Properties

Label 504.3.g.d.379.24
Level $504$
Weight $3$
Character 504.379
Analytic conductor $13.733$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(379,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.379"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.24
Character \(\chi\) \(=\) 504.379
Dual form 504.3.g.d.379.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.98610 + 0.235345i) q^{2} +(3.88923 + 0.934838i) q^{4} +7.47825i q^{5} -2.64575i q^{7} +(7.50440 + 2.77200i) q^{8} +(-1.75997 + 14.8526i) q^{10} +13.5056 q^{11} -3.54193i q^{13} +(0.622663 - 5.25474i) q^{14} +(14.2522 + 7.27159i) q^{16} -7.84106 q^{17} -11.1174 q^{19} +(-6.99095 + 29.0846i) q^{20} +(26.8235 + 3.17846i) q^{22} +22.3804i q^{23} -30.9242 q^{25} +(0.833575 - 7.03465i) q^{26} +(2.47335 - 10.2899i) q^{28} +52.0985i q^{29} +15.6772i q^{31} +(26.5949 + 17.7963i) q^{32} +(-15.5732 - 1.84535i) q^{34} +19.7856 q^{35} -22.1574i q^{37} +(-22.0803 - 2.61642i) q^{38} +(-20.7297 + 56.1198i) q^{40} -36.1220 q^{41} +81.8151 q^{43} +(52.5262 + 12.6255i) q^{44} +(-5.26710 + 44.4498i) q^{46} -66.3024i q^{47} -7.00000 q^{49} +(-61.4187 - 7.27785i) q^{50} +(3.31113 - 13.7754i) q^{52} -83.6865i q^{53} +100.998i q^{55} +(7.33401 - 19.8548i) q^{56} +(-12.2611 + 103.473i) q^{58} -47.7464 q^{59} -102.992i q^{61} +(-3.68954 + 31.1365i) q^{62} +(48.6321 + 41.6043i) q^{64} +26.4874 q^{65} -10.1586 q^{67} +(-30.4957 - 7.33013i) q^{68} +(39.2963 + 4.65643i) q^{70} -71.0621i q^{71} +42.8065 q^{73} +(5.21463 - 44.0069i) q^{74} +(-43.2381 - 10.3930i) q^{76} -35.7324i q^{77} +10.3881i q^{79} +(-54.3788 + 106.581i) q^{80} +(-71.7420 - 8.50111i) q^{82} +103.602 q^{83} -58.6374i q^{85} +(162.493 + 19.2547i) q^{86} +(101.351 + 37.4374i) q^{88} +60.9498 q^{89} -9.37107 q^{91} +(-20.9220 + 87.0424i) q^{92} +(15.6039 - 131.684i) q^{94} -83.1387i q^{95} +52.2712 q^{97} +(-13.9027 - 1.64741i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 10 q^{4} - 10 q^{8} + 12 q^{10} - 32 q^{11} + 14 q^{14} + 66 q^{16} - 16 q^{17} - 64 q^{19} - 20 q^{20} + 12 q^{22} - 72 q^{25} - 100 q^{26} - 14 q^{28} - 98 q^{32} - 108 q^{34} + 72 q^{38}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.98610 + 0.235345i 0.993052 + 0.117672i
\(3\) 0 0
\(4\) 3.88923 + 0.934838i 0.972306 + 0.233710i
\(5\) 7.47825i 1.49565i 0.663896 + 0.747825i \(0.268902\pi\)
−0.663896 + 0.747825i \(0.731098\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 7.50440 + 2.77200i 0.938050 + 0.346499i
\(9\) 0 0
\(10\) −1.75997 + 14.8526i −0.175997 + 1.48526i
\(11\) 13.5056 1.22778 0.613889 0.789392i \(-0.289604\pi\)
0.613889 + 0.789392i \(0.289604\pi\)
\(12\) 0 0
\(13\) 3.54193i 0.272456i −0.990677 0.136228i \(-0.956502\pi\)
0.990677 0.136228i \(-0.0434980\pi\)
\(14\) 0.622663 5.25474i 0.0444760 0.375339i
\(15\) 0 0
\(16\) 14.2522 + 7.27159i 0.890760 + 0.454475i
\(17\) −7.84106 −0.461239 −0.230620 0.973044i \(-0.574075\pi\)
−0.230620 + 0.973044i \(0.574075\pi\)
\(18\) 0 0
\(19\) −11.1174 −0.585127 −0.292563 0.956246i \(-0.594508\pi\)
−0.292563 + 0.956246i \(0.594508\pi\)
\(20\) −6.99095 + 29.0846i −0.349548 + 1.45423i
\(21\) 0 0
\(22\) 26.8235 + 3.17846i 1.21925 + 0.144476i
\(23\) 22.3804i 0.973060i 0.873664 + 0.486530i \(0.161738\pi\)
−0.873664 + 0.486530i \(0.838262\pi\)
\(24\) 0 0
\(25\) −30.9242 −1.23697
\(26\) 0.833575 7.03465i 0.0320606 0.270563i
\(27\) 0 0
\(28\) 2.47335 10.2899i 0.0883339 0.367497i
\(29\) 52.0985i 1.79650i 0.439484 + 0.898250i \(0.355161\pi\)
−0.439484 + 0.898250i \(0.644839\pi\)
\(30\) 0 0
\(31\) 15.6772i 0.505716i 0.967503 + 0.252858i \(0.0813705\pi\)
−0.967503 + 0.252858i \(0.918630\pi\)
\(32\) 26.5949 + 17.7963i 0.831092 + 0.556135i
\(33\) 0 0
\(34\) −15.5732 1.84535i −0.458035 0.0542751i
\(35\) 19.7856 0.565302
\(36\) 0 0
\(37\) 22.1574i 0.598849i −0.954120 0.299424i \(-0.903205\pi\)
0.954120 0.299424i \(-0.0967946\pi\)
\(38\) −22.0803 2.61642i −0.581062 0.0688532i
\(39\) 0 0
\(40\) −20.7297 + 56.1198i −0.518242 + 1.40299i
\(41\) −36.1220 −0.881023 −0.440512 0.897747i \(-0.645203\pi\)
−0.440512 + 0.897747i \(0.645203\pi\)
\(42\) 0 0
\(43\) 81.8151 1.90268 0.951338 0.308149i \(-0.0997095\pi\)
0.951338 + 0.308149i \(0.0997095\pi\)
\(44\) 52.5262 + 12.6255i 1.19378 + 0.286944i
\(45\) 0 0
\(46\) −5.26710 + 44.4498i −0.114502 + 0.966300i
\(47\) 66.3024i 1.41069i −0.708864 0.705345i \(-0.750792\pi\)
0.708864 0.705345i \(-0.249208\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) −61.4187 7.27785i −1.22837 0.145557i
\(51\) 0 0
\(52\) 3.31113 13.7754i 0.0636756 0.264911i
\(53\) 83.6865i 1.57899i −0.613756 0.789496i \(-0.710342\pi\)
0.613756 0.789496i \(-0.289658\pi\)
\(54\) 0 0
\(55\) 100.998i 1.83633i
\(56\) 7.33401 19.8548i 0.130964 0.354550i
\(57\) 0 0
\(58\) −12.2611 + 103.473i −0.211398 + 1.78402i
\(59\) −47.7464 −0.809261 −0.404630 0.914480i \(-0.632600\pi\)
−0.404630 + 0.914480i \(0.632600\pi\)
\(60\) 0 0
\(61\) 102.992i 1.68839i −0.536039 0.844193i \(-0.680080\pi\)
0.536039 0.844193i \(-0.319920\pi\)
\(62\) −3.68954 + 31.1365i −0.0595087 + 0.502202i
\(63\) 0 0
\(64\) 48.6321 + 41.6043i 0.759876 + 0.650068i
\(65\) 26.4874 0.407499
\(66\) 0 0
\(67\) −10.1586 −0.151621 −0.0758107 0.997122i \(-0.524154\pi\)
−0.0758107 + 0.997122i \(0.524154\pi\)
\(68\) −30.4957 7.33013i −0.448466 0.107796i
\(69\) 0 0
\(70\) 39.2963 + 4.65643i 0.561375 + 0.0665205i
\(71\) 71.0621i 1.00087i −0.865773 0.500437i \(-0.833173\pi\)
0.865773 0.500437i \(-0.166827\pi\)
\(72\) 0 0
\(73\) 42.8065 0.586390 0.293195 0.956053i \(-0.405282\pi\)
0.293195 + 0.956053i \(0.405282\pi\)
\(74\) 5.21463 44.0069i 0.0704679 0.594688i
\(75\) 0 0
\(76\) −43.2381 10.3930i −0.568922 0.136750i
\(77\) 35.7324i 0.464057i
\(78\) 0 0
\(79\) 10.3881i 0.131494i 0.997836 + 0.0657472i \(0.0209431\pi\)
−0.997836 + 0.0657472i \(0.979057\pi\)
\(80\) −54.3788 + 106.581i −0.679735 + 1.33226i
\(81\) 0 0
\(82\) −71.7420 8.50111i −0.874902 0.103672i
\(83\) 103.602 1.24822 0.624111 0.781335i \(-0.285461\pi\)
0.624111 + 0.781335i \(0.285461\pi\)
\(84\) 0 0
\(85\) 58.6374i 0.689852i
\(86\) 162.493 + 19.2547i 1.88946 + 0.223892i
\(87\) 0 0
\(88\) 101.351 + 37.4374i 1.15172 + 0.425425i
\(89\) 60.9498 0.684830 0.342415 0.939549i \(-0.388755\pi\)
0.342415 + 0.939549i \(0.388755\pi\)
\(90\) 0 0
\(91\) −9.37107 −0.102979
\(92\) −20.9220 + 87.0424i −0.227414 + 0.946113i
\(93\) 0 0
\(94\) 15.6039 131.684i 0.165999 1.40089i
\(95\) 83.1387i 0.875145i
\(96\) 0 0
\(97\) 52.2712 0.538878 0.269439 0.963017i \(-0.413162\pi\)
0.269439 + 0.963017i \(0.413162\pi\)
\(98\) −13.9027 1.64741i −0.141865 0.0168103i
\(99\) 0 0
\(100\) −120.271 28.9091i −1.20271 0.289091i
\(101\) 22.2697i 0.220492i −0.993904 0.110246i \(-0.964836\pi\)
0.993904 0.110246i \(-0.0351639\pi\)
\(102\) 0 0
\(103\) 133.270i 1.29388i 0.762539 + 0.646942i \(0.223952\pi\)
−0.762539 + 0.646942i \(0.776048\pi\)
\(104\) 9.81822 26.5801i 0.0944059 0.255578i
\(105\) 0 0
\(106\) 19.6952 166.210i 0.185804 1.56802i
\(107\) −157.452 −1.47151 −0.735755 0.677248i \(-0.763173\pi\)
−0.735755 + 0.677248i \(0.763173\pi\)
\(108\) 0 0
\(109\) 134.357i 1.23264i −0.787498 0.616318i \(-0.788624\pi\)
0.787498 0.616318i \(-0.211376\pi\)
\(110\) −23.7693 + 200.593i −0.216085 + 1.82357i
\(111\) 0 0
\(112\) 19.2388 37.7077i 0.171775 0.336676i
\(113\) −179.708 −1.59034 −0.795169 0.606388i \(-0.792618\pi\)
−0.795169 + 0.606388i \(0.792618\pi\)
\(114\) 0 0
\(115\) −167.366 −1.45536
\(116\) −48.7037 + 202.623i −0.419859 + 1.74675i
\(117\) 0 0
\(118\) −94.8293 11.2369i −0.803638 0.0952276i
\(119\) 20.7455i 0.174332i
\(120\) 0 0
\(121\) 61.4003 0.507440
\(122\) 24.2385 204.552i 0.198676 1.67666i
\(123\) 0 0
\(124\) −14.6556 + 60.9721i −0.118191 + 0.491711i
\(125\) 44.3027i 0.354422i
\(126\) 0 0
\(127\) 34.9032i 0.274828i 0.990514 + 0.137414i \(0.0438791\pi\)
−0.990514 + 0.137414i \(0.956121\pi\)
\(128\) 86.7971 + 94.0759i 0.678102 + 0.734968i
\(129\) 0 0
\(130\) 52.6069 + 6.23368i 0.404668 + 0.0479514i
\(131\) −127.352 −0.972150 −0.486075 0.873917i \(-0.661572\pi\)
−0.486075 + 0.873917i \(0.661572\pi\)
\(132\) 0 0
\(133\) 29.4139i 0.221157i
\(134\) −20.1761 2.39078i −0.150568 0.0178416i
\(135\) 0 0
\(136\) −58.8425 21.7354i −0.432665 0.159819i
\(137\) 155.552 1.13542 0.567708 0.823230i \(-0.307830\pi\)
0.567708 + 0.823230i \(0.307830\pi\)
\(138\) 0 0
\(139\) −50.8834 −0.366067 −0.183034 0.983107i \(-0.558592\pi\)
−0.183034 + 0.983107i \(0.558592\pi\)
\(140\) 76.9506 + 18.4963i 0.549647 + 0.132117i
\(141\) 0 0
\(142\) 16.7241 141.137i 0.117775 0.993921i
\(143\) 47.8358i 0.334516i
\(144\) 0 0
\(145\) −389.606 −2.68694
\(146\) 85.0181 + 10.0743i 0.582316 + 0.0690018i
\(147\) 0 0
\(148\) 20.7136 86.1752i 0.139957 0.582265i
\(149\) 253.074i 1.69848i −0.528007 0.849240i \(-0.677060\pi\)
0.528007 0.849240i \(-0.322940\pi\)
\(150\) 0 0
\(151\) 279.766i 1.85275i −0.376598 0.926377i \(-0.622906\pi\)
0.376598 0.926377i \(-0.377094\pi\)
\(152\) −83.4295 30.8174i −0.548878 0.202746i
\(153\) 0 0
\(154\) 8.40942 70.9682i 0.0546066 0.460833i
\(155\) −117.238 −0.756374
\(156\) 0 0
\(157\) 73.6080i 0.468841i 0.972135 + 0.234420i \(0.0753192\pi\)
−0.972135 + 0.234420i \(0.924681\pi\)
\(158\) −2.44477 + 20.6318i −0.0154732 + 0.130581i
\(159\) 0 0
\(160\) −133.085 + 198.884i −0.831783 + 1.24302i
\(161\) 59.2129 0.367782
\(162\) 0 0
\(163\) 171.461 1.05191 0.525953 0.850513i \(-0.323709\pi\)
0.525953 + 0.850513i \(0.323709\pi\)
\(164\) −140.486 33.7682i −0.856625 0.205904i
\(165\) 0 0
\(166\) 205.765 + 24.3823i 1.23955 + 0.146881i
\(167\) 181.048i 1.08412i 0.840339 + 0.542061i \(0.182356\pi\)
−0.840339 + 0.542061i \(0.817644\pi\)
\(168\) 0 0
\(169\) 156.455 0.925768
\(170\) 13.8000 116.460i 0.0811765 0.685059i
\(171\) 0 0
\(172\) 318.197 + 76.4839i 1.84998 + 0.444674i
\(173\) 288.442i 1.66729i −0.552298 0.833647i \(-0.686249\pi\)
0.552298 0.833647i \(-0.313751\pi\)
\(174\) 0 0
\(175\) 81.8178i 0.467530i
\(176\) 192.483 + 98.2070i 1.09366 + 0.557994i
\(177\) 0 0
\(178\) 121.053 + 14.3442i 0.680072 + 0.0805855i
\(179\) 33.2048 0.185502 0.0927510 0.995689i \(-0.470434\pi\)
0.0927510 + 0.995689i \(0.470434\pi\)
\(180\) 0 0
\(181\) 196.790i 1.08724i −0.839332 0.543619i \(-0.817054\pi\)
0.839332 0.543619i \(-0.182946\pi\)
\(182\) −18.6119 2.20543i −0.102263 0.0121178i
\(183\) 0 0
\(184\) −62.0383 + 167.951i −0.337165 + 0.912779i
\(185\) 165.699 0.895668
\(186\) 0 0
\(187\) −105.898 −0.566300
\(188\) 61.9820 257.865i 0.329692 1.37162i
\(189\) 0 0
\(190\) 19.5663 165.122i 0.102980 0.869065i
\(191\) 123.996i 0.649191i 0.945853 + 0.324596i \(0.105228\pi\)
−0.945853 + 0.324596i \(0.894772\pi\)
\(192\) 0 0
\(193\) 68.7028 0.355973 0.177986 0.984033i \(-0.443042\pi\)
0.177986 + 0.984033i \(0.443042\pi\)
\(194\) 103.816 + 12.3017i 0.535134 + 0.0634110i
\(195\) 0 0
\(196\) −27.2246 6.54387i −0.138901 0.0333871i
\(197\) 174.809i 0.887357i 0.896186 + 0.443678i \(0.146327\pi\)
−0.896186 + 0.443678i \(0.853673\pi\)
\(198\) 0 0
\(199\) 131.589i 0.661251i 0.943762 + 0.330625i \(0.107260\pi\)
−0.943762 + 0.330625i \(0.892740\pi\)
\(200\) −232.068 85.7218i −1.16034 0.428609i
\(201\) 0 0
\(202\) 5.24105 44.2300i 0.0259458 0.218960i
\(203\) 137.840 0.679014
\(204\) 0 0
\(205\) 270.129i 1.31770i
\(206\) −31.3644 + 264.688i −0.152254 + 1.28489i
\(207\) 0 0
\(208\) 25.7555 50.4802i 0.123824 0.242693i
\(209\) −150.147 −0.718406
\(210\) 0 0
\(211\) −21.4133 −0.101485 −0.0507424 0.998712i \(-0.516159\pi\)
−0.0507424 + 0.998712i \(0.516159\pi\)
\(212\) 78.2334 325.476i 0.369025 1.53526i
\(213\) 0 0
\(214\) −312.715 37.0554i −1.46129 0.173156i
\(215\) 611.834i 2.84574i
\(216\) 0 0
\(217\) 41.4779 0.191143
\(218\) 31.6203 266.848i 0.145047 1.22407i
\(219\) 0 0
\(220\) −94.4168 + 392.804i −0.429167 + 1.78547i
\(221\) 27.7725i 0.125667i
\(222\) 0 0
\(223\) 16.9401i 0.0759648i 0.999278 + 0.0379824i \(0.0120931\pi\)
−0.999278 + 0.0379824i \(0.987907\pi\)
\(224\) 47.0846 70.3636i 0.210199 0.314123i
\(225\) 0 0
\(226\) −356.919 42.2933i −1.57929 0.187139i
\(227\) 413.555 1.82183 0.910914 0.412596i \(-0.135378\pi\)
0.910914 + 0.412596i \(0.135378\pi\)
\(228\) 0 0
\(229\) 36.0491i 0.157420i 0.996898 + 0.0787099i \(0.0250801\pi\)
−0.996898 + 0.0787099i \(0.974920\pi\)
\(230\) −332.407 39.3887i −1.44525 0.171255i
\(231\) 0 0
\(232\) −144.417 + 390.968i −0.622487 + 1.68521i
\(233\) −303.232 −1.30143 −0.650713 0.759324i \(-0.725530\pi\)
−0.650713 + 0.759324i \(0.725530\pi\)
\(234\) 0 0
\(235\) 495.826 2.10990
\(236\) −185.696 44.6351i −0.786849 0.189132i
\(237\) 0 0
\(238\) −4.88234 + 41.2028i −0.0205140 + 0.173121i
\(239\) 47.4692i 0.198616i −0.995057 0.0993078i \(-0.968337\pi\)
0.995057 0.0993078i \(-0.0316629\pi\)
\(240\) 0 0
\(241\) −273.047 −1.13298 −0.566488 0.824070i \(-0.691698\pi\)
−0.566488 + 0.824070i \(0.691698\pi\)
\(242\) 121.947 + 14.4502i 0.503915 + 0.0597117i
\(243\) 0 0
\(244\) 96.2805 400.558i 0.394592 1.64163i
\(245\) 52.3477i 0.213664i
\(246\) 0 0
\(247\) 39.3771i 0.159421i
\(248\) −43.4571 + 117.648i −0.175230 + 0.474387i
\(249\) 0 0
\(250\) 10.4264 87.9898i 0.0417056 0.351959i
\(251\) 384.102 1.53029 0.765144 0.643859i \(-0.222668\pi\)
0.765144 + 0.643859i \(0.222668\pi\)
\(252\) 0 0
\(253\) 302.260i 1.19470i
\(254\) −8.21427 + 69.3213i −0.0323397 + 0.272919i
\(255\) 0 0
\(256\) 150.248 + 207.272i 0.586906 + 0.809655i
\(257\) −308.955 −1.20216 −0.601080 0.799189i \(-0.705263\pi\)
−0.601080 + 0.799189i \(0.705263\pi\)
\(258\) 0 0
\(259\) −58.6230 −0.226344
\(260\) 103.016 + 24.7615i 0.396214 + 0.0952365i
\(261\) 0 0
\(262\) −252.934 29.9715i −0.965396 0.114395i
\(263\) 18.7484i 0.0712865i 0.999365 + 0.0356433i \(0.0113480\pi\)
−0.999365 + 0.0356433i \(0.988652\pi\)
\(264\) 0 0
\(265\) 625.829 2.36162
\(266\) −6.92240 + 58.4191i −0.0260241 + 0.219621i
\(267\) 0 0
\(268\) −39.5092 9.49668i −0.147422 0.0354354i
\(269\) 344.672i 1.28131i 0.767829 + 0.640655i \(0.221337\pi\)
−0.767829 + 0.640655i \(0.778663\pi\)
\(270\) 0 0
\(271\) 54.1955i 0.199983i −0.994988 0.0999917i \(-0.968118\pi\)
0.994988 0.0999917i \(-0.0318816\pi\)
\(272\) −111.752 57.0170i −0.410853 0.209621i
\(273\) 0 0
\(274\) 308.943 + 36.6083i 1.12753 + 0.133607i
\(275\) −417.649 −1.51872
\(276\) 0 0
\(277\) 72.5083i 0.261763i −0.991398 0.130881i \(-0.958219\pi\)
0.991398 0.130881i \(-0.0417807\pi\)
\(278\) −101.060 11.9751i −0.363524 0.0430760i
\(279\) 0 0
\(280\) 148.479 + 54.8456i 0.530282 + 0.195877i
\(281\) 5.38105 0.0191497 0.00957483 0.999954i \(-0.496952\pi\)
0.00957483 + 0.999954i \(0.496952\pi\)
\(282\) 0 0
\(283\) −545.863 −1.92885 −0.964423 0.264365i \(-0.914838\pi\)
−0.964423 + 0.264365i \(0.914838\pi\)
\(284\) 66.4316 276.377i 0.233914 0.973157i
\(285\) 0 0
\(286\) 11.2579 95.0069i 0.0393633 0.332192i
\(287\) 95.5697i 0.332995i
\(288\) 0 0
\(289\) −227.518 −0.787258
\(290\) −773.798 91.6916i −2.66827 0.316178i
\(291\) 0 0
\(292\) 166.484 + 40.0171i 0.570151 + 0.137045i
\(293\) 425.941i 1.45373i −0.686783 0.726863i \(-0.740978\pi\)
0.686783 0.726863i \(-0.259022\pi\)
\(294\) 0 0
\(295\) 357.059i 1.21037i
\(296\) 61.4202 166.278i 0.207501 0.561750i
\(297\) 0 0
\(298\) 59.5595 502.631i 0.199864 1.68668i
\(299\) 79.2698 0.265116
\(300\) 0 0
\(301\) 216.462i 0.719144i
\(302\) 65.8414 555.644i 0.218018 1.83988i
\(303\) 0 0
\(304\) −158.447 80.8413i −0.521207 0.265925i
\(305\) 770.197 2.52524
\(306\) 0 0
\(307\) 444.426 1.44764 0.723822 0.689987i \(-0.242384\pi\)
0.723822 + 0.689987i \(0.242384\pi\)
\(308\) 33.4040 138.971i 0.108454 0.451205i
\(309\) 0 0
\(310\) −232.847 27.5913i −0.751119 0.0890042i
\(311\) 17.4956i 0.0562559i −0.999604 0.0281279i \(-0.991045\pi\)
0.999604 0.0281279i \(-0.00895458\pi\)
\(312\) 0 0
\(313\) −382.054 −1.22062 −0.610311 0.792162i \(-0.708955\pi\)
−0.610311 + 0.792162i \(0.708955\pi\)
\(314\) −17.3232 + 146.193i −0.0551696 + 0.465583i
\(315\) 0 0
\(316\) −9.71115 + 40.4015i −0.0307315 + 0.127853i
\(317\) 390.680i 1.23243i 0.787579 + 0.616214i \(0.211334\pi\)
−0.787579 + 0.616214i \(0.788666\pi\)
\(318\) 0 0
\(319\) 703.620i 2.20571i
\(320\) −311.128 + 363.683i −0.972274 + 1.13651i
\(321\) 0 0
\(322\) 117.603 + 13.9354i 0.365227 + 0.0432778i
\(323\) 87.1723 0.269883
\(324\) 0 0
\(325\) 109.531i 0.337020i
\(326\) 340.539 + 40.3524i 1.04460 + 0.123780i
\(327\) 0 0
\(328\) −271.074 100.130i −0.826444 0.305274i
\(329\) −175.420 −0.533191
\(330\) 0 0
\(331\) −283.248 −0.855735 −0.427867 0.903842i \(-0.640735\pi\)
−0.427867 + 0.903842i \(0.640735\pi\)
\(332\) 402.933 + 96.8516i 1.21366 + 0.291722i
\(333\) 0 0
\(334\) −42.6088 + 359.581i −0.127571 + 1.07659i
\(335\) 75.9688i 0.226772i
\(336\) 0 0
\(337\) −119.881 −0.355730 −0.177865 0.984055i \(-0.556919\pi\)
−0.177865 + 0.984055i \(0.556919\pi\)
\(338\) 310.735 + 36.8208i 0.919336 + 0.108937i
\(339\) 0 0
\(340\) 54.8165 228.054i 0.161225 0.670748i
\(341\) 211.729i 0.620907i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 613.973 + 226.791i 1.78481 + 0.659276i
\(345\) 0 0
\(346\) 67.8832 572.876i 0.196194 1.65571i
\(347\) −95.3186 −0.274693 −0.137347 0.990523i \(-0.543857\pi\)
−0.137347 + 0.990523i \(0.543857\pi\)
\(348\) 0 0
\(349\) 42.8609i 0.122811i 0.998113 + 0.0614053i \(0.0195582\pi\)
−0.998113 + 0.0614053i \(0.980442\pi\)
\(350\) −19.2554 + 162.499i −0.0550154 + 0.464282i
\(351\) 0 0
\(352\) 359.180 + 240.349i 1.02040 + 0.682811i
\(353\) −324.090 −0.918101 −0.459050 0.888410i \(-0.651810\pi\)
−0.459050 + 0.888410i \(0.651810\pi\)
\(354\) 0 0
\(355\) 531.420 1.49696
\(356\) 237.048 + 56.9782i 0.665864 + 0.160051i
\(357\) 0 0
\(358\) 65.9483 + 7.81458i 0.184213 + 0.0218284i
\(359\) 352.212i 0.981092i 0.871415 + 0.490546i \(0.163203\pi\)
−0.871415 + 0.490546i \(0.836797\pi\)
\(360\) 0 0
\(361\) −237.403 −0.657627
\(362\) 46.3135 390.846i 0.127938 1.07968i
\(363\) 0 0
\(364\) −36.4462 8.76044i −0.100127 0.0240671i
\(365\) 320.117i 0.877034i
\(366\) 0 0
\(367\) 402.579i 1.09695i 0.836168 + 0.548473i \(0.184791\pi\)
−0.836168 + 0.548473i \(0.815209\pi\)
\(368\) −162.741 + 318.969i −0.442231 + 0.866763i
\(369\) 0 0
\(370\) 329.095 + 38.9963i 0.889445 + 0.105395i
\(371\) −221.414 −0.596803
\(372\) 0 0
\(373\) 349.786i 0.937765i 0.883261 + 0.468882i \(0.155343\pi\)
−0.883261 + 0.468882i \(0.844657\pi\)
\(374\) −210.325 24.9225i −0.562365 0.0666378i
\(375\) 0 0
\(376\) 183.790 497.560i 0.488803 1.32330i
\(377\) 184.529 0.489468
\(378\) 0 0
\(379\) −97.5057 −0.257271 −0.128635 0.991692i \(-0.541060\pi\)
−0.128635 + 0.991692i \(0.541060\pi\)
\(380\) 77.7213 323.345i 0.204530 0.850909i
\(381\) 0 0
\(382\) −29.1817 + 246.268i −0.0763918 + 0.644681i
\(383\) 3.49274i 0.00911944i −0.999990 0.00455972i \(-0.998549\pi\)
0.999990 0.00455972i \(-0.00145141\pi\)
\(384\) 0 0
\(385\) 267.216 0.694066
\(386\) 136.451 + 16.1688i 0.353500 + 0.0418881i
\(387\) 0 0
\(388\) 203.294 + 48.8651i 0.523955 + 0.125941i
\(389\) 1.14711i 0.00294887i −0.999999 0.00147444i \(-0.999531\pi\)
0.999999 0.00147444i \(-0.000469328\pi\)
\(390\) 0 0
\(391\) 175.486i 0.448813i
\(392\) −52.5308 19.4040i −0.134007 0.0494999i
\(393\) 0 0
\(394\) −41.1404 + 347.190i −0.104417 + 0.881192i
\(395\) −77.6844 −0.196669
\(396\) 0 0
\(397\) 683.504i 1.72167i 0.508882 + 0.860836i \(0.330059\pi\)
−0.508882 + 0.860836i \(0.669941\pi\)
\(398\) −30.9687 + 261.349i −0.0778109 + 0.656657i
\(399\) 0 0
\(400\) −440.737 224.868i −1.10184 0.562171i
\(401\) −308.774 −0.770011 −0.385005 0.922914i \(-0.625800\pi\)
−0.385005 + 0.922914i \(0.625800\pi\)
\(402\) 0 0
\(403\) 55.5275 0.137785
\(404\) 20.8186 86.6119i 0.0515311 0.214386i
\(405\) 0 0
\(406\) 273.764 + 32.4398i 0.674296 + 0.0799011i
\(407\) 299.248i 0.735254i
\(408\) 0 0
\(409\) 357.161 0.873253 0.436627 0.899643i \(-0.356173\pi\)
0.436627 + 0.899643i \(0.356173\pi\)
\(410\) 63.5734 536.504i 0.155057 1.30855i
\(411\) 0 0
\(412\) −124.586 + 518.317i −0.302393 + 1.25805i
\(413\) 126.325i 0.305872i
\(414\) 0 0
\(415\) 774.765i 1.86690i
\(416\) 63.0333 94.1975i 0.151522 0.226436i
\(417\) 0 0
\(418\) −298.207 35.3363i −0.713415 0.0845365i
\(419\) 309.516 0.738702 0.369351 0.929290i \(-0.379580\pi\)
0.369351 + 0.929290i \(0.379580\pi\)
\(420\) 0 0
\(421\) 108.620i 0.258005i −0.991644 0.129002i \(-0.958823\pi\)
0.991644 0.129002i \(-0.0411775\pi\)
\(422\) −42.5290 5.03950i −0.100780 0.0119419i
\(423\) 0 0
\(424\) 231.979 628.017i 0.547120 1.48117i
\(425\) 242.479 0.570538
\(426\) 0 0
\(427\) −272.490 −0.638150
\(428\) −612.365 147.192i −1.43076 0.343906i
\(429\) 0 0
\(430\) −143.992 + 1215.17i −0.334865 + 2.82597i
\(431\) 116.061i 0.269283i −0.990894 0.134641i \(-0.957012\pi\)
0.990894 0.134641i \(-0.0429882\pi\)
\(432\) 0 0
\(433\) 363.996 0.840637 0.420318 0.907377i \(-0.361918\pi\)
0.420318 + 0.907377i \(0.361918\pi\)
\(434\) 82.3795 + 9.76161i 0.189815 + 0.0224922i
\(435\) 0 0
\(436\) 125.602 522.546i 0.288079 1.19850i
\(437\) 248.812i 0.569364i
\(438\) 0 0
\(439\) 264.500i 0.602507i 0.953544 + 0.301253i \(0.0974050\pi\)
−0.953544 + 0.301253i \(0.902595\pi\)
\(440\) −279.966 + 757.929i −0.636286 + 1.72257i
\(441\) 0 0
\(442\) −6.53611 + 55.1591i −0.0147876 + 0.124794i
\(443\) −361.826 −0.816763 −0.408382 0.912811i \(-0.633907\pi\)
−0.408382 + 0.912811i \(0.633907\pi\)
\(444\) 0 0
\(445\) 455.798i 1.02427i
\(446\) −3.98677 + 33.6449i −0.00893895 + 0.0754370i
\(447\) 0 0
\(448\) 110.075 128.668i 0.245702 0.287206i
\(449\) −58.1925 −0.129605 −0.0648023 0.997898i \(-0.520642\pi\)
−0.0648023 + 0.997898i \(0.520642\pi\)
\(450\) 0 0
\(451\) −487.847 −1.08170
\(452\) −698.925 167.998i −1.54630 0.371677i
\(453\) 0 0
\(454\) 821.364 + 97.3280i 1.80917 + 0.214379i
\(455\) 70.0792i 0.154020i
\(456\) 0 0
\(457\) 282.240 0.617594 0.308797 0.951128i \(-0.400074\pi\)
0.308797 + 0.951128i \(0.400074\pi\)
\(458\) −8.48397 + 71.5973i −0.0185239 + 0.156326i
\(459\) 0 0
\(460\) −650.925 156.460i −1.41505 0.340131i
\(461\) 263.726i 0.572073i 0.958219 + 0.286036i \(0.0923378\pi\)
−0.958219 + 0.286036i \(0.907662\pi\)
\(462\) 0 0
\(463\) 203.652i 0.439853i 0.975516 + 0.219927i \(0.0705818\pi\)
−0.975516 + 0.219927i \(0.929418\pi\)
\(464\) −378.839 + 742.516i −0.816464 + 1.60025i
\(465\) 0 0
\(466\) −602.251 71.3641i −1.29238 0.153142i
\(467\) −100.538 −0.215285 −0.107643 0.994190i \(-0.534330\pi\)
−0.107643 + 0.994190i \(0.534330\pi\)
\(468\) 0 0
\(469\) 26.8772i 0.0573075i
\(470\) 984.762 + 116.690i 2.09524 + 0.248277i
\(471\) 0 0
\(472\) −358.308 132.353i −0.759127 0.280408i
\(473\) 1104.96 2.33607
\(474\) 0 0
\(475\) 343.797 0.723783
\(476\) −19.3937 + 80.6840i −0.0407431 + 0.169504i
\(477\) 0 0
\(478\) 11.1716 94.2787i 0.0233716 0.197236i
\(479\) 491.688i 1.02649i −0.858242 0.513245i \(-0.828443\pi\)
0.858242 0.513245i \(-0.171557\pi\)
\(480\) 0 0
\(481\) −78.4800 −0.163160
\(482\) −542.300 64.2601i −1.12510 0.133320i
\(483\) 0 0
\(484\) 238.800 + 57.3993i 0.493388 + 0.118594i
\(485\) 390.897i 0.805973i
\(486\) 0 0
\(487\) 242.746i 0.498451i −0.968446 0.249225i \(-0.919824\pi\)
0.968446 0.249225i \(-0.0801760\pi\)
\(488\) 285.492 772.890i 0.585025 1.58379i
\(489\) 0 0
\(490\) 12.3198 103.968i 0.0251424 0.212180i
\(491\) 525.167 1.06959 0.534793 0.844983i \(-0.320390\pi\)
0.534793 + 0.844983i \(0.320390\pi\)
\(492\) 0 0
\(493\) 408.508i 0.828616i
\(494\) −9.26719 + 78.2071i −0.0187595 + 0.158314i
\(495\) 0 0
\(496\) −113.998 + 223.434i −0.229835 + 0.450471i
\(497\) −188.013 −0.378295
\(498\) 0 0
\(499\) −231.230 −0.463387 −0.231694 0.972789i \(-0.574427\pi\)
−0.231694 + 0.972789i \(0.574427\pi\)
\(500\) 41.4159 172.303i 0.0828318 0.344607i
\(501\) 0 0
\(502\) 762.867 + 90.3964i 1.51966 + 0.180073i
\(503\) 180.388i 0.358624i 0.983792 + 0.179312i \(0.0573872\pi\)
−0.983792 + 0.179312i \(0.942613\pi\)
\(504\) 0 0
\(505\) 166.538 0.329779
\(506\) −71.1352 + 600.320i −0.140583 + 1.18640i
\(507\) 0 0
\(508\) −32.6288 + 135.746i −0.0642299 + 0.267217i
\(509\) 379.548i 0.745674i −0.927897 0.372837i \(-0.878385\pi\)
0.927897 0.372837i \(-0.121615\pi\)
\(510\) 0 0
\(511\) 113.255i 0.221634i
\(512\) 249.628 + 447.024i 0.487554 + 0.873093i
\(513\) 0 0
\(514\) −613.617 72.7109i −1.19381 0.141461i
\(515\) −996.626 −1.93520
\(516\) 0 0
\(517\) 895.452i 1.73201i
\(518\) −116.431 13.7966i −0.224771 0.0266344i
\(519\) 0 0
\(520\) 198.772 + 73.4231i 0.382255 + 0.141198i
\(521\) −576.665 −1.10684 −0.553421 0.832902i \(-0.686678\pi\)
−0.553421 + 0.832902i \(0.686678\pi\)
\(522\) 0 0
\(523\) 738.590 1.41222 0.706109 0.708103i \(-0.250449\pi\)
0.706109 + 0.708103i \(0.250449\pi\)
\(524\) −495.299 119.053i −0.945228 0.227201i
\(525\) 0 0
\(526\) −4.41232 + 37.2362i −0.00838845 + 0.0707913i
\(527\) 122.926i 0.233256i
\(528\) 0 0
\(529\) 28.1183 0.0531536
\(530\) 1242.96 + 147.285i 2.34521 + 0.277897i
\(531\) 0 0
\(532\) −27.4972 + 114.397i −0.0516865 + 0.215032i
\(533\) 127.941i 0.240040i
\(534\) 0 0
\(535\) 1177.46i 2.20086i
\(536\) −76.2344 28.1597i −0.142228 0.0525367i
\(537\) 0 0
\(538\) −81.1168 + 684.555i −0.150775 + 1.27241i
\(539\) −94.5390 −0.175397
\(540\) 0 0
\(541\) 119.151i 0.220243i 0.993918 + 0.110121i \(0.0351240\pi\)
−0.993918 + 0.110121i \(0.964876\pi\)
\(542\) 12.7546 107.638i 0.0235325 0.198594i
\(543\) 0 0
\(544\) −208.533 139.542i −0.383332 0.256511i
\(545\) 1004.76 1.84359
\(546\) 0 0
\(547\) −316.005 −0.577706 −0.288853 0.957374i \(-0.593274\pi\)
−0.288853 + 0.957374i \(0.593274\pi\)
\(548\) 604.977 + 145.416i 1.10397 + 0.265358i
\(549\) 0 0
\(550\) −829.495 98.2914i −1.50817 0.178712i
\(551\) 579.201i 1.05118i
\(552\) 0 0
\(553\) 27.4842 0.0497002
\(554\) 17.0644 144.009i 0.0308022 0.259944i
\(555\) 0 0
\(556\) −197.897 47.5677i −0.355930 0.0855534i
\(557\) 611.086i 1.09710i 0.836117 + 0.548551i \(0.184820\pi\)
−0.836117 + 0.548551i \(0.815180\pi\)
\(558\) 0 0
\(559\) 289.783i 0.518396i
\(560\) 281.987 + 143.873i 0.503549 + 0.256916i
\(561\) 0 0
\(562\) 10.6873 + 1.26640i 0.0190166 + 0.00225338i
\(563\) 263.337 0.467739 0.233869 0.972268i \(-0.424861\pi\)
0.233869 + 0.972268i \(0.424861\pi\)
\(564\) 0 0
\(565\) 1343.90i 2.37859i
\(566\) −1084.14 128.466i −1.91544 0.226972i
\(567\) 0 0
\(568\) 196.984 533.279i 0.346803 0.938871i
\(569\) 263.864 0.463733 0.231867 0.972748i \(-0.425517\pi\)
0.231867 + 0.972748i \(0.425517\pi\)
\(570\) 0 0
\(571\) 198.806 0.348172 0.174086 0.984730i \(-0.444303\pi\)
0.174086 + 0.984730i \(0.444303\pi\)
\(572\) 44.7187 186.044i 0.0781796 0.325252i
\(573\) 0 0
\(574\) −22.4918 + 189.811i −0.0391843 + 0.330682i
\(575\) 692.096i 1.20364i
\(576\) 0 0
\(577\) −419.509 −0.727051 −0.363526 0.931584i \(-0.618427\pi\)
−0.363526 + 0.931584i \(0.618427\pi\)
\(578\) −451.874 53.5451i −0.781789 0.0926385i
\(579\) 0 0
\(580\) −1515.26 364.218i −2.61253 0.627963i
\(581\) 274.106i 0.471784i
\(582\) 0 0
\(583\) 1130.23i 1.93865i
\(584\) 321.237 + 118.659i 0.550063 + 0.203184i
\(585\) 0 0
\(586\) 100.243 845.964i 0.171063 1.44363i
\(587\) 536.991 0.914806 0.457403 0.889260i \(-0.348780\pi\)
0.457403 + 0.889260i \(0.348780\pi\)
\(588\) 0 0
\(589\) 174.290i 0.295908i
\(590\) 84.0320 709.157i 0.142427 1.20196i
\(591\) 0 0
\(592\) 161.120 315.791i 0.272162 0.533430i
\(593\) −201.757 −0.340231 −0.170115 0.985424i \(-0.554414\pi\)
−0.170115 + 0.985424i \(0.554414\pi\)
\(594\) 0 0
\(595\) −155.140 −0.260740
\(596\) 236.583 984.260i 0.396951 1.65144i
\(597\) 0 0
\(598\) 157.438 + 18.6557i 0.263275 + 0.0311969i
\(599\) 487.011i 0.813040i 0.913642 + 0.406520i \(0.133258\pi\)
−0.913642 + 0.406520i \(0.866742\pi\)
\(600\) 0 0
\(601\) −671.112 −1.11666 −0.558330 0.829619i \(-0.688558\pi\)
−0.558330 + 0.829619i \(0.688558\pi\)
\(602\) 50.9433 429.917i 0.0846233 0.714148i
\(603\) 0 0
\(604\) 261.536 1088.07i 0.433006 1.80144i
\(605\) 459.167i 0.758953i
\(606\) 0 0
\(607\) 463.776i 0.764046i −0.924153 0.382023i \(-0.875228\pi\)
0.924153 0.382023i \(-0.124772\pi\)
\(608\) −295.667 197.849i −0.486294 0.325409i
\(609\) 0 0
\(610\) 1529.69 + 181.262i 2.50769 + 0.297150i
\(611\) −234.839 −0.384351
\(612\) 0 0
\(613\) 704.945i 1.14999i 0.818156 + 0.574996i \(0.194997\pi\)
−0.818156 + 0.574996i \(0.805003\pi\)
\(614\) 882.678 + 104.593i 1.43759 + 0.170348i
\(615\) 0 0
\(616\) 99.0500 268.150i 0.160795 0.435308i
\(617\) −662.653 −1.07399 −0.536996 0.843585i \(-0.680441\pi\)
−0.536996 + 0.843585i \(0.680441\pi\)
\(618\) 0 0
\(619\) 325.613 0.526031 0.263015 0.964792i \(-0.415283\pi\)
0.263015 + 0.964792i \(0.415283\pi\)
\(620\) −455.965 109.598i −0.735427 0.176772i
\(621\) 0 0
\(622\) 4.11749 34.7480i 0.00661976 0.0558650i
\(623\) 161.258i 0.258841i
\(624\) 0 0
\(625\) −441.798 −0.706878
\(626\) −758.800 89.9145i −1.21214 0.143633i
\(627\) 0 0
\(628\) −68.8116 + 286.278i −0.109573 + 0.455857i
\(629\) 173.738i 0.276212i
\(630\) 0 0
\(631\) 368.582i 0.584124i −0.956399 0.292062i \(-0.905659\pi\)
0.956399 0.292062i \(-0.0943413\pi\)
\(632\) −28.7956 + 77.9561i −0.0455627 + 0.123348i
\(633\) 0 0
\(634\) −91.9443 + 775.931i −0.145023 + 1.22387i
\(635\) −261.015 −0.411046
\(636\) 0 0
\(637\) 24.7935i 0.0389223i
\(638\) −165.593 + 1397.46i −0.259550 + 2.19038i
\(639\) 0 0
\(640\) −703.523 + 649.090i −1.09925 + 1.01420i
\(641\) −444.594 −0.693595 −0.346797 0.937940i \(-0.612731\pi\)
−0.346797 + 0.937940i \(0.612731\pi\)
\(642\) 0 0
\(643\) −1180.78 −1.83636 −0.918181 0.396162i \(-0.870342\pi\)
−0.918181 + 0.396162i \(0.870342\pi\)
\(644\) 230.292 + 55.3545i 0.357597 + 0.0859542i
\(645\) 0 0
\(646\) 173.133 + 20.5155i 0.268008 + 0.0317578i
\(647\) 112.967i 0.174601i 0.996182 + 0.0873005i \(0.0278240\pi\)
−0.996182 + 0.0873005i \(0.972176\pi\)
\(648\) 0 0
\(649\) −644.842 −0.993593
\(650\) −25.7776 + 217.541i −0.0396579 + 0.334678i
\(651\) 0 0
\(652\) 666.850 + 160.288i 1.02278 + 0.245841i
\(653\) 364.690i 0.558484i −0.960221 0.279242i \(-0.909917\pi\)
0.960221 0.279242i \(-0.0900831\pi\)
\(654\) 0 0
\(655\) 952.368i 1.45400i
\(656\) −514.816 262.664i −0.784780 0.400403i
\(657\) 0 0
\(658\) −348.402 41.2841i −0.529486 0.0627418i
\(659\) −12.4844 −0.0189444 −0.00947220 0.999955i \(-0.503015\pi\)
−0.00947220 + 0.999955i \(0.503015\pi\)
\(660\) 0 0
\(661\) 215.021i 0.325296i 0.986684 + 0.162648i \(0.0520036\pi\)
−0.986684 + 0.162648i \(0.947996\pi\)
\(662\) −562.561 66.6609i −0.849789 0.100696i
\(663\) 0 0
\(664\) 777.475 + 287.186i 1.17090 + 0.432508i
\(665\) −219.964 −0.330774
\(666\) 0 0
\(667\) −1165.99 −1.74810
\(668\) −169.251 + 704.138i −0.253370 + 1.05410i
\(669\) 0 0
\(670\) 17.8788 150.882i 0.0266848 0.225197i
\(671\) 1390.96i 2.07297i
\(672\) 0 0
\(673\) −107.429 −0.159627 −0.0798135 0.996810i \(-0.525432\pi\)
−0.0798135 + 0.996810i \(0.525432\pi\)
\(674\) −238.096 28.2133i −0.353258 0.0418595i
\(675\) 0 0
\(676\) 608.488 + 146.260i 0.900130 + 0.216361i
\(677\) 916.328i 1.35351i 0.736207 + 0.676756i \(0.236615\pi\)
−0.736207 + 0.676756i \(0.763385\pi\)
\(678\) 0 0
\(679\) 138.296i 0.203677i
\(680\) 162.543 440.039i 0.239033 0.647116i
\(681\) 0 0
\(682\) −49.8293 + 420.517i −0.0730636 + 0.616593i
\(683\) −497.699 −0.728696 −0.364348 0.931263i \(-0.618708\pi\)
−0.364348 + 0.931263i \(0.618708\pi\)
\(684\) 0 0
\(685\) 1163.26i 1.69819i
\(686\) −4.35864 + 36.7832i −0.00635371 + 0.0536198i
\(687\) 0 0
\(688\) 1166.04 + 594.926i 1.69483 + 0.864718i
\(689\) −296.412 −0.430206
\(690\) 0 0
\(691\) 663.410 0.960073 0.480036 0.877249i \(-0.340623\pi\)
0.480036 + 0.877249i \(0.340623\pi\)
\(692\) 269.646 1121.82i 0.389663 1.62112i
\(693\) 0 0
\(694\) −189.313 22.4327i −0.272785 0.0323238i
\(695\) 380.518i 0.547508i
\(696\) 0 0
\(697\) 283.235 0.406362
\(698\) −10.0871 + 85.1262i −0.0144514 + 0.121957i
\(699\) 0 0
\(700\) −76.4864 + 318.208i −0.109266 + 0.454583i
\(701\) 1295.94i 1.84871i −0.381537 0.924354i \(-0.624605\pi\)
0.381537 0.924354i \(-0.375395\pi\)
\(702\) 0 0
\(703\) 246.333i 0.350402i
\(704\) 656.804 + 561.890i 0.932960 + 0.798139i
\(705\) 0 0
\(706\) −643.676 76.2727i −0.911722 0.108035i
\(707\) −58.9201 −0.0833382
\(708\) 0 0
\(709\) 871.601i 1.22934i 0.788785 + 0.614669i \(0.210710\pi\)
−0.788785 + 0.614669i \(0.789290\pi\)
\(710\) 1055.46 + 125.067i 1.48656 + 0.176151i
\(711\) 0 0
\(712\) 457.392 + 168.953i 0.642405 + 0.237293i
\(713\) −350.861 −0.492092
\(714\) 0 0
\(715\) 357.728 0.500319
\(716\) 129.141 + 31.0412i 0.180365 + 0.0433536i
\(717\) 0 0
\(718\) −82.8912 + 699.530i −0.115447 + 0.974276i
\(719\) 1027.81i 1.42950i −0.699378 0.714752i \(-0.746540\pi\)
0.699378 0.714752i \(-0.253460\pi\)
\(720\) 0 0
\(721\) 352.599 0.489042
\(722\) −471.508 55.8716i −0.653058 0.0773845i
\(723\) 0 0
\(724\) 183.967 765.361i 0.254098 1.05713i
\(725\) 1611.11i 2.22221i
\(726\) 0 0
\(727\) 460.819i 0.633864i −0.948448 0.316932i \(-0.897347\pi\)
0.948448 0.316932i \(-0.102653\pi\)
\(728\) −70.3243 25.9766i −0.0965993 0.0356821i
\(729\) 0 0
\(730\) −75.3379 + 635.787i −0.103203 + 0.870941i
\(731\) −641.517 −0.877589
\(732\) 0 0
\(733\) 1332.20i 1.81747i 0.417376 + 0.908734i \(0.362950\pi\)
−0.417376 + 0.908734i \(0.637050\pi\)
\(734\) −94.7449 + 799.565i −0.129080 + 1.08933i
\(735\) 0 0
\(736\) −398.288 + 595.205i −0.541153 + 0.808703i
\(737\) −137.198 −0.186157
\(738\) 0 0
\(739\) −22.2967 −0.0301715 −0.0150857 0.999886i \(-0.504802\pi\)
−0.0150857 + 0.999886i \(0.504802\pi\)
\(740\) 644.439 + 154.901i 0.870864 + 0.209326i
\(741\) 0 0
\(742\) −439.751 52.1085i −0.592656 0.0702271i
\(743\) 1408.39i 1.89555i 0.318941 + 0.947775i \(0.396673\pi\)
−0.318941 + 0.947775i \(0.603327\pi\)
\(744\) 0 0
\(745\) 1892.55 2.54033
\(746\) −82.3203 + 694.712i −0.110349 + 0.931250i
\(747\) 0 0
\(748\) −411.861 98.9975i −0.550617 0.132350i
\(749\) 416.578i 0.556179i
\(750\) 0 0
\(751\) 408.216i 0.543563i −0.962359 0.271782i \(-0.912387\pi\)
0.962359 0.271782i \(-0.0876129\pi\)
\(752\) 482.124 944.952i 0.641123 1.25659i
\(753\) 0 0
\(754\) 366.495 + 43.4280i 0.486067 + 0.0575968i
\(755\) 2092.16 2.77107
\(756\) 0 0
\(757\) 364.759i 0.481849i −0.970544 0.240924i \(-0.922549\pi\)
0.970544 0.240924i \(-0.0774506\pi\)
\(758\) −193.657 22.9474i −0.255484 0.0302737i
\(759\) 0 0
\(760\) 230.460 623.906i 0.303237 0.820930i
\(761\) −1245.82 −1.63709 −0.818543 0.574446i \(-0.805218\pi\)
−0.818543 + 0.574446i \(0.805218\pi\)
\(762\) 0 0
\(763\) −355.476 −0.465892
\(764\) −115.916 + 482.247i −0.151722 + 0.631213i
\(765\) 0 0
\(766\) 0.821999 6.93696i 0.00107311 0.00905608i
\(767\) 169.114i 0.220488i
\(768\) 0 0
\(769\) 32.0583 0.0416883 0.0208442 0.999783i \(-0.493365\pi\)
0.0208442 + 0.999783i \(0.493365\pi\)
\(770\) 530.718 + 62.8877i 0.689244 + 0.0816724i
\(771\) 0 0
\(772\) 267.201 + 64.2260i 0.346115 + 0.0831943i
\(773\) 1257.99i 1.62742i −0.581272 0.813709i \(-0.697445\pi\)
0.581272 0.813709i \(-0.302555\pi\)
\(774\) 0 0
\(775\) 484.805i 0.625554i
\(776\) 392.264 + 144.895i 0.505495 + 0.186721i
\(777\) 0 0
\(778\) 0.269966 2.27828i 0.000347001 0.00292838i
\(779\) 401.582 0.515510
\(780\) 0 0
\(781\) 959.734i 1.22885i
\(782\) 41.2997 348.534i 0.0528129 0.445695i
\(783\) 0 0
\(784\) −99.7651 50.9012i −0.127251 0.0649249i
\(785\) −550.459 −0.701221
\(786\) 0 0
\(787\) 633.258 0.804648 0.402324 0.915497i \(-0.368203\pi\)
0.402324 + 0.915497i \(0.368203\pi\)
\(788\) −163.418 + 679.873i −0.207384 + 0.862783i
\(789\) 0 0
\(790\) −154.289 18.2826i −0.195303 0.0231426i
\(791\) 475.463i 0.601091i
\(792\) 0 0
\(793\) −364.789 −0.460012
\(794\) −160.859 + 1357.51i −0.202593 + 1.70971i
\(795\) 0 0
\(796\) −123.014 + 511.779i −0.154541 + 0.642938i
\(797\) 552.494i 0.693218i −0.938010 0.346609i \(-0.887333\pi\)
0.938010 0.346609i \(-0.112667\pi\)
\(798\) 0 0
\(799\) 519.882i 0.650665i
\(800\) −822.428 550.337i −1.02803 0.687921i
\(801\) 0 0
\(802\) −613.258 72.6684i −0.764661 0.0906089i
\(803\) 578.125 0.719957
\(804\) 0 0
\(805\) 442.809i 0.550073i
\(806\) 110.283 + 13.0681i 0.136828 + 0.0162135i
\(807\) 0 0
\(808\) 61.7315 167.121i 0.0764004 0.206833i
\(809\) 184.780 0.228406 0.114203 0.993457i \(-0.463569\pi\)
0.114203 + 0.993457i \(0.463569\pi\)
\(810\) 0 0
\(811\) 781.297 0.963375 0.481688 0.876343i \(-0.340024\pi\)
0.481688 + 0.876343i \(0.340024\pi\)
\(812\) 536.090 + 128.858i 0.660209 + 0.158692i
\(813\) 0 0
\(814\) 70.4265 594.339i 0.0865190 0.730146i
\(815\) 1282.23i 1.57328i
\(816\) 0 0
\(817\) −909.572 −1.11331
\(818\) 709.358 + 84.0558i 0.867186 + 0.102758i
\(819\) 0 0
\(820\) 252.527 1050.59i 0.307960 1.28121i
\(821\) 1272.12i 1.54947i −0.632283 0.774737i \(-0.717882\pi\)
0.632283 0.774737i \(-0.282118\pi\)
\(822\) 0 0
\(823\) 92.4404i 0.112321i −0.998422 0.0561606i \(-0.982114\pi\)
0.998422 0.0561606i \(-0.0178859\pi\)
\(824\) −369.424 + 1000.11i −0.448330 + 1.21373i
\(825\) 0 0
\(826\) −29.7299 + 250.895i −0.0359926 + 0.303747i
\(827\) −479.059 −0.579273 −0.289637 0.957137i \(-0.593534\pi\)
−0.289637 + 0.957137i \(0.593534\pi\)
\(828\) 0 0
\(829\) 1205.72i 1.45443i 0.686409 + 0.727215i \(0.259186\pi\)
−0.686409 + 0.727215i \(0.740814\pi\)
\(830\) −182.337 + 1538.77i −0.219683 + 1.85393i
\(831\) 0 0
\(832\) 147.360 172.252i 0.177115 0.207033i
\(833\) 54.8875 0.0658913
\(834\) 0 0
\(835\) −1353.92 −1.62147
\(836\) −583.955 140.363i −0.698511 0.167898i
\(837\) 0 0
\(838\) 614.732 + 72.8430i 0.733570 + 0.0869248i
\(839\) 1231.72i 1.46808i −0.679107 0.734039i \(-0.737633\pi\)
0.679107 0.734039i \(-0.262367\pi\)
\(840\) 0 0
\(841\) −1873.26 −2.22742
\(842\) 25.5631 215.731i 0.0303600 0.256212i
\(843\) 0 0
\(844\) −83.2811 20.0180i −0.0986743 0.0237180i
\(845\) 1170.01i 1.38462i
\(846\) 0 0
\(847\) 162.450i 0.191794i
\(848\) 608.534 1192.71i 0.717611 1.40650i
\(849\) 0 0
\(850\) 481.588 + 57.0661i 0.566574 + 0.0671366i
\(851\) 495.891 0.582716
\(852\) 0 0
\(853\) 1181.27i 1.38484i 0.721493 + 0.692421i \(0.243456\pi\)
−0.721493 + 0.692421i \(0.756544\pi\)
\(854\) −541.194 64.1291i −0.633717 0.0750926i
\(855\) 0 0
\(856\) −1181.58 436.455i −1.38035 0.509878i
\(857\) 1499.85 1.75012 0.875060 0.484014i \(-0.160822\pi\)
0.875060 + 0.484014i \(0.160822\pi\)
\(858\) 0 0
\(859\) 789.796 0.919437 0.459718 0.888065i \(-0.347950\pi\)
0.459718 + 0.888065i \(0.347950\pi\)
\(860\) −571.965 + 2379.56i −0.665076 + 2.76693i
\(861\) 0 0
\(862\) 27.3143 230.509i 0.0316871 0.267412i
\(863\) 59.4710i 0.0689119i −0.999406 0.0344560i \(-0.989030\pi\)
0.999406 0.0344560i \(-0.0109698\pi\)
\(864\) 0 0
\(865\) 2157.04 2.49369
\(866\) 722.934 + 85.6644i 0.834796 + 0.0989197i
\(867\) 0 0
\(868\) 161.317 + 38.7752i 0.185849 + 0.0446718i
\(869\) 140.297i 0.161446i
\(870\) 0 0
\(871\) 35.9812i 0.0413102i
\(872\) 372.438 1008.27i 0.427107 1.15627i
\(873\) 0 0
\(874\) 58.5565 494.167i 0.0669983 0.565408i
\(875\) −117.214 −0.133959
\(876\) 0 0
\(877\) 514.929i 0.587148i −0.955936 0.293574i \(-0.905155\pi\)
0.955936 0.293574i \(-0.0948448\pi\)
\(878\) −62.2488 + 525.326i −0.0708984 + 0.598321i
\(879\) 0 0
\(880\) −734.416 + 1439.44i −0.834564 + 1.63573i
\(881\) 1362.15 1.54614 0.773071 0.634319i \(-0.218719\pi\)
0.773071 + 0.634319i \(0.218719\pi\)
\(882\) 0 0
\(883\) 1150.48 1.30292 0.651459 0.758684i \(-0.274157\pi\)
0.651459 + 0.758684i \(0.274157\pi\)
\(884\) −25.9628 + 108.014i −0.0293697 + 0.122187i
\(885\) 0 0
\(886\) −718.625 85.1539i −0.811089 0.0961105i
\(887\) 321.470i 0.362424i 0.983444 + 0.181212i \(0.0580021\pi\)
−0.983444 + 0.181212i \(0.941998\pi\)
\(888\) 0 0
\(889\) 92.3451 0.103875
\(890\) −107.270 + 905.263i −0.120528 + 1.01715i
\(891\) 0 0
\(892\) −15.8363 + 65.8840i −0.0177537 + 0.0738610i
\(893\) 737.111i 0.825432i
\(894\) 0 0
\(895\) 248.314i 0.277446i
\(896\) 248.901 229.643i 0.277792 0.256298i
\(897\) 0 0
\(898\) −115.576 13.6953i −0.128704 0.0152509i
\(899\) −816.758 −0.908519
\(900\) 0 0
\(901\) 656.191i 0.728292i
\(902\) −968.916 114.812i −1.07419 0.127286i
\(903\) 0 0
\(904\) −1348.60 498.150i −1.49182 0.551051i
\(905\) 1471.64 1.62613
\(906\) 0 0
\(907\) 116.706 0.128673 0.0643365 0.997928i \(-0.479507\pi\)
0.0643365 + 0.997928i \(0.479507\pi\)
\(908\) 1608.41 + 386.607i 1.77138 + 0.425779i
\(909\) 0 0
\(910\) 16.4928 139.185i 0.0181239 0.152950i
\(911\) 1122.30i 1.23195i 0.787767 + 0.615973i \(0.211237\pi\)
−0.787767 + 0.615973i \(0.788763\pi\)
\(912\) 0 0
\(913\) 1399.21 1.53254
\(914\) 560.559 + 66.4237i 0.613303 + 0.0726737i
\(915\) 0 0
\(916\) −33.7001 + 140.203i −0.0367905 + 0.153060i
\(917\) 336.941i 0.367438i
\(918\) 0 0
\(919\) 1476.99i 1.60717i 0.595187 + 0.803587i \(0.297078\pi\)
−0.595187 + 0.803587i \(0.702922\pi\)
\(920\) −1255.98 463.938i −1.36520 0.504281i
\(921\) 0 0
\(922\) −62.0664 + 523.787i −0.0673171 + 0.568098i
\(923\) −251.697 −0.272695
\(924\) 0 0
\(925\) 685.200i 0.740757i
\(926\) −47.9284 + 404.475i −0.0517586 + 0.436798i
\(927\) 0 0
\(928\) −927.162 + 1385.56i −0.999097 + 1.49306i
\(929\) 413.368 0.444960 0.222480 0.974937i \(-0.428585\pi\)
0.222480 + 0.974937i \(0.428585\pi\)
\(930\) 0 0
\(931\) 77.8219 0.0835895
\(932\) −1179.34 283.473i −1.26539 0.304156i
\(933\) 0 0
\(934\) −199.679 23.6611i −0.213790 0.0253331i
\(935\) 791.932i 0.846986i
\(936\) 0 0
\(937\) −51.5540 −0.0550203 −0.0275102 0.999622i \(-0.508758\pi\)
−0.0275102 + 0.999622i \(0.508758\pi\)
\(938\) −6.32541 + 53.3810i −0.00674350 + 0.0569093i
\(939\) 0 0
\(940\) 1928.38 + 463.517i 2.05147 + 0.493103i
\(941\) 247.999i 0.263548i 0.991280 + 0.131774i \(0.0420674\pi\)
−0.991280 + 0.131774i \(0.957933\pi\)
\(942\) 0 0
\(943\) 808.423i 0.857289i
\(944\) −680.489 347.192i −0.720857 0.367788i
\(945\) 0 0
\(946\) 2194.56 + 260.046i 2.31984 + 0.274890i
\(947\) −835.213 −0.881957 −0.440978 0.897518i \(-0.645368\pi\)
−0.440978 + 0.897518i \(0.645368\pi\)
\(948\) 0 0
\(949\) 151.618i 0.159766i
\(950\) 682.817 + 80.9108i 0.718755 + 0.0851692i
\(951\) 0 0
\(952\) −57.5064 + 155.683i −0.0604059 + 0.163532i
\(953\) −1791.85 −1.88022 −0.940112 0.340867i \(-0.889279\pi\)
−0.940112 + 0.340867i \(0.889279\pi\)
\(954\) 0 0
\(955\) −927.270 −0.970963
\(956\) 44.3760 184.618i 0.0464184 0.193115i
\(957\) 0 0
\(958\) 115.716 976.544i 0.120789 1.01936i
\(959\) 411.552i 0.429147i
\(960\) 0 0
\(961\) 715.226 0.744252
\(962\) −155.870 18.4699i −0.162027 0.0191994i
\(963\) 0 0
\(964\) −1061.94 255.255i −1.10160 0.264787i
\(965\) 513.776i 0.532411i
\(966\) 0 0
\(967\) 605.335i 0.625993i −0.949754 0.312997i \(-0.898667\pi\)
0.949754 0.312997i \(-0.101333\pi\)
\(968\) 460.772 + 170.201i 0.476005 + 0.175828i
\(969\) 0 0
\(970\) −91.9955 + 776.362i −0.0948407 + 0.800373i
\(971\) −113.638 −0.117032 −0.0585158 0.998286i \(-0.518637\pi\)
−0.0585158 + 0.998286i \(0.518637\pi\)
\(972\) 0 0
\(973\) 134.625i 0.138360i
\(974\) 57.1289 482.118i 0.0586539 0.494988i
\(975\) 0 0
\(976\) 748.913 1467.85i 0.767329 1.50395i
\(977\) −551.794 −0.564784 −0.282392 0.959299i \(-0.591128\pi\)
−0.282392 + 0.959299i \(0.591128\pi\)
\(978\) 0 0
\(979\) 823.162 0.840819
\(980\) 48.9367 203.592i 0.0499354 0.207747i
\(981\) 0 0
\(982\) 1043.04 + 123.595i 1.06215 + 0.125861i
\(983\) 377.431i 0.383958i 0.981399 + 0.191979i \(0.0614906\pi\)
−0.981399 + 0.191979i \(0.938509\pi\)
\(984\) 0 0
\(985\) −1307.27 −1.32718
\(986\) 96.1401 811.340i 0.0975052 0.822860i
\(987\) 0 0
\(988\) −36.8112 + 153.146i −0.0372583 + 0.155007i
\(989\) 1831.05i 1.85142i
\(990\) 0 0
\(991\) 179.491i 0.181121i 0.995891 + 0.0905607i \(0.0288659\pi\)
−0.995891 + 0.0905607i \(0.971134\pi\)
\(992\) −278.996 + 416.934i −0.281246 + 0.420296i
\(993\) 0 0
\(994\) −373.413 44.2478i −0.375667 0.0445149i
\(995\) −984.055 −0.989000
\(996\) 0 0
\(997\) 1542.02i 1.54666i −0.634005 0.773329i \(-0.718590\pi\)
0.634005 0.773329i \(-0.281410\pi\)
\(998\) −459.248 54.4188i −0.460168 0.0545279i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.g.d.379.24 24
3.2 odd 2 168.3.g.a.43.1 24
4.3 odd 2 2016.3.g.d.1135.22 24
8.3 odd 2 inner 504.3.g.d.379.23 24
8.5 even 2 2016.3.g.d.1135.3 24
12.11 even 2 672.3.g.a.463.2 24
24.5 odd 2 672.3.g.a.463.11 24
24.11 even 2 168.3.g.a.43.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.g.a.43.1 24 3.2 odd 2
168.3.g.a.43.2 yes 24 24.11 even 2
504.3.g.d.379.23 24 8.3 odd 2 inner
504.3.g.d.379.24 24 1.1 even 1 trivial
672.3.g.a.463.2 24 12.11 even 2
672.3.g.a.463.11 24 24.5 odd 2
2016.3.g.d.1135.3 24 8.5 even 2
2016.3.g.d.1135.22 24 4.3 odd 2