Newspace parameters
Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 504.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.7330053238\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
379.1 | −1.97309 | − | 0.326994i | 0 | 3.78615 | + | 1.29038i | − | 4.09875i | 0 | 2.64575i | −7.04846 | − | 3.78407i | 0 | −1.34027 | + | 8.08719i | |||||||||
379.2 | −1.97309 | + | 0.326994i | 0 | 3.78615 | − | 1.29038i | 4.09875i | 0 | − | 2.64575i | −7.04846 | + | 3.78407i | 0 | −1.34027 | − | 8.08719i | |||||||||
379.3 | −1.94205 | − | 0.477965i | 0 | 3.54310 | + | 1.85646i | − | 6.16432i | 0 | − | 2.64575i | −5.99354 | − | 5.29882i | 0 | −2.94633 | + | 11.9714i | ||||||||
379.4 | −1.94205 | + | 0.477965i | 0 | 3.54310 | − | 1.85646i | 6.16432i | 0 | 2.64575i | −5.99354 | + | 5.29882i | 0 | −2.94633 | − | 11.9714i | ||||||||||
379.5 | −1.81394 | − | 0.842398i | 0 | 2.58073 | + | 3.05611i | 5.94177i | 0 | − | 2.64575i | −2.10682 | − | 7.71760i | 0 | 5.00533 | − | 10.7780i | |||||||||
379.6 | −1.81394 | + | 0.842398i | 0 | 2.58073 | − | 3.05611i | − | 5.94177i | 0 | 2.64575i | −2.10682 | + | 7.71760i | 0 | 5.00533 | + | 10.7780i | |||||||||
379.7 | −1.18386 | − | 1.61198i | 0 | −1.19696 | + | 3.81671i | − | 2.78060i | 0 | 2.64575i | 7.56949 | − | 2.58898i | 0 | −4.48227 | + | 3.29183i | |||||||||
379.8 | −1.18386 | + | 1.61198i | 0 | −1.19696 | − | 3.81671i | 2.78060i | 0 | − | 2.64575i | 7.56949 | + | 2.58898i | 0 | −4.48227 | − | 3.29183i | |||||||||
379.9 | −0.434385 | − | 1.95226i | 0 | −3.62262 | + | 1.69606i | − | 3.78720i | 0 | 2.64575i | 4.88476 | + | 6.33554i | 0 | −7.39360 | + | 1.64510i | |||||||||
379.10 | −0.434385 | + | 1.95226i | 0 | −3.62262 | − | 1.69606i | 3.78720i | 0 | − | 2.64575i | 4.88476 | − | 6.33554i | 0 | −7.39360 | − | 1.64510i | |||||||||
379.11 | 0.0411377 | − | 1.99958i | 0 | −3.99662 | − | 0.164516i | 3.19600i | 0 | − | 2.64575i | −0.493374 | + | 7.98477i | 0 | 6.39065 | + | 0.131476i | |||||||||
379.12 | 0.0411377 | + | 1.99958i | 0 | −3.99662 | + | 0.164516i | − | 3.19600i | 0 | 2.64575i | −0.493374 | − | 7.98477i | 0 | 6.39065 | − | 0.131476i | |||||||||
379.13 | 0.121960 | − | 1.99628i | 0 | −3.97025 | − | 0.486933i | 9.26683i | 0 | 2.64575i | −1.45627 | + | 7.86634i | 0 | 18.4992 | + | 1.13018i | ||||||||||
379.14 | 0.121960 | + | 1.99628i | 0 | −3.97025 | + | 0.486933i | − | 9.26683i | 0 | − | 2.64575i | −1.45627 | − | 7.86634i | 0 | 18.4992 | − | 1.13018i | ||||||||
379.15 | 1.05960 | − | 1.69625i | 0 | −1.75451 | − | 3.59468i | 2.47223i | 0 | 2.64575i | −7.95653 | − | 0.832818i | 0 | 4.19351 | + | 2.61956i | ||||||||||
379.16 | 1.05960 | + | 1.69625i | 0 | −1.75451 | + | 3.59468i | − | 2.47223i | 0 | − | 2.64575i | −7.95653 | + | 0.832818i | 0 | 4.19351 | − | 2.61956i | ||||||||
379.17 | 1.59973 | − | 1.20036i | 0 | 1.11825 | − | 3.84051i | − | 0.769463i | 0 | − | 2.64575i | −2.82111 | − | 7.48608i | 0 | −0.923636 | − | 1.23093i | ||||||||
379.18 | 1.59973 | + | 1.20036i | 0 | 1.11825 | + | 3.84051i | 0.769463i | 0 | 2.64575i | −2.82111 | + | 7.48608i | 0 | −0.923636 | + | 1.23093i | ||||||||||
379.19 | 1.61092 | − | 1.18531i | 0 | 1.19010 | − | 3.81886i | − | 8.04930i | 0 | − | 2.64575i | −2.60937 | − | 7.56248i | 0 | −9.54089 | − | 12.9667i | ||||||||
379.20 | 1.61092 | + | 1.18531i | 0 | 1.19010 | + | 3.81886i | 8.04930i | 0 | 2.64575i | −2.60937 | + | 7.56248i | 0 | −9.54089 | + | 12.9667i | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 504.3.g.d | 24 | |
3.b | odd | 2 | 1 | 168.3.g.a | ✓ | 24 | |
4.b | odd | 2 | 1 | 2016.3.g.d | 24 | ||
8.b | even | 2 | 1 | 2016.3.g.d | 24 | ||
8.d | odd | 2 | 1 | inner | 504.3.g.d | 24 | |
12.b | even | 2 | 1 | 672.3.g.a | 24 | ||
24.f | even | 2 | 1 | 168.3.g.a | ✓ | 24 | |
24.h | odd | 2 | 1 | 672.3.g.a | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.3.g.a | ✓ | 24 | 3.b | odd | 2 | 1 | |
168.3.g.a | ✓ | 24 | 24.f | even | 2 | 1 | |
504.3.g.d | 24 | 1.a | even | 1 | 1 | trivial | |
504.3.g.d | 24 | 8.d | odd | 2 | 1 | inner | |
672.3.g.a | 24 | 12.b | even | 2 | 1 | ||
672.3.g.a | 24 | 24.h | odd | 2 | 1 | ||
2016.3.g.d | 24 | 4.b | odd | 2 | 1 | ||
2016.3.g.d | 24 | 8.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{24} + 336 T_{5}^{22} + 47408 T_{5}^{20} + 3680896 T_{5}^{18} + 173353056 T_{5}^{16} + \cdots + 9028053827584 \)
acting on \(S_{3}^{\mathrm{new}}(504, [\chi])\).