L(s) = 1 | + (1.59 + 1.20i)2-s + (1.11 + 3.84i)4-s + 0.769i·5-s + 2.64i·7-s + (−2.82 + 7.48i)8-s + (−0.923 + 1.23i)10-s − 13.3·11-s + 9.58i·13-s + (−3.17 + 4.23i)14-s + (−13.4 + 8.58i)16-s − 16.2·17-s + 8.48·19-s + (−2.95 + 0.860i)20-s + (−21.4 − 16.0i)22-s + 12.1i·23-s + ⋯ |
L(s) = 1 | + (0.799 + 0.600i)2-s + (0.279 + 0.960i)4-s + 0.153i·5-s + 0.377i·7-s + (−0.352 + 0.935i)8-s + (−0.0923 + 0.123i)10-s − 1.21·11-s + 0.737i·13-s + (−0.226 + 0.302i)14-s + (−0.843 + 0.536i)16-s − 0.958·17-s + 0.446·19-s + (−0.147 + 0.0430i)20-s + (−0.974 − 0.730i)22-s + 0.530i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.935 - 0.352i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.935 - 0.352i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.942115808\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.942115808\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.59 - 1.20i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - 2.64iT \) |
good | 5 | \( 1 - 0.769iT - 25T^{2} \) |
| 11 | \( 1 + 13.3T + 121T^{2} \) |
| 13 | \( 1 - 9.58iT - 169T^{2} \) |
| 17 | \( 1 + 16.2T + 289T^{2} \) |
| 19 | \( 1 - 8.48T + 361T^{2} \) |
| 23 | \( 1 - 12.1iT - 529T^{2} \) |
| 29 | \( 1 - 24.8iT - 841T^{2} \) |
| 31 | \( 1 + 17.5iT - 961T^{2} \) |
| 37 | \( 1 - 31.2iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 7.97T + 1.68e3T^{2} \) |
| 43 | \( 1 + 52.3T + 1.84e3T^{2} \) |
| 47 | \( 1 - 8.34iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 74.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 91.8T + 3.48e3T^{2} \) |
| 61 | \( 1 - 110. iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 35.0T + 4.48e3T^{2} \) |
| 71 | \( 1 - 70.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 15.8T + 5.32e3T^{2} \) |
| 79 | \( 1 + 120. iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 104.T + 6.88e3T^{2} \) |
| 89 | \( 1 - 72.9T + 7.92e3T^{2} \) |
| 97 | \( 1 - 176.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35284673317089383654166709252, −10.34783100199023960911253769994, −9.073919997980697328907551798200, −8.285419515748692233459440418133, −7.27320233479824714395857568936, −6.51184897694564835877363420404, −5.39026872572379311818166849452, −4.66279253735037377395811504580, −3.32636269995603680393014000557, −2.24991317656344470038427390449,
0.55949726084823706555241115386, 2.27244093244588494781716159521, 3.31801361982764885177754676290, 4.59750171183990448181153861179, 5.32366484171764394824175276766, 6.42931057962481131839642684768, 7.47648020015058240009420558583, 8.586608089122301906318893765184, 9.753694613430712316799138976331, 10.57972073866134668722912349361