.884767i \(-0.654317\pi\)
−0.466033 + 0.884767i \(0.654317\pi\)
\(798\) 0 0
\(799\) −364.000 −0.455569
\(800\) 0 0
\(801\) 402.566i 0.502579i
\(802\) 0 0
\(803\) −1336.81 −1.66477
\(804\) 0 0
\(805\) −266.973 165.138i −0.331643 0.205141i
\(806\) 0 0
\(807\) 321.470 0.398352
\(808\) 0 0
\(809\) −947.608 −1.17133 −0.585667 0.810552i \(-0.699167\pi\)
−0.585667 + 0.810552i \(0.699167\pi\)
\(810\) 0 0
\(811\) 580.571 0.715870 0.357935 0.933747i \(-0.383481\pi\)
0.357935 + 0.933747i \(0.383481\pi\)
\(812\) 0 0
\(813\) 239.474i 0.294555i
\(814\) 0 0
\(815\) 1525.30i 1.87153i
\(816\) 0 0
\(817\) 1214.93i 1.48706i
\(818\) 0 0
\(819\) 252.755 + 156.343i 0.308614 + 0.190896i
\(820\) 0 0
\(821\) 1364.03i 1.66143i −0.556700 0.830714i \(-0.687933\pi\)
0.556700 0.830714i \(-0.312067\pi\)
\(822\) 0 0
\(823\) 246.998 0.300119 0.150059 0.988677i \(-0.452053\pi\)
0.150059 + 0.988677i \(0.452053\pi\)
\(824\) 0 0
\(825\) 158.676i 0.192335i
\(826\) 0 0
\(827\) 737.549i 0.891837i −0.895074 0.445918i \(-0.852877\pi\)
0.895074 0.445918i \(-0.147123\pi\)
\(828\) 0 0
\(829\) −1260.35 −1.52032 −0.760162 0.649733i \(-0.774881\pi\)
−0.760162 + 0.649733i \(0.774881\pi\)
\(830\) 0 0
\(831\) 191.651i 0.230626i
\(832\) 0 0
\(833\) −327.774 + 163.576i −0.393486 + 0.196370i
\(834\) 0 0
\(835\) 1461.30i 1.75006i
\(836\) 0 0
\(837\) 140.481i 0.167839i
\(838\) 0 0
\(839\) 272.430i 0.324708i −0.986733 0.162354i \(-0.948091\pi\)
0.986733 0.162354i \(-0.0519087\pi\)
\(840\) 0 0
\(841\) 806.010 0.958395
\(842\) 0 0
\(843\) −920.908 −1.09242
\(844\) 0 0
\(845\) 173.314 0.205105
\(846\) 0 0
\(847\) −829.009 512.790i −0.978759 0.605419i
\(848\) 0 0
\(849\) −760.612 −0.895891
\(850\) 0 0
\(851\) 166.288i 0.195403i
\(852\) 0 0
\(853\) 167.153 0.195959 0.0979794 0.995188i \(-0.468762\pi\)
0.0979794 + 0.995188i \(0.468762\pi\)
\(854\) 0 0
\(855\) −475.039 −0.555602
\(856\) 0 0
\(857\) 13.0480i 0.0152252i −0.999971 0.00761258i \(-0.997577\pi\)
0.999971 0.00761258i \(-0.00242318\pi\)
\(858\) 0 0
\(859\) −872.946 −1.01624 −0.508118 0.861288i \(-0.669658\pi\)
−0.508118 + 0.861288i \(0.669658\pi\)
\(860\) 0 0
\(861\) 313.224 506.377i 0.363791 0.588127i
\(862\) 0 0
\(863\) −560.236 −0.649173 −0.324587 0.945856i \(-0.605225\pi\)
−0.324587 + 0.945856i \(0.605225\pi\)
\(864\) 0 0
\(865\) 302.699 0.349941
\(866\) 0 0
\(867\) 403.757 0.465695
\(868\) 0 0
\(869\) 722.195i 0.831064i
\(870\) 0 0
\(871\) 1643.54i 1.88696i
\(872\) 0 0
\(873\) 112.389i 0.128738i
\(874\) 0 0
\(875\) −637.091 394.078i −0.728104 0.450375i
\(876\) 0 0
\(877\) 819.789i 0.934766i −0.884055 0.467383i \(-0.845197\pi\)
0.884055 0.467383i \(-0.154803\pi\)
\(878\) 0 0
\(879\) 212.936 0.242248
\(880\) 0 0
\(881\) 930.214i 1.05586i 0.849287 + 0.527931i \(0.177032\pi\)
−0.849287 + 0.527931i \(0.822968\pi\)
\(882\) 0 0
\(883\) 444.483i 0.503378i 0.967808 + 0.251689i \(0.0809860\pi\)
−0.967808 + 0.251689i \(0.919014\pi\)
\(884\) 0 0
\(885\) −390.682 −0.441449
\(886\) 0 0
\(887\) 159.932i 0.180307i −0.995928 0.0901536i \(-0.971264\pi\)
0.995928 0.0901536i \(-0.0287358\pi\)
\(888\) 0 0
\(889\) −989.694 612.183i −1.11327 0.688620i
\(890\) 0 0
\(891\) 145.192i 0.162954i
\(892\) 0 0
\(893\) 1391.94i 1.55873i
\(894\) 0 0
\(895\) 584.650i 0.653240i
\(896\) 0 0
\(897\) −198.468 −0.221258
\(898\) 0 0
\(899\) 159.922 0.177888
\(900\) 0 0
\(901\) 577.073 0.640481
\(902\) 0 0
\(903\) 271.051 438.198i 0.300167 0.485269i
\(904\) 0 0
\(905\) −751.915 −0.830845
\(906\) 0 0
\(907\) 66.5490i 0.0733727i −0.999327 0.0366863i \(-0.988320\pi\)
0.999327 0.0366863i \(-0.0116802\pi\)
\(908\) 0 0
\(909\) 421.615 0.463823
\(910\) 0 0
\(911\) 254.406 0.279260 0.139630 0.990204i \(-0.455409\pi\)
0.139630 + 0.990204i \(0.455409\pi\)
\(912\) 0 0
\(913\) 1062.32i 1.16355i
\(914\) 0 0
\(915\) −104.631 −0.114351
\(916\) 0 0
\(917\) 930.460 + 575.544i 1.01468 + 0.627638i
\(918\) 0 0
\(919\) −1688.22 −1.83702 −0.918511 0.395395i \(-0.870608\pi\)
−0.918511 + 0.395395i \(0.870608\pi\)
\(920\) 0 0
\(921\) 10.0823 0.0109472
\(922\) 0 0
\(923\) 1482.71 1.60640
\(924\) 0 0
\(925\) 116.630i 0.126087i
\(926\) 0 0
\(927\) 595.042i 0.641901i
\(928\) 0 0
\(929\) 905.524i 0.974730i −0.873198 0.487365i \(-0.837958\pi\)
0.873198 0.487365i \(-0.162042\pi\)
\(930\) 0 0
\(931\) −625.520 1253.42i −0.671879 1.34631i
\(932\) 0 0
\(933\) 361.223i 0.387162i
\(934\) 0 0
\(935\) −668.017 −0.714457
\(936\) 0 0
\(937\) 1465.43i 1.56396i −0.623301 0.781982i \(-0.714209\pi\)
0.623301 0.781982i \(-0.285791\pi\)
\(938\) 0 0
\(939\) 43.3847i 0.0462031i
\(940\) 0 0
\(941\) 250.000 0.265675 0.132837 0.991138i \(-0.457591\pi\)
0.132837 + 0.991138i \(0.457591\pi\)
\(942\) 0 0
\(943\) 397.619i 0.421653i
\(944\) 0 0
\(945\) 171.336 + 105.981i 0.181308 + 0.112149i
\(946\) 0 0
\(947\) 638.465i 0.674197i −0.941469 0.337099i \(-0.890554\pi\)
0.941469 0.337099i \(-0.109446\pi\)
\(948\) 0 0
\(949\) 1172.73i 1.23576i
\(950\) 0 0
\(951\) 299.182i 0.314598i
\(952\) 0 0
\(953\) 436.356 0.457876 0.228938 0.973441i \(-0.426475\pi\)
0.228938 + 0.973441i \(0.426475\pi\)
\(954\) 0 0
\(955\) −119.484 −0.125114
\(956\) 0 0
\(957\) 165.284 0.172711
\(958\) 0 0
\(959\) 405.953 + 251.105i 0.423308 + 0.261841i
\(960\) 0 0
\(961\) 230.077 0.239414
\(962\) 0 0
\(963\) 63.4966i 0.0659362i
\(964\) 0 0
\(965\) −1761.75 −1.82565
\(966\) 0 0
\(967\) 891.342 0.921760 0.460880 0.887463i \(-0.347534\pi\)
0.460880 + 0.887463i \(0.347534\pi\)
\(968\) 0 0
\(969\) 370.185i 0.382028i
\(970\) 0 0
\(971\) −162.475 −0.167327 −0.0836635 0.996494i \(-0.526662\pi\)
−0.0836635 + 0.996494i \(0.526662\pi\)
\(972\) 0 0
\(973\) −1133.83 701.338i −1.16529 0.720800i
\(974\) 0 0
\(975\) 139.201 0.142770
\(976\) 0 0
\(977\) 499.904 0.511673 0.255836 0.966720i \(-0.417649\pi\)
0.255836 + 0.966720i \(0.417649\pi\)
\(978\) 0 0
\(979\) −2164.79 −2.21122
\(980\) 0 0
\(981\) 322.164i 0.328403i
\(982\) 0 0
\(983\) 544.456i 0.553872i 0.960888 + 0.276936i \(0.0893190\pi\)
−0.960888 + 0.276936i \(0.910681\pi\)
\(984\) 0 0
\(985\) 1.35433i 0.00137496i
\(986\) 0 0
\(987\) −310.542 + 502.042i −0.314632 + 0.508654i
\(988\) 0 0
\(989\) 344.082i 0.347909i
\(990\) 0 0
\(991\) −778.083 −0.785149 −0.392575 0.919720i \(-0.628415\pi\)
−0.392575 + 0.919720i \(0.628415\pi\)
\(992\) 0 0
\(993\) 493.804i 0.497285i
\(994\) 0 0
\(995\) 1308.73i 1.31530i
\(996\) 0 0
\(997\) −366.247 −0.367349 −0.183674 0.982987i \(-0.558799\pi\)
−0.183674 + 0.982987i \(0.558799\pi\)
\(998\) 0 0
\(999\) 106.719i 0.106826i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.l.a.433.30 32
3.2 odd 2 2016.3.l.h.433.8 32
4.3 odd 2 168.3.l.a.13.15 yes 32
7.6 odd 2 inner 672.3.l.a.433.14 32
8.3 odd 2 168.3.l.a.13.14 yes 32
8.5 even 2 inner 672.3.l.a.433.3 32
12.11 even 2 504.3.l.h.181.17 32
21.20 even 2 2016.3.l.h.433.26 32
24.5 odd 2 2016.3.l.h.433.25 32
24.11 even 2 504.3.l.h.181.20 32
28.27 even 2 168.3.l.a.13.16 yes 32
56.13 odd 2 inner 672.3.l.a.433.19 32
56.27 even 2 168.3.l.a.13.13 32
84.83 odd 2 504.3.l.h.181.18 32
168.83 odd 2 504.3.l.h.181.19 32
168.125 even 2 2016.3.l.h.433.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.13 32 56.27 even 2
168.3.l.a.13.14 yes 32 8.3 odd 2
168.3.l.a.13.15 yes 32 4.3 odd 2
168.3.l.a.13.16 yes 32 28.27 even 2
504.3.l.h.181.17 32 12.11 even 2
504.3.l.h.181.18 32 84.83 odd 2
504.3.l.h.181.19 32 168.83 odd 2
504.3.l.h.181.20 32 24.11 even 2
672.3.l.a.433.3 32 8.5 even 2 inner
672.3.l.a.433.14 32 7.6 odd 2 inner
672.3.l.a.433.19 32 56.13 odd 2 inner
672.3.l.a.433.30 32 1.1 even 1 trivial
2016.3.l.h.433.7 32 168.125 even 2
2016.3.l.h.433.8 32 3.2 odd 2
2016.3.l.h.433.25 32 24.5 odd 2
2016.3.l.h.433.26 32 21.20 even 2