Properties

Label 2016.3.g.d.1135.3
Level $2016$
Weight $3$
Character 2016.1135
Analytic conductor $54.932$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,3,Mod(1135,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1135"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1135.3
Character \(\chi\) \(=\) 2016.1135
Dual form 2016.3.g.d.1135.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.47825i q^{5} -2.64575i q^{7} -13.5056 q^{11} +3.54193i q^{13} -7.84106 q^{17} +11.1174 q^{19} +22.3804i q^{23} -30.9242 q^{25} -52.0985i q^{29} +15.6772i q^{31} -19.7856 q^{35} +22.1574i q^{37} -36.1220 q^{41} -81.8151 q^{43} -66.3024i q^{47} -7.00000 q^{49} +83.6865i q^{53} +100.998i q^{55} +47.7464 q^{59} +102.992i q^{61} +26.4874 q^{65} +10.1586 q^{67} -71.0621i q^{71} +42.8065 q^{73} +35.7324i q^{77} +10.3881i q^{79} -103.602 q^{83} +58.6374i q^{85} +60.9498 q^{89} +9.37107 q^{91} -83.1387i q^{95} +52.2712 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 32 q^{11} - 16 q^{17} + 64 q^{19} - 72 q^{25} + 80 q^{41} - 32 q^{43} - 168 q^{49} + 192 q^{65} + 32 q^{67} - 240 q^{73} - 320 q^{83} - 400 q^{89} + 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 7.47825i − 1.49565i −0.663896 0.747825i \(-0.731098\pi\)
0.663896 0.747825i \(-0.268902\pi\)
\(6\) 0 0
\(7\) − 2.64575i − 0.377964i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.5056 −1.22778 −0.613889 0.789392i \(-0.710396\pi\)
−0.613889 + 0.789392i \(0.710396\pi\)
\(12\) 0 0
\(13\) 3.54193i 0.272456i 0.990677 + 0.136228i \(0.0434980\pi\)
−0.990677 + 0.136228i \(0.956502\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.84106 −0.461239 −0.230620 0.973044i \(-0.574075\pi\)
−0.230620 + 0.973044i \(0.574075\pi\)
\(18\) 0 0
\(19\) 11.1174 0.585127 0.292563 0.956246i \(-0.405492\pi\)
0.292563 + 0.956246i \(0.405492\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 22.3804i 0.973060i 0.873664 + 0.486530i \(0.161738\pi\)
−0.873664 + 0.486530i \(0.838262\pi\)
\(24\) 0 0
\(25\) −30.9242 −1.23697
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 52.0985i − 1.79650i −0.439484 0.898250i \(-0.644839\pi\)
0.439484 0.898250i \(-0.355161\pi\)
\(30\) 0 0
\(31\) 15.6772i 0.505716i 0.967503 + 0.252858i \(0.0813705\pi\)
−0.967503 + 0.252858i \(0.918630\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −19.7856 −0.565302
\(36\) 0 0
\(37\) 22.1574i 0.598849i 0.954120 + 0.299424i \(0.0967946\pi\)
−0.954120 + 0.299424i \(0.903205\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −36.1220 −0.881023 −0.440512 0.897747i \(-0.645203\pi\)
−0.440512 + 0.897747i \(0.645203\pi\)
\(42\) 0 0
\(43\) −81.8151 −1.90268 −0.951338 0.308149i \(-0.900290\pi\)
−0.951338 + 0.308149i \(0.900290\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 66.3024i − 1.41069i −0.708864 0.705345i \(-0.750792\pi\)
0.708864 0.705345i \(-0.249208\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 83.6865i 1.57899i 0.613756 + 0.789496i \(0.289658\pi\)
−0.613756 + 0.789496i \(0.710342\pi\)
\(54\) 0 0
\(55\) 100.998i 1.83633i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 47.7464 0.809261 0.404630 0.914480i \(-0.367400\pi\)
0.404630 + 0.914480i \(0.367400\pi\)
\(60\) 0 0
\(61\) 102.992i 1.68839i 0.536039 + 0.844193i \(0.319920\pi\)
−0.536039 + 0.844193i \(0.680080\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 26.4874 0.407499
\(66\) 0 0
\(67\) 10.1586 0.151621 0.0758107 0.997122i \(-0.475846\pi\)
0.0758107 + 0.997122i \(0.475846\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 71.0621i − 1.00087i −0.865773 0.500437i \(-0.833173\pi\)
0.865773 0.500437i \(-0.166827\pi\)
\(72\) 0 0
\(73\) 42.8065 0.586390 0.293195 0.956053i \(-0.405282\pi\)
0.293195 + 0.956053i \(0.405282\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 35.7324i 0.464057i
\(78\) 0 0
\(79\) 10.3881i 0.131494i 0.997836 + 0.0657472i \(0.0209431\pi\)
−0.997836 + 0.0657472i \(0.979057\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −103.602 −1.24822 −0.624111 0.781335i \(-0.714539\pi\)
−0.624111 + 0.781335i \(0.714539\pi\)
\(84\) 0 0
\(85\) 58.6374i 0.689852i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 60.9498 0.684830 0.342415 0.939549i \(-0.388755\pi\)
0.342415 + 0.939549i \(0.388755\pi\)
\(90\) 0 0
\(91\) 9.37107 0.102979
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 83.1387i − 0.875145i
\(96\) 0 0
\(97\) 52.2712 0.538878 0.269439 0.963017i \(-0.413162\pi\)
0.269439 + 0.963017i \(0.413162\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 22.2697i 0.220492i 0.993904 + 0.110246i \(0.0351639\pi\)
−0.993904 + 0.110246i \(0.964836\pi\)
\(102\) 0 0
\(103\) 133.270i 1.29388i 0.762539 + 0.646942i \(0.223952\pi\)
−0.762539 + 0.646942i \(0.776048\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 157.452 1.47151 0.735755 0.677248i \(-0.236827\pi\)
0.735755 + 0.677248i \(0.236827\pi\)
\(108\) 0 0
\(109\) 134.357i 1.23264i 0.787498 + 0.616318i \(0.211376\pi\)
−0.787498 + 0.616318i \(0.788624\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −179.708 −1.59034 −0.795169 0.606388i \(-0.792618\pi\)
−0.795169 + 0.606388i \(0.792618\pi\)
\(114\) 0 0
\(115\) 167.366 1.45536
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 20.7455i 0.174332i
\(120\) 0 0
\(121\) 61.4003 0.507440
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 44.3027i 0.354422i
\(126\) 0 0
\(127\) 34.9032i 0.274828i 0.990514 + 0.137414i \(0.0438791\pi\)
−0.990514 + 0.137414i \(0.956121\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 127.352 0.972150 0.486075 0.873917i \(-0.338428\pi\)
0.486075 + 0.873917i \(0.338428\pi\)
\(132\) 0 0
\(133\) − 29.4139i − 0.221157i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 155.552 1.13542 0.567708 0.823230i \(-0.307830\pi\)
0.567708 + 0.823230i \(0.307830\pi\)
\(138\) 0 0
\(139\) 50.8834 0.366067 0.183034 0.983107i \(-0.441408\pi\)
0.183034 + 0.983107i \(0.441408\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 47.8358i − 0.334516i
\(144\) 0 0
\(145\) −389.606 −2.68694
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 253.074i 1.69848i 0.528007 + 0.849240i \(0.322940\pi\)
−0.528007 + 0.849240i \(0.677060\pi\)
\(150\) 0 0
\(151\) − 279.766i − 1.85275i −0.376598 0.926377i \(-0.622906\pi\)
0.376598 0.926377i \(-0.377094\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 117.238 0.756374
\(156\) 0 0
\(157\) − 73.6080i − 0.468841i −0.972135 0.234420i \(-0.924681\pi\)
0.972135 0.234420i \(-0.0753192\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 59.2129 0.367782
\(162\) 0 0
\(163\) −171.461 −1.05191 −0.525953 0.850513i \(-0.676291\pi\)
−0.525953 + 0.850513i \(0.676291\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 181.048i 1.08412i 0.840339 + 0.542061i \(0.182356\pi\)
−0.840339 + 0.542061i \(0.817644\pi\)
\(168\) 0 0
\(169\) 156.455 0.925768
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 288.442i 1.66729i 0.552298 + 0.833647i \(0.313751\pi\)
−0.552298 + 0.833647i \(0.686249\pi\)
\(174\) 0 0
\(175\) 81.8178i 0.467530i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −33.2048 −0.185502 −0.0927510 0.995689i \(-0.529566\pi\)
−0.0927510 + 0.995689i \(0.529566\pi\)
\(180\) 0 0
\(181\) 196.790i 1.08724i 0.839332 + 0.543619i \(0.182946\pi\)
−0.839332 + 0.543619i \(0.817054\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 165.699 0.895668
\(186\) 0 0
\(187\) 105.898 0.566300
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 123.996i 0.649191i 0.945853 + 0.324596i \(0.105228\pi\)
−0.945853 + 0.324596i \(0.894772\pi\)
\(192\) 0 0
\(193\) 68.7028 0.355973 0.177986 0.984033i \(-0.443042\pi\)
0.177986 + 0.984033i \(0.443042\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 174.809i − 0.887357i −0.896186 0.443678i \(-0.853673\pi\)
0.896186 0.443678i \(-0.146327\pi\)
\(198\) 0 0
\(199\) 131.589i 0.661251i 0.943762 + 0.330625i \(0.107260\pi\)
−0.943762 + 0.330625i \(0.892740\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −137.840 −0.679014
\(204\) 0 0
\(205\) 270.129i 1.31770i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −150.147 −0.718406
\(210\) 0 0
\(211\) 21.4133 0.101485 0.0507424 0.998712i \(-0.483841\pi\)
0.0507424 + 0.998712i \(0.483841\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 611.834i 2.84574i
\(216\) 0 0
\(217\) 41.4779 0.191143
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 27.7725i − 0.125667i
\(222\) 0 0
\(223\) 16.9401i 0.0759648i 0.999278 + 0.0379824i \(0.0120931\pi\)
−0.999278 + 0.0379824i \(0.987907\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −413.555 −1.82183 −0.910914 0.412596i \(-0.864622\pi\)
−0.910914 + 0.412596i \(0.864622\pi\)
\(228\) 0 0
\(229\) − 36.0491i − 0.157420i −0.996898 0.0787099i \(-0.974920\pi\)
0.996898 0.0787099i \(-0.0250801\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −303.232 −1.30143 −0.650713 0.759324i \(-0.725530\pi\)
−0.650713 + 0.759324i \(0.725530\pi\)
\(234\) 0 0
\(235\) −495.826 −2.10990
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 47.4692i − 0.198616i −0.995057 0.0993078i \(-0.968337\pi\)
0.995057 0.0993078i \(-0.0316629\pi\)
\(240\) 0 0
\(241\) −273.047 −1.13298 −0.566488 0.824070i \(-0.691698\pi\)
−0.566488 + 0.824070i \(0.691698\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 52.3477i 0.213664i
\(246\) 0 0
\(247\) 39.3771i 0.159421i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −384.102 −1.53029 −0.765144 0.643859i \(-0.777332\pi\)
−0.765144 + 0.643859i \(0.777332\pi\)
\(252\) 0 0
\(253\) − 302.260i − 1.19470i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −308.955 −1.20216 −0.601080 0.799189i \(-0.705263\pi\)
−0.601080 + 0.799189i \(0.705263\pi\)
\(258\) 0 0
\(259\) 58.6230 0.226344
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.7484i 0.0712865i 0.999365 + 0.0356433i \(0.0113480\pi\)
−0.999365 + 0.0356433i \(0.988652\pi\)
\(264\) 0 0
\(265\) 625.829 2.36162
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 344.672i − 1.28131i −0.767829 0.640655i \(-0.778663\pi\)
0.767829 0.640655i \(-0.221337\pi\)
\(270\) 0 0
\(271\) − 54.1955i − 0.199983i −0.994988 0.0999917i \(-0.968118\pi\)
0.994988 0.0999917i \(-0.0318816\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 417.649 1.51872
\(276\) 0 0
\(277\) 72.5083i 0.261763i 0.991398 + 0.130881i \(0.0417807\pi\)
−0.991398 + 0.130881i \(0.958219\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.38105 0.0191497 0.00957483 0.999954i \(-0.496952\pi\)
0.00957483 + 0.999954i \(0.496952\pi\)
\(282\) 0 0
\(283\) 545.863 1.92885 0.964423 0.264365i \(-0.0851625\pi\)
0.964423 + 0.264365i \(0.0851625\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 95.5697i 0.332995i
\(288\) 0 0
\(289\) −227.518 −0.787258
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 425.941i 1.45373i 0.686783 + 0.726863i \(0.259022\pi\)
−0.686783 + 0.726863i \(0.740978\pi\)
\(294\) 0 0
\(295\) − 357.059i − 1.21037i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −79.2698 −0.265116
\(300\) 0 0
\(301\) 216.462i 0.719144i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 770.197 2.52524
\(306\) 0 0
\(307\) −444.426 −1.44764 −0.723822 0.689987i \(-0.757616\pi\)
−0.723822 + 0.689987i \(0.757616\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 17.4956i − 0.0562559i −0.999604 0.0281279i \(-0.991045\pi\)
0.999604 0.0281279i \(-0.00895458\pi\)
\(312\) 0 0
\(313\) −382.054 −1.22062 −0.610311 0.792162i \(-0.708955\pi\)
−0.610311 + 0.792162i \(0.708955\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 390.680i − 1.23243i −0.787579 0.616214i \(-0.788666\pi\)
0.787579 0.616214i \(-0.211334\pi\)
\(318\) 0 0
\(319\) 703.620i 2.20571i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −87.1723 −0.269883
\(324\) 0 0
\(325\) − 109.531i − 0.337020i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −175.420 −0.533191
\(330\) 0 0
\(331\) 283.248 0.855735 0.427867 0.903842i \(-0.359265\pi\)
0.427867 + 0.903842i \(0.359265\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 75.9688i − 0.226772i
\(336\) 0 0
\(337\) −119.881 −0.355730 −0.177865 0.984055i \(-0.556919\pi\)
−0.177865 + 0.984055i \(0.556919\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 211.729i − 0.620907i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 95.3186 0.274693 0.137347 0.990523i \(-0.456143\pi\)
0.137347 + 0.990523i \(0.456143\pi\)
\(348\) 0 0
\(349\) − 42.8609i − 0.122811i −0.998113 0.0614053i \(-0.980442\pi\)
0.998113 0.0614053i \(-0.0195582\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −324.090 −0.918101 −0.459050 0.888410i \(-0.651810\pi\)
−0.459050 + 0.888410i \(0.651810\pi\)
\(354\) 0 0
\(355\) −531.420 −1.49696
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 352.212i 0.981092i 0.871415 + 0.490546i \(0.163203\pi\)
−0.871415 + 0.490546i \(0.836797\pi\)
\(360\) 0 0
\(361\) −237.403 −0.657627
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 320.117i − 0.877034i
\(366\) 0 0
\(367\) 402.579i 1.09695i 0.836168 + 0.548473i \(0.184791\pi\)
−0.836168 + 0.548473i \(0.815209\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 221.414 0.596803
\(372\) 0 0
\(373\) − 349.786i − 0.937765i −0.883261 0.468882i \(-0.844657\pi\)
0.883261 0.468882i \(-0.155343\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 184.529 0.489468
\(378\) 0 0
\(379\) 97.5057 0.257271 0.128635 0.991692i \(-0.458940\pi\)
0.128635 + 0.991692i \(0.458940\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 3.49274i − 0.00911944i −0.999990 0.00455972i \(-0.998549\pi\)
0.999990 0.00455972i \(-0.00145141\pi\)
\(384\) 0 0
\(385\) 267.216 0.694066
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.14711i 0.00294887i 0.999999 + 0.00147444i \(0.000469328\pi\)
−0.999999 + 0.00147444i \(0.999531\pi\)
\(390\) 0 0
\(391\) − 175.486i − 0.448813i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 77.6844 0.196669
\(396\) 0 0
\(397\) − 683.504i − 1.72167i −0.508882 0.860836i \(-0.669941\pi\)
0.508882 0.860836i \(-0.330059\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −308.774 −0.770011 −0.385005 0.922914i \(-0.625800\pi\)
−0.385005 + 0.922914i \(0.625800\pi\)
\(402\) 0 0
\(403\) −55.5275 −0.137785
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 299.248i − 0.735254i
\(408\) 0 0
\(409\) 357.161 0.873253 0.436627 0.899643i \(-0.356173\pi\)
0.436627 + 0.899643i \(0.356173\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 126.325i − 0.305872i
\(414\) 0 0
\(415\) 774.765i 1.86690i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −309.516 −0.738702 −0.369351 0.929290i \(-0.620420\pi\)
−0.369351 + 0.929290i \(0.620420\pi\)
\(420\) 0 0
\(421\) 108.620i 0.258005i 0.991644 + 0.129002i \(0.0411775\pi\)
−0.991644 + 0.129002i \(0.958823\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 242.479 0.570538
\(426\) 0 0
\(427\) 272.490 0.638150
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 116.061i − 0.269283i −0.990894 0.134641i \(-0.957012\pi\)
0.990894 0.134641i \(-0.0429882\pi\)
\(432\) 0 0
\(433\) 363.996 0.840637 0.420318 0.907377i \(-0.361918\pi\)
0.420318 + 0.907377i \(0.361918\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 248.812i 0.569364i
\(438\) 0 0
\(439\) 264.500i 0.602507i 0.953544 + 0.301253i \(0.0974050\pi\)
−0.953544 + 0.301253i \(0.902595\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 361.826 0.816763 0.408382 0.912811i \(-0.366093\pi\)
0.408382 + 0.912811i \(0.366093\pi\)
\(444\) 0 0
\(445\) − 455.798i − 1.02427i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −58.1925 −0.129605 −0.0648023 0.997898i \(-0.520642\pi\)
−0.0648023 + 0.997898i \(0.520642\pi\)
\(450\) 0 0
\(451\) 487.847 1.08170
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 70.0792i − 0.154020i
\(456\) 0 0
\(457\) 282.240 0.617594 0.308797 0.951128i \(-0.400074\pi\)
0.308797 + 0.951128i \(0.400074\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 263.726i − 0.572073i −0.958219 0.286036i \(-0.907662\pi\)
0.958219 0.286036i \(-0.0923378\pi\)
\(462\) 0 0
\(463\) 203.652i 0.439853i 0.975516 + 0.219927i \(0.0705818\pi\)
−0.975516 + 0.219927i \(0.929418\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 100.538 0.215285 0.107643 0.994190i \(-0.465670\pi\)
0.107643 + 0.994190i \(0.465670\pi\)
\(468\) 0 0
\(469\) − 26.8772i − 0.0573075i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1104.96 2.33607
\(474\) 0 0
\(475\) −343.797 −0.723783
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 491.688i − 1.02649i −0.858242 0.513245i \(-0.828443\pi\)
0.858242 0.513245i \(-0.171557\pi\)
\(480\) 0 0
\(481\) −78.4800 −0.163160
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 390.897i − 0.805973i
\(486\) 0 0
\(487\) − 242.746i − 0.498451i −0.968446 0.249225i \(-0.919824\pi\)
0.968446 0.249225i \(-0.0801760\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −525.167 −1.06959 −0.534793 0.844983i \(-0.679610\pi\)
−0.534793 + 0.844983i \(0.679610\pi\)
\(492\) 0 0
\(493\) 408.508i 0.828616i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −188.013 −0.378295
\(498\) 0 0
\(499\) 231.230 0.463387 0.231694 0.972789i \(-0.425573\pi\)
0.231694 + 0.972789i \(0.425573\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 180.388i 0.358624i 0.983792 + 0.179312i \(0.0573872\pi\)
−0.983792 + 0.179312i \(0.942613\pi\)
\(504\) 0 0
\(505\) 166.538 0.329779
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 379.548i 0.745674i 0.927897 + 0.372837i \(0.121615\pi\)
−0.927897 + 0.372837i \(0.878385\pi\)
\(510\) 0 0
\(511\) − 113.255i − 0.221634i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 996.626 1.93520
\(516\) 0 0
\(517\) 895.452i 1.73201i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −576.665 −1.10684 −0.553421 0.832902i \(-0.686678\pi\)
−0.553421 + 0.832902i \(0.686678\pi\)
\(522\) 0 0
\(523\) −738.590 −1.41222 −0.706109 0.708103i \(-0.749551\pi\)
−0.706109 + 0.708103i \(0.749551\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 122.926i − 0.233256i
\(528\) 0 0
\(529\) 28.1183 0.0531536
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 127.941i − 0.240040i
\(534\) 0 0
\(535\) − 1177.46i − 2.20086i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 94.5390 0.175397
\(540\) 0 0
\(541\) − 119.151i − 0.220243i −0.993918 0.110121i \(-0.964876\pi\)
0.993918 0.110121i \(-0.0351240\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1004.76 1.84359
\(546\) 0 0
\(547\) 316.005 0.577706 0.288853 0.957374i \(-0.406726\pi\)
0.288853 + 0.957374i \(0.406726\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 579.201i − 1.05118i
\(552\) 0 0
\(553\) 27.4842 0.0497002
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 611.086i − 1.09710i −0.836117 0.548551i \(-0.815180\pi\)
0.836117 0.548551i \(-0.184820\pi\)
\(558\) 0 0
\(559\) − 289.783i − 0.518396i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −263.337 −0.467739 −0.233869 0.972268i \(-0.575139\pi\)
−0.233869 + 0.972268i \(0.575139\pi\)
\(564\) 0 0
\(565\) 1343.90i 2.37859i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 263.864 0.463733 0.231867 0.972748i \(-0.425517\pi\)
0.231867 + 0.972748i \(0.425517\pi\)
\(570\) 0 0
\(571\) −198.806 −0.348172 −0.174086 0.984730i \(-0.555697\pi\)
−0.174086 + 0.984730i \(0.555697\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 692.096i − 1.20364i
\(576\) 0 0
\(577\) −419.509 −0.727051 −0.363526 0.931584i \(-0.618427\pi\)
−0.363526 + 0.931584i \(0.618427\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 274.106i 0.471784i
\(582\) 0 0
\(583\) − 1130.23i − 1.93865i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −536.991 −0.914806 −0.457403 0.889260i \(-0.651220\pi\)
−0.457403 + 0.889260i \(0.651220\pi\)
\(588\) 0 0
\(589\) 174.290i 0.295908i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −201.757 −0.340231 −0.170115 0.985424i \(-0.554414\pi\)
−0.170115 + 0.985424i \(0.554414\pi\)
\(594\) 0 0
\(595\) 155.140 0.260740
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 487.011i 0.813040i 0.913642 + 0.406520i \(0.133258\pi\)
−0.913642 + 0.406520i \(0.866742\pi\)
\(600\) 0 0
\(601\) −671.112 −1.11666 −0.558330 0.829619i \(-0.688558\pi\)
−0.558330 + 0.829619i \(0.688558\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 459.167i − 0.758953i
\(606\) 0 0
\(607\) − 463.776i − 0.764046i −0.924153 0.382023i \(-0.875228\pi\)
0.924153 0.382023i \(-0.124772\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 234.839 0.384351
\(612\) 0 0
\(613\) − 704.945i − 1.14999i −0.818156 0.574996i \(-0.805003\pi\)
0.818156 0.574996i \(-0.194997\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −662.653 −1.07399 −0.536996 0.843585i \(-0.680441\pi\)
−0.536996 + 0.843585i \(0.680441\pi\)
\(618\) 0 0
\(619\) −325.613 −0.526031 −0.263015 0.964792i \(-0.584717\pi\)
−0.263015 + 0.964792i \(0.584717\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 161.258i − 0.258841i
\(624\) 0 0
\(625\) −441.798 −0.706878
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 173.738i − 0.276212i
\(630\) 0 0
\(631\) − 368.582i − 0.584124i −0.956399 0.292062i \(-0.905659\pi\)
0.956399 0.292062i \(-0.0943413\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 261.015 0.411046
\(636\) 0 0
\(637\) − 24.7935i − 0.0389223i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −444.594 −0.693595 −0.346797 0.937940i \(-0.612731\pi\)
−0.346797 + 0.937940i \(0.612731\pi\)
\(642\) 0 0
\(643\) 1180.78 1.83636 0.918181 0.396162i \(-0.129658\pi\)
0.918181 + 0.396162i \(0.129658\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 112.967i 0.174601i 0.996182 + 0.0873005i \(0.0278240\pi\)
−0.996182 + 0.0873005i \(0.972176\pi\)
\(648\) 0 0
\(649\) −644.842 −0.993593
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 364.690i 0.558484i 0.960221 + 0.279242i \(0.0900831\pi\)
−0.960221 + 0.279242i \(0.909917\pi\)
\(654\) 0 0
\(655\) − 952.368i − 1.45400i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.4844 0.0189444 0.00947220 0.999955i \(-0.496985\pi\)
0.00947220 + 0.999955i \(0.496985\pi\)
\(660\) 0 0
\(661\) − 215.021i − 0.325296i −0.986684 0.162648i \(-0.947996\pi\)
0.986684 0.162648i \(-0.0520036\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −219.964 −0.330774
\(666\) 0 0
\(667\) 1165.99 1.74810
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 1390.96i − 2.07297i
\(672\) 0 0
\(673\) −107.429 −0.159627 −0.0798135 0.996810i \(-0.525432\pi\)
−0.0798135 + 0.996810i \(0.525432\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 916.328i − 1.35351i −0.736207 0.676756i \(-0.763385\pi\)
0.736207 0.676756i \(-0.236615\pi\)
\(678\) 0 0
\(679\) − 138.296i − 0.203677i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 497.699 0.728696 0.364348 0.931263i \(-0.381292\pi\)
0.364348 + 0.931263i \(0.381292\pi\)
\(684\) 0 0
\(685\) − 1163.26i − 1.69819i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −296.412 −0.430206
\(690\) 0 0
\(691\) −663.410 −0.960073 −0.480036 0.877249i \(-0.659377\pi\)
−0.480036 + 0.877249i \(0.659377\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 380.518i − 0.547508i
\(696\) 0 0
\(697\) 283.235 0.406362
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1295.94i 1.84871i 0.381537 + 0.924354i \(0.375395\pi\)
−0.381537 + 0.924354i \(0.624605\pi\)
\(702\) 0 0
\(703\) 246.333i 0.350402i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 58.9201 0.0833382
\(708\) 0 0
\(709\) − 871.601i − 1.22934i −0.788785 0.614669i \(-0.789290\pi\)
0.788785 0.614669i \(-0.210710\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −350.861 −0.492092
\(714\) 0 0
\(715\) −357.728 −0.500319
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 1027.81i − 1.42950i −0.699378 0.714752i \(-0.746540\pi\)
0.699378 0.714752i \(-0.253460\pi\)
\(720\) 0 0
\(721\) 352.599 0.489042
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1611.11i 2.22221i
\(726\) 0 0
\(727\) − 460.819i − 0.633864i −0.948448 0.316932i \(-0.897347\pi\)
0.948448 0.316932i \(-0.102653\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 641.517 0.877589
\(732\) 0 0
\(733\) − 1332.20i − 1.81747i −0.417376 0.908734i \(-0.637050\pi\)
0.417376 0.908734i \(-0.362950\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −137.198 −0.186157
\(738\) 0 0
\(739\) 22.2967 0.0301715 0.0150857 0.999886i \(-0.495198\pi\)
0.0150857 + 0.999886i \(0.495198\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1408.39i 1.89555i 0.318941 + 0.947775i \(0.396673\pi\)
−0.318941 + 0.947775i \(0.603327\pi\)
\(744\) 0 0
\(745\) 1892.55 2.54033
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 416.578i − 0.556179i
\(750\) 0 0
\(751\) − 408.216i − 0.543563i −0.962359 0.271782i \(-0.912387\pi\)
0.962359 0.271782i \(-0.0876129\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2092.16 −2.77107
\(756\) 0 0
\(757\) 364.759i 0.481849i 0.970544 + 0.240924i \(0.0774506\pi\)
−0.970544 + 0.240924i \(0.922549\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1245.82 −1.63709 −0.818543 0.574446i \(-0.805218\pi\)
−0.818543 + 0.574446i \(0.805218\pi\)
\(762\) 0 0
\(763\) 355.476 0.465892
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 169.114i 0.220488i
\(768\) 0 0
\(769\) 32.0583 0.0416883 0.0208442 0.999783i \(-0.493365\pi\)
0.0208442 + 0.999783i \(0.493365\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1257.99i 1.62742i 0.581272 + 0.813709i \(0.302555\pi\)
−0.581272 + 0.813709i \(0.697445\pi\)
\(774\) 0 0
\(775\) − 484.805i − 0.625554i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −401.582 −0.515510
\(780\) 0 0
\(781\) 959.734i 1.22885i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −550.459 −0.701221
\(786\) 0 0
\(787\) −633.258 −0.804648 −0.402324 0.915497i \(-0.631797\pi\)
−0.402324 + 0.915497i \(0.631797\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 475.463i 0.601091i
\(792\) 0 0
\(793\) −364.789 −0.460012
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 552.494i 0.693218i 0.938010 + 0.346609i \(0.112667\pi\)
−0.938010 + 0.346609i \(0.887333\pi\)
\(798\) 0 0
\(799\) 519.882i 0.650665i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −578.125 −0.719957
\(804\) 0 0
\(805\) − 442.809i − 0.550073i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 184.780 0.228406 0.114203 0.993457i \(-0.463569\pi\)
0.114203 + 0.993457i \(0.463569\pi\)
\(810\) 0 0
\(811\) −781.297 −0.963375 −0.481688 0.876343i \(-0.659976\pi\)
−0.481688 + 0.876343i \(0.659976\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1282.23i 1.57328i
\(816\) 0 0
\(817\) −909.572 −1.11331
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1272.12i 1.54947i 0.632283 + 0.774737i \(0.282118\pi\)
−0.632283 + 0.774737i \(0.717882\pi\)
\(822\) 0 0
\(823\) − 92.4404i − 0.112321i −0.998422 0.0561606i \(-0.982114\pi\)
0.998422 0.0561606i \(-0.0178859\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 479.059 0.579273 0.289637 0.957137i \(-0.406466\pi\)
0.289637 + 0.957137i \(0.406466\pi\)
\(828\) 0 0
\(829\) − 1205.72i − 1.45443i −0.686409 0.727215i \(-0.740814\pi\)
0.686409 0.727215i \(-0.259186\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 54.8875 0.0658913
\(834\) 0 0
\(835\) 1353.92 1.62147
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 1231.72i − 1.46808i −0.679107 0.734039i \(-0.737633\pi\)
0.679107 0.734039i \(-0.262367\pi\)
\(840\) 0 0
\(841\) −1873.26 −2.22742
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 1170.01i − 1.38462i
\(846\) 0 0
\(847\) − 162.450i − 0.191794i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −495.891 −0.582716
\(852\) 0 0
\(853\) − 1181.27i − 1.38484i −0.721493 0.692421i \(-0.756544\pi\)
0.721493 0.692421i \(-0.243456\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1499.85 1.75012 0.875060 0.484014i \(-0.160822\pi\)
0.875060 + 0.484014i \(0.160822\pi\)
\(858\) 0 0
\(859\) −789.796 −0.919437 −0.459718 0.888065i \(-0.652050\pi\)
−0.459718 + 0.888065i \(0.652050\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 59.4710i − 0.0689119i −0.999406 0.0344560i \(-0.989030\pi\)
0.999406 0.0344560i \(-0.0109698\pi\)
\(864\) 0 0
\(865\) 2157.04 2.49369
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 140.297i − 0.161446i
\(870\) 0 0
\(871\) 35.9812i 0.0413102i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 117.214 0.133959
\(876\) 0 0
\(877\) 514.929i 0.587148i 0.955936 + 0.293574i \(0.0948448\pi\)
−0.955936 + 0.293574i \(0.905155\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1362.15 1.54614 0.773071 0.634319i \(-0.218719\pi\)
0.773071 + 0.634319i \(0.218719\pi\)
\(882\) 0 0
\(883\) −1150.48 −1.30292 −0.651459 0.758684i \(-0.725843\pi\)
−0.651459 + 0.758684i \(0.725843\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 321.470i 0.362424i 0.983444 + 0.181212i \(0.0580021\pi\)
−0.983444 + 0.181212i \(0.941998\pi\)
\(888\) 0 0
\(889\) 92.3451 0.103875
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 737.111i − 0.825432i
\(894\) 0 0
\(895\) 248.314i 0.277446i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 816.758 0.908519
\(900\) 0 0
\(901\) − 656.191i − 0.728292i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1471.64 1.62613
\(906\) 0 0
\(907\) −116.706 −0.128673 −0.0643365 0.997928i \(-0.520493\pi\)
−0.0643365 + 0.997928i \(0.520493\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1122.30i 1.23195i 0.787767 + 0.615973i \(0.211237\pi\)
−0.787767 + 0.615973i \(0.788763\pi\)
\(912\) 0 0
\(913\) 1399.21 1.53254
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 336.941i − 0.367438i
\(918\) 0 0
\(919\) 1476.99i 1.60717i 0.595187 + 0.803587i \(0.297078\pi\)
−0.595187 + 0.803587i \(0.702922\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 251.697 0.272695
\(924\) 0 0
\(925\) − 685.200i − 0.740757i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 413.368 0.444960 0.222480 0.974937i \(-0.428585\pi\)
0.222480 + 0.974937i \(0.428585\pi\)
\(930\) 0 0
\(931\) −77.8219 −0.0835895
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 791.932i − 0.846986i
\(936\) 0 0
\(937\) −51.5540 −0.0550203 −0.0275102 0.999622i \(-0.508758\pi\)
−0.0275102 + 0.999622i \(0.508758\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 247.999i − 0.263548i −0.991280 0.131774i \(-0.957933\pi\)
0.991280 0.131774i \(-0.0420674\pi\)
\(942\) 0 0
\(943\) − 808.423i − 0.857289i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 835.213 0.881957 0.440978 0.897518i \(-0.354632\pi\)
0.440978 + 0.897518i \(0.354632\pi\)
\(948\) 0 0
\(949\) 151.618i 0.159766i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1791.85 −1.88022 −0.940112 0.340867i \(-0.889279\pi\)
−0.940112 + 0.340867i \(0.889279\pi\)
\(954\) 0 0
\(955\) 927.270 0.970963
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 411.552i − 0.429147i
\(960\) 0 0
\(961\) 715.226 0.744252
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 513.776i − 0.532411i
\(966\) 0 0
\(967\) − 605.335i − 0.625993i −0.949754 0.312997i \(-0.898667\pi\)
0.949754 0.312997i \(-0.101333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 113.638 0.117032 0.0585158 0.998286i \(-0.481363\pi\)
0.0585158 + 0.998286i \(0.481363\pi\)
\(972\) 0 0
\(973\) − 134.625i − 0.138360i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −551.794 −0.564784 −0.282392 0.959299i \(-0.591128\pi\)
−0.282392 + 0.959299i \(0.591128\pi\)
\(978\) 0 0
\(979\) −823.162 −0.840819
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 377.431i 0.383958i 0.981399 + 0.191979i \(0.0614906\pi\)
−0.981399 + 0.191979i \(0.938509\pi\)
\(984\) 0 0
\(985\) −1307.27 −1.32718
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1831.05i − 1.85142i
\(990\) 0 0
\(991\) 179.491i 0.181121i 0.995891 + 0.0905607i \(0.0288659\pi\)
−0.995891 + 0.0905607i \(0.971134\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 984.055 0.989000
\(996\) 0 0
\(997\) 1542.02i 1.54666i 0.634005 + 0.773329i \(0.281410\pi\)
−0.634005 + 0.773329i \(0.718590\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.g.d.1135.3 24
3.2 odd 2 672.3.g.a.463.11 24
4.3 odd 2 504.3.g.d.379.23 24
8.3 odd 2 inner 2016.3.g.d.1135.22 24
8.5 even 2 504.3.g.d.379.24 24
12.11 even 2 168.3.g.a.43.2 yes 24
24.5 odd 2 168.3.g.a.43.1 24
24.11 even 2 672.3.g.a.463.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.g.a.43.1 24 24.5 odd 2
168.3.g.a.43.2 yes 24 12.11 even 2
504.3.g.d.379.23 24 4.3 odd 2
504.3.g.d.379.24 24 8.5 even 2
672.3.g.a.463.2 24 24.11 even 2
672.3.g.a.463.11 24 3.2 odd 2
2016.3.g.d.1135.3 24 1.1 even 1 trivial
2016.3.g.d.1135.22 24 8.3 odd 2 inner