Properties

Label 504.3.e.c.251.32
Level $504$
Weight $3$
Character 504.251
Analytic conductor $13.733$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(251,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.32
Character \(\chi\) \(=\) 504.251
Dual form 504.3.e.c.251.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.852241 + 1.80933i) q^{2} +(-2.54737 + 3.08398i) q^{4} +9.10939i q^{5} +(0.958628 + 6.93405i) q^{7} +(-7.75091 - 1.98075i) q^{8} +(-16.4819 + 7.76340i) q^{10} +9.66169i q^{11} +2.31922 q^{13} +(-11.7290 + 7.64396i) q^{14} +(-3.02182 - 15.7121i) q^{16} +21.8883 q^{17} -26.9198i q^{19} +(-28.0931 - 23.2050i) q^{20} +(-17.4812 + 8.23410i) q^{22} +15.4172 q^{23} -57.9809 q^{25} +(1.97653 + 4.19623i) q^{26} +(-23.8264 - 14.7072i) q^{28} -18.1366 q^{29} +45.9762 q^{31} +(25.8530 - 18.8579i) q^{32} +(18.6541 + 39.6032i) q^{34} +(-63.1649 + 8.73251i) q^{35} +32.3318i q^{37} +(48.7069 - 22.9422i) q^{38} +(18.0434 - 70.6061i) q^{40} +33.0463 q^{41} -60.5091 q^{43} +(-29.7964 - 24.6119i) q^{44} +(13.1391 + 27.8948i) q^{46} -29.4932i q^{47} +(-47.1621 + 13.2943i) q^{49} +(-49.4138 - 104.907i) q^{50} +(-5.90790 + 7.15241i) q^{52} +65.7621 q^{53} -88.0121 q^{55} +(6.30435 - 55.6440i) q^{56} +(-15.4568 - 32.8152i) q^{58} -8.47268 q^{59} -74.9438 q^{61} +(39.1828 + 83.1863i) q^{62} +(56.1533 + 30.7052i) q^{64} +21.1266i q^{65} +20.2120 q^{67} +(-55.7575 + 67.5029i) q^{68} +(-69.6318 - 106.844i) q^{70} +21.7110 q^{71} +100.202i q^{73} +(-58.4989 + 27.5545i) q^{74} +(83.0201 + 68.5747i) q^{76} +(-66.9947 + 9.26197i) q^{77} -78.9852i q^{79} +(143.127 - 27.5269i) q^{80} +(28.1634 + 59.7918i) q^{82} +67.6265 q^{83} +199.389i q^{85} +(-51.5684 - 109.481i) q^{86} +(19.1374 - 74.8869i) q^{88} -130.927 q^{89} +(2.22326 + 16.0816i) q^{91} +(-39.2732 + 47.5461i) q^{92} +(53.3629 - 25.1353i) q^{94} +245.223 q^{95} -175.267i q^{97} +(-64.2473 - 74.0019i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 144 q^{22} - 336 q^{25} - 232 q^{28} - 384 q^{43} + 736 q^{46} + 368 q^{49} - 432 q^{58} + 480 q^{64} - 896 q^{67} + 264 q^{70} - 48 q^{88} - 576 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.852241 + 1.80933i 0.426121 + 0.904666i
\(3\) 0 0
\(4\) −2.54737 + 3.08398i −0.636842 + 0.770994i
\(5\) 9.10939i 1.82188i 0.412542 + 0.910939i \(0.364641\pi\)
−0.412542 + 0.910939i \(0.635359\pi\)
\(6\) 0 0
\(7\) 0.958628 + 6.93405i 0.136947 + 0.990578i
\(8\) −7.75091 1.98075i −0.968864 0.247593i
\(9\) 0 0
\(10\) −16.4819 + 7.76340i −1.64819 + 0.776340i
\(11\) 9.66169i 0.878336i 0.898405 + 0.439168i \(0.144727\pi\)
−0.898405 + 0.439168i \(0.855273\pi\)
\(12\) 0 0
\(13\) 2.31922 0.178401 0.0892006 0.996014i \(-0.471569\pi\)
0.0892006 + 0.996014i \(0.471569\pi\)
\(14\) −11.7290 + 7.64396i −0.837787 + 0.545997i
\(15\) 0 0
\(16\) −3.02182 15.7121i −0.188864 0.982003i
\(17\) 21.8883 1.28755 0.643773 0.765217i \(-0.277368\pi\)
0.643773 + 0.765217i \(0.277368\pi\)
\(18\) 0 0
\(19\) 26.9198i 1.41683i −0.705795 0.708416i \(-0.749410\pi\)
0.705795 0.708416i \(-0.250590\pi\)
\(20\) −28.0931 23.2050i −1.40466 1.16025i
\(21\) 0 0
\(22\) −17.4812 + 8.23410i −0.794601 + 0.374277i
\(23\) 15.4172 0.670311 0.335156 0.942163i \(-0.391211\pi\)
0.335156 + 0.942163i \(0.391211\pi\)
\(24\) 0 0
\(25\) −57.9809 −2.31924
\(26\) 1.97653 + 4.19623i 0.0760205 + 0.161394i
\(27\) 0 0
\(28\) −23.8264 14.7072i −0.850944 0.525257i
\(29\) −18.1366 −0.625400 −0.312700 0.949852i \(-0.601233\pi\)
−0.312700 + 0.949852i \(0.601233\pi\)
\(30\) 0 0
\(31\) 45.9762 1.48310 0.741552 0.670896i \(-0.234090\pi\)
0.741552 + 0.670896i \(0.234090\pi\)
\(32\) 25.8530 18.8579i 0.807907 0.589311i
\(33\) 0 0
\(34\) 18.6541 + 39.6032i 0.548650 + 1.16480i
\(35\) −63.1649 + 8.73251i −1.80471 + 0.249500i
\(36\) 0 0
\(37\) 32.3318i 0.873832i 0.899502 + 0.436916i \(0.143929\pi\)
−0.899502 + 0.436916i \(0.856071\pi\)
\(38\) 48.7069 22.9422i 1.28176 0.603742i
\(39\) 0 0
\(40\) 18.0434 70.6061i 0.451085 1.76515i
\(41\) 33.0463 0.806007 0.403004 0.915198i \(-0.367966\pi\)
0.403004 + 0.915198i \(0.367966\pi\)
\(42\) 0 0
\(43\) −60.5091 −1.40719 −0.703594 0.710602i \(-0.748423\pi\)
−0.703594 + 0.710602i \(0.748423\pi\)
\(44\) −29.7964 24.6119i −0.677192 0.559361i
\(45\) 0 0
\(46\) 13.1391 + 27.8948i 0.285633 + 0.606408i
\(47\) 29.4932i 0.627514i −0.949503 0.313757i \(-0.898412\pi\)
0.949503 0.313757i \(-0.101588\pi\)
\(48\) 0 0
\(49\) −47.1621 + 13.2943i −0.962491 + 0.271313i
\(50\) −49.4138 104.907i −0.988275 2.09814i
\(51\) 0 0
\(52\) −5.90790 + 7.15241i −0.113613 + 0.137546i
\(53\) 65.7621 1.24079 0.620397 0.784288i \(-0.286971\pi\)
0.620397 + 0.784288i \(0.286971\pi\)
\(54\) 0 0
\(55\) −88.0121 −1.60022
\(56\) 6.30435 55.6440i 0.112578 0.993643i
\(57\) 0 0
\(58\) −15.4568 32.8152i −0.266496 0.565778i
\(59\) −8.47268 −0.143605 −0.0718024 0.997419i \(-0.522875\pi\)
−0.0718024 + 0.997419i \(0.522875\pi\)
\(60\) 0 0
\(61\) −74.9438 −1.22859 −0.614294 0.789077i \(-0.710559\pi\)
−0.614294 + 0.789077i \(0.710559\pi\)
\(62\) 39.1828 + 83.1863i 0.631981 + 1.34171i
\(63\) 0 0
\(64\) 56.1533 + 30.7052i 0.877395 + 0.479768i
\(65\) 21.1266i 0.325025i
\(66\) 0 0
\(67\) 20.2120 0.301671 0.150836 0.988559i \(-0.451804\pi\)
0.150836 + 0.988559i \(0.451804\pi\)
\(68\) −55.7575 + 67.5029i −0.819963 + 0.992690i
\(69\) 0 0
\(70\) −69.6318 106.844i −0.994740 1.52635i
\(71\) 21.7110 0.305789 0.152894 0.988243i \(-0.451141\pi\)
0.152894 + 0.988243i \(0.451141\pi\)
\(72\) 0 0
\(73\) 100.202i 1.37263i 0.727304 + 0.686315i \(0.240773\pi\)
−0.727304 + 0.686315i \(0.759227\pi\)
\(74\) −58.4989 + 27.5545i −0.790526 + 0.372358i
\(75\) 0 0
\(76\) 83.0201 + 68.5747i 1.09237 + 0.902299i
\(77\) −66.9947 + 9.26197i −0.870061 + 0.120285i
\(78\) 0 0
\(79\) 78.9852i 0.999813i −0.866079 0.499906i \(-0.833368\pi\)
0.866079 0.499906i \(-0.166632\pi\)
\(80\) 143.127 27.5269i 1.78909 0.344087i
\(81\) 0 0
\(82\) 28.1634 + 59.7918i 0.343456 + 0.729168i
\(83\) 67.6265 0.814777 0.407388 0.913255i \(-0.366440\pi\)
0.407388 + 0.913255i \(0.366440\pi\)
\(84\) 0 0
\(85\) 199.389i 2.34575i
\(86\) −51.5684 109.481i −0.599632 1.27304i
\(87\) 0 0
\(88\) 19.1374 74.8869i 0.217470 0.850988i
\(89\) −130.927 −1.47109 −0.735546 0.677474i \(-0.763074\pi\)
−0.735546 + 0.677474i \(0.763074\pi\)
\(90\) 0 0
\(91\) 2.22326 + 16.0816i 0.0244315 + 0.176720i
\(92\) −39.2732 + 47.5461i −0.426882 + 0.516806i
\(93\) 0 0
\(94\) 53.3629 25.1353i 0.567691 0.267397i
\(95\) 245.223 2.58129
\(96\) 0 0
\(97\) 175.267i 1.80688i −0.428719 0.903438i \(-0.641035\pi\)
0.428719 0.903438i \(-0.358965\pi\)
\(98\) −64.2473 74.0019i −0.655585 0.755121i
\(99\) 0 0
\(100\) 147.699 178.812i 1.47699 1.78812i
\(101\) 71.2685i 0.705629i 0.935693 + 0.352815i \(0.114775\pi\)
−0.935693 + 0.352815i \(0.885225\pi\)
\(102\) 0 0
\(103\) 84.3756 0.819181 0.409590 0.912270i \(-0.365672\pi\)
0.409590 + 0.912270i \(0.365672\pi\)
\(104\) −17.9760 4.59378i −0.172847 0.0441710i
\(105\) 0 0
\(106\) 56.0452 + 118.986i 0.528728 + 1.12251i
\(107\) 80.7290i 0.754476i 0.926116 + 0.377238i \(0.123126\pi\)
−0.926116 + 0.377238i \(0.876874\pi\)
\(108\) 0 0
\(109\) 100.232i 0.919557i 0.888034 + 0.459778i \(0.152071\pi\)
−0.888034 + 0.459778i \(0.847929\pi\)
\(110\) −75.0076 159.243i −0.681887 1.44767i
\(111\) 0 0
\(112\) 106.051 36.0155i 0.946887 0.321567i
\(113\) 14.6523i 0.129666i −0.997896 0.0648330i \(-0.979349\pi\)
0.997896 0.0648330i \(-0.0206515\pi\)
\(114\) 0 0
\(115\) 140.441i 1.22122i
\(116\) 46.2006 55.9329i 0.398281 0.482180i
\(117\) 0 0
\(118\) −7.22077 15.3299i −0.0611930 0.129914i
\(119\) 20.9827 + 151.774i 0.176325 + 1.27541i
\(120\) 0 0
\(121\) 27.6517 0.228526
\(122\) −63.8702 135.598i −0.523527 1.11146i
\(123\) 0 0
\(124\) −117.118 + 141.790i −0.944503 + 1.14346i
\(125\) 300.436i 2.40349i
\(126\) 0 0
\(127\) 22.9919i 0.181039i 0.995895 + 0.0905193i \(0.0288527\pi\)
−0.995895 + 0.0905193i \(0.971147\pi\)
\(128\) −7.69973 + 127.768i −0.0601541 + 0.998189i
\(129\) 0 0
\(130\) −38.2251 + 18.0050i −0.294039 + 0.138500i
\(131\) 155.033 1.18345 0.591727 0.806138i \(-0.298446\pi\)
0.591727 + 0.806138i \(0.298446\pi\)
\(132\) 0 0
\(133\) 186.663 25.8061i 1.40348 0.194031i
\(134\) 17.2255 + 36.5702i 0.128548 + 0.272912i
\(135\) 0 0
\(136\) −169.654 43.3551i −1.24746 0.318788i
\(137\) 65.5667i 0.478589i 0.970947 + 0.239294i \(0.0769161\pi\)
−0.970947 + 0.239294i \(0.923084\pi\)
\(138\) 0 0
\(139\) 149.873i 1.07823i −0.842233 0.539113i \(-0.818760\pi\)
0.842233 0.539113i \(-0.181240\pi\)
\(140\) 133.974 217.044i 0.956954 1.55031i
\(141\) 0 0
\(142\) 18.5030 + 39.2824i 0.130303 + 0.276637i
\(143\) 22.4076i 0.156696i
\(144\) 0 0
\(145\) 165.213i 1.13940i
\(146\) −181.299 + 85.3963i −1.24177 + 0.584906i
\(147\) 0 0
\(148\) −99.7104 82.3610i −0.673719 0.556493i
\(149\) −63.7340 −0.427745 −0.213873 0.976862i \(-0.568608\pi\)
−0.213873 + 0.976862i \(0.568608\pi\)
\(150\) 0 0
\(151\) 87.7691i 0.581252i −0.956837 0.290626i \(-0.906136\pi\)
0.956837 0.290626i \(-0.0938636\pi\)
\(152\) −53.3213 + 208.653i −0.350798 + 1.37272i
\(153\) 0 0
\(154\) −73.8536 113.322i −0.479569 0.735858i
\(155\) 418.815i 2.70203i
\(156\) 0 0
\(157\) 12.9625 0.0825635 0.0412818 0.999148i \(-0.486856\pi\)
0.0412818 + 0.999148i \(0.486856\pi\)
\(158\) 142.911 67.3145i 0.904497 0.426041i
\(159\) 0 0
\(160\) 171.784 + 235.505i 1.07365 + 1.47191i
\(161\) 14.7793 + 106.903i 0.0917969 + 0.663996i
\(162\) 0 0
\(163\) 129.380 0.793745 0.396872 0.917874i \(-0.370096\pi\)
0.396872 + 0.917874i \(0.370096\pi\)
\(164\) −84.1811 + 101.914i −0.513300 + 0.621427i
\(165\) 0 0
\(166\) 57.6341 + 122.359i 0.347193 + 0.737101i
\(167\) 189.489i 1.13466i 0.823489 + 0.567332i \(0.192024\pi\)
−0.823489 + 0.567332i \(0.807976\pi\)
\(168\) 0 0
\(169\) −163.621 −0.968173
\(170\) −360.761 + 169.927i −2.12212 + 0.999573i
\(171\) 0 0
\(172\) 154.139 186.609i 0.896157 1.08493i
\(173\) 309.161i 1.78706i 0.449008 + 0.893528i \(0.351778\pi\)
−0.449008 + 0.893528i \(0.648222\pi\)
\(174\) 0 0
\(175\) −55.5821 402.043i −0.317612 2.29739i
\(176\) 151.805 29.1959i 0.862529 0.165886i
\(177\) 0 0
\(178\) −111.582 236.891i −0.626863 1.33085i
\(179\) 109.315i 0.610696i 0.952241 + 0.305348i \(0.0987728\pi\)
−0.952241 + 0.305348i \(0.901227\pi\)
\(180\) 0 0
\(181\) −75.4317 −0.416750 −0.208375 0.978049i \(-0.566817\pi\)
−0.208375 + 0.978049i \(0.566817\pi\)
\(182\) −27.2021 + 17.7280i −0.149462 + 0.0974066i
\(183\) 0 0
\(184\) −119.497 30.5375i −0.649440 0.165964i
\(185\) −294.523 −1.59201
\(186\) 0 0
\(187\) 211.478i 1.13090i
\(188\) 90.9562 + 75.1300i 0.483810 + 0.399627i
\(189\) 0 0
\(190\) 208.989 + 443.690i 1.09994 + 2.33521i
\(191\) 204.357 1.06993 0.534966 0.844874i \(-0.320324\pi\)
0.534966 + 0.844874i \(0.320324\pi\)
\(192\) 0 0
\(193\) −114.368 −0.592579 −0.296290 0.955098i \(-0.595749\pi\)
−0.296290 + 0.955098i \(0.595749\pi\)
\(194\) 317.116 149.370i 1.63462 0.769947i
\(195\) 0 0
\(196\) 79.1398 179.312i 0.403774 0.914859i
\(197\) −227.241 −1.15351 −0.576753 0.816919i \(-0.695680\pi\)
−0.576753 + 0.816919i \(0.695680\pi\)
\(198\) 0 0
\(199\) 113.715 0.571434 0.285717 0.958314i \(-0.407768\pi\)
0.285717 + 0.958314i \(0.407768\pi\)
\(200\) 449.405 + 114.846i 2.24703 + 0.574228i
\(201\) 0 0
\(202\) −128.948 + 60.7380i −0.638359 + 0.300683i
\(203\) −17.3863 125.760i −0.0856466 0.619508i
\(204\) 0 0
\(205\) 301.032i 1.46845i
\(206\) 71.9084 + 152.664i 0.349070 + 0.741085i
\(207\) 0 0
\(208\) −7.00825 36.4397i −0.0336935 0.175191i
\(209\) 260.091 1.24445
\(210\) 0 0
\(211\) 389.006 1.84363 0.921815 0.387630i \(-0.126706\pi\)
0.921815 + 0.387630i \(0.126706\pi\)
\(212\) −167.520 + 202.809i −0.790191 + 0.956645i
\(213\) 0 0
\(214\) −146.066 + 68.8006i −0.682549 + 0.321498i
\(215\) 551.201i 2.56373i
\(216\) 0 0
\(217\) 44.0741 + 318.801i 0.203106 + 1.46913i
\(218\) −181.352 + 85.4216i −0.831892 + 0.391842i
\(219\) 0 0
\(220\) 224.199 271.427i 1.01909 1.23376i
\(221\) 50.7636 0.229700
\(222\) 0 0
\(223\) −228.516 −1.02474 −0.512368 0.858766i \(-0.671232\pi\)
−0.512368 + 0.858766i \(0.671232\pi\)
\(224\) 155.545 + 161.188i 0.694399 + 0.719591i
\(225\) 0 0
\(226\) 26.5108 12.4873i 0.117304 0.0552534i
\(227\) −182.563 −0.804242 −0.402121 0.915587i \(-0.631727\pi\)
−0.402121 + 0.915587i \(0.631727\pi\)
\(228\) 0 0
\(229\) −331.984 −1.44971 −0.724857 0.688900i \(-0.758094\pi\)
−0.724857 + 0.688900i \(0.758094\pi\)
\(230\) −254.104 + 119.689i −1.10480 + 0.520389i
\(231\) 0 0
\(232\) 140.575 + 35.9240i 0.605928 + 0.154845i
\(233\) 360.147i 1.54570i −0.634592 0.772848i \(-0.718832\pi\)
0.634592 0.772848i \(-0.281168\pi\)
\(234\) 0 0
\(235\) 268.665 1.14325
\(236\) 21.5830 26.1296i 0.0914536 0.110718i
\(237\) 0 0
\(238\) −256.728 + 167.313i −1.07869 + 0.702996i
\(239\) −333.265 −1.39442 −0.697208 0.716869i \(-0.745575\pi\)
−0.697208 + 0.716869i \(0.745575\pi\)
\(240\) 0 0
\(241\) 331.691i 1.37631i −0.725564 0.688155i \(-0.758421\pi\)
0.725564 0.688155i \(-0.241579\pi\)
\(242\) 23.5659 + 50.0311i 0.0973797 + 0.206740i
\(243\) 0 0
\(244\) 190.910 231.125i 0.782416 0.947234i
\(245\) −121.103 429.618i −0.494299 1.75354i
\(246\) 0 0
\(247\) 62.4329i 0.252765i
\(248\) −356.358 91.0672i −1.43693 0.367206i
\(249\) 0 0
\(250\) 543.589 256.044i 2.17436 1.02418i
\(251\) −350.730 −1.39733 −0.698666 0.715448i \(-0.746223\pi\)
−0.698666 + 0.715448i \(0.746223\pi\)
\(252\) 0 0
\(253\) 148.956i 0.588758i
\(254\) −41.6000 + 19.5947i −0.163780 + 0.0771443i
\(255\) 0 0
\(256\) −237.737 + 94.9580i −0.928661 + 0.370930i
\(257\) 361.582 1.40694 0.703468 0.710727i \(-0.251634\pi\)
0.703468 + 0.710727i \(0.251634\pi\)
\(258\) 0 0
\(259\) −224.190 + 30.9941i −0.865599 + 0.119668i
\(260\) −65.1541 53.8174i −0.250593 0.206990i
\(261\) 0 0
\(262\) 132.125 + 280.505i 0.504295 + 1.07063i
\(263\) 255.224 0.970434 0.485217 0.874394i \(-0.338741\pi\)
0.485217 + 0.874394i \(0.338741\pi\)
\(264\) 0 0
\(265\) 599.053i 2.26058i
\(266\) 205.774 + 315.743i 0.773586 + 1.18700i
\(267\) 0 0
\(268\) −51.4874 + 62.3333i −0.192117 + 0.232587i
\(269\) 141.207i 0.524934i 0.964941 + 0.262467i \(0.0845360\pi\)
−0.964941 + 0.262467i \(0.915464\pi\)
\(270\) 0 0
\(271\) 405.606 1.49670 0.748350 0.663304i \(-0.230846\pi\)
0.748350 + 0.663304i \(0.230846\pi\)
\(272\) −66.1424 343.910i −0.243171 1.26437i
\(273\) 0 0
\(274\) −118.632 + 55.8786i −0.432963 + 0.203937i
\(275\) 560.194i 2.03707i
\(276\) 0 0
\(277\) 31.1395i 0.112417i 0.998419 + 0.0562084i \(0.0179011\pi\)
−0.998419 + 0.0562084i \(0.982099\pi\)
\(278\) 271.171 127.728i 0.975435 0.459455i
\(279\) 0 0
\(280\) 506.883 + 57.4288i 1.81030 + 0.205103i
\(281\) 15.2327i 0.0542087i 0.999633 + 0.0271044i \(0.00862864\pi\)
−0.999633 + 0.0271044i \(0.991371\pi\)
\(282\) 0 0
\(283\) 222.494i 0.786199i −0.919496 0.393100i \(-0.871403\pi\)
0.919496 0.393100i \(-0.128597\pi\)
\(284\) −55.3060 + 66.9563i −0.194739 + 0.235761i
\(285\) 0 0
\(286\) −40.5427 + 19.0967i −0.141758 + 0.0667715i
\(287\) 31.6791 + 229.145i 0.110380 + 0.798414i
\(288\) 0 0
\(289\) 190.097 0.657773
\(290\) 298.926 140.802i 1.03078 0.485523i
\(291\) 0 0
\(292\) −309.021 255.252i −1.05829 0.874149i
\(293\) 64.2745i 0.219367i 0.993967 + 0.109683i \(0.0349837\pi\)
−0.993967 + 0.109683i \(0.965016\pi\)
\(294\) 0 0
\(295\) 77.1809i 0.261630i
\(296\) 64.0410 250.601i 0.216355 0.846624i
\(297\) 0 0
\(298\) −54.3168 115.316i −0.182271 0.386967i
\(299\) 35.7557 0.119584
\(300\) 0 0
\(301\) −58.0057 419.573i −0.192710 1.39393i
\(302\) 158.803 74.8004i 0.525839 0.247684i
\(303\) 0 0
\(304\) −422.966 + 81.3468i −1.39133 + 0.267588i
\(305\) 682.692i 2.23834i
\(306\) 0 0
\(307\) 409.069i 1.33247i −0.745740 0.666237i \(-0.767904\pi\)
0.745740 0.666237i \(-0.232096\pi\)
\(308\) 142.096 230.204i 0.461352 0.747414i
\(309\) 0 0
\(310\) −757.776 + 356.932i −2.44444 + 1.15139i
\(311\) 117.035i 0.376318i −0.982139 0.188159i \(-0.939748\pi\)
0.982139 0.188159i \(-0.0602520\pi\)
\(312\) 0 0
\(313\) 6.47974i 0.0207021i −0.999946 0.0103510i \(-0.996705\pi\)
0.999946 0.0103510i \(-0.00329489\pi\)
\(314\) 11.0472 + 23.4534i 0.0351820 + 0.0746924i
\(315\) 0 0
\(316\) 243.589 + 201.205i 0.770850 + 0.636723i
\(317\) −403.391 −1.27253 −0.636263 0.771472i \(-0.719521\pi\)
−0.636263 + 0.771472i \(0.719521\pi\)
\(318\) 0 0
\(319\) 175.230i 0.549311i
\(320\) −279.705 + 511.522i −0.874079 + 1.59851i
\(321\) 0 0
\(322\) −180.828 + 117.848i −0.561578 + 0.365988i
\(323\) 589.228i 1.82424i
\(324\) 0 0
\(325\) −134.470 −0.413755
\(326\) 110.263 + 234.092i 0.338231 + 0.718074i
\(327\) 0 0
\(328\) −256.139 65.4563i −0.780912 0.199562i
\(329\) 204.507 28.2730i 0.621602 0.0859360i
\(330\) 0 0
\(331\) −87.5977 −0.264646 −0.132323 0.991207i \(-0.542244\pi\)
−0.132323 + 0.991207i \(0.542244\pi\)
\(332\) −172.270 + 208.558i −0.518884 + 0.628188i
\(333\) 0 0
\(334\) −342.848 + 161.490i −1.02649 + 0.483504i
\(335\) 184.119i 0.549608i
\(336\) 0 0
\(337\) 254.014 0.753752 0.376876 0.926264i \(-0.376998\pi\)
0.376876 + 0.926264i \(0.376998\pi\)
\(338\) −139.445 296.045i −0.412559 0.875873i
\(339\) 0 0
\(340\) −614.910 507.917i −1.80856 1.49387i
\(341\) 444.208i 1.30266i
\(342\) 0 0
\(343\) −137.394 314.280i −0.400567 0.916267i
\(344\) 469.001 + 119.853i 1.36337 + 0.348410i
\(345\) 0 0
\(346\) −559.374 + 263.479i −1.61669 + 0.761501i
\(347\) 206.734i 0.595777i −0.954601 0.297888i \(-0.903718\pi\)
0.954601 0.297888i \(-0.0962823\pi\)
\(348\) 0 0
\(349\) 618.655 1.77265 0.886325 0.463063i \(-0.153250\pi\)
0.886325 + 0.463063i \(0.153250\pi\)
\(350\) 680.059 443.204i 1.94303 1.26630i
\(351\) 0 0
\(352\) 182.200 + 249.784i 0.517613 + 0.709613i
\(353\) 357.742 1.01343 0.506717 0.862113i \(-0.330859\pi\)
0.506717 + 0.862113i \(0.330859\pi\)
\(354\) 0 0
\(355\) 197.774i 0.557110i
\(356\) 333.520 403.776i 0.936854 1.13420i
\(357\) 0 0
\(358\) −197.786 + 93.1624i −0.552476 + 0.260230i
\(359\) −54.1360 −0.150797 −0.0753983 0.997153i \(-0.524023\pi\)
−0.0753983 + 0.997153i \(0.524023\pi\)
\(360\) 0 0
\(361\) −363.676 −1.00741
\(362\) −64.2861 136.481i −0.177586 0.377020i
\(363\) 0 0
\(364\) −55.2586 34.1092i −0.151809 0.0937065i
\(365\) −912.779 −2.50077
\(366\) 0 0
\(367\) −45.1294 −0.122968 −0.0614842 0.998108i \(-0.519583\pi\)
−0.0614842 + 0.998108i \(0.519583\pi\)
\(368\) −46.5879 242.235i −0.126597 0.658248i
\(369\) 0 0
\(370\) −251.004 532.889i −0.678390 1.44024i
\(371\) 63.0414 + 455.998i 0.169923 + 1.22910i
\(372\) 0 0
\(373\) 495.886i 1.32945i 0.747087 + 0.664726i \(0.231452\pi\)
−0.747087 + 0.664726i \(0.768548\pi\)
\(374\) −382.634 + 180.230i −1.02308 + 0.481899i
\(375\) 0 0
\(376\) −58.4185 + 228.599i −0.155368 + 0.607976i
\(377\) −42.0627 −0.111572
\(378\) 0 0
\(379\) −427.550 −1.12810 −0.564050 0.825741i \(-0.690757\pi\)
−0.564050 + 0.825741i \(0.690757\pi\)
\(380\) −624.674 + 756.262i −1.64388 + 1.99016i
\(381\) 0 0
\(382\) 174.162 + 369.750i 0.455920 + 0.967932i
\(383\) 77.1824i 0.201521i −0.994911 0.100760i \(-0.967872\pi\)
0.994911 0.100760i \(-0.0321275\pi\)
\(384\) 0 0
\(385\) −84.3708 610.280i −0.219145 1.58514i
\(386\) −97.4689 206.929i −0.252510 0.536086i
\(387\) 0 0
\(388\) 540.519 + 446.470i 1.39309 + 1.15070i
\(389\) 510.843 1.31322 0.656610 0.754230i \(-0.271990\pi\)
0.656610 + 0.754230i \(0.271990\pi\)
\(390\) 0 0
\(391\) 337.455 0.863056
\(392\) 391.882 9.62719i 0.999698 0.0245592i
\(393\) 0 0
\(394\) −193.664 411.154i −0.491533 1.04354i
\(395\) 719.507 1.82154
\(396\) 0 0
\(397\) −14.9294 −0.0376056 −0.0188028 0.999823i \(-0.505985\pi\)
−0.0188028 + 0.999823i \(0.505985\pi\)
\(398\) 96.9129 + 205.749i 0.243500 + 0.516957i
\(399\) 0 0
\(400\) 175.208 + 910.999i 0.438020 + 2.27750i
\(401\) 12.5890i 0.0313940i −0.999877 0.0156970i \(-0.995003\pi\)
0.999877 0.0156970i \(-0.00499671\pi\)
\(402\) 0 0
\(403\) 106.629 0.264588
\(404\) −219.790 181.547i −0.544036 0.449374i
\(405\) 0 0
\(406\) 212.725 138.635i 0.523952 0.341467i
\(407\) −312.380 −0.767518
\(408\) 0 0
\(409\) 122.775i 0.300183i 0.988672 + 0.150091i \(0.0479568\pi\)
−0.988672 + 0.150091i \(0.952043\pi\)
\(410\) −544.666 + 256.552i −1.32845 + 0.625736i
\(411\) 0 0
\(412\) −214.936 + 260.212i −0.521689 + 0.631584i
\(413\) −8.12215 58.7500i −0.0196662 0.142252i
\(414\) 0 0
\(415\) 616.036i 1.48442i
\(416\) 59.9587 43.7356i 0.144132 0.105134i
\(417\) 0 0
\(418\) 221.660 + 470.591i 0.530288 + 1.12582i
\(419\) −85.9785 −0.205199 −0.102600 0.994723i \(-0.532716\pi\)
−0.102600 + 0.994723i \(0.532716\pi\)
\(420\) 0 0
\(421\) 32.5132i 0.0772285i −0.999254 0.0386143i \(-0.987706\pi\)
0.999254 0.0386143i \(-0.0122944\pi\)
\(422\) 331.527 + 703.841i 0.785609 + 1.66787i
\(423\) 0 0
\(424\) −509.716 130.258i −1.20216 0.307212i
\(425\) −1269.10 −2.98612
\(426\) 0 0
\(427\) −71.8432 519.664i −0.168251 1.21701i
\(428\) −248.966 205.647i −0.581697 0.480483i
\(429\) 0 0
\(430\) 997.306 469.756i 2.31932 1.09246i
\(431\) −769.964 −1.78646 −0.893230 0.449600i \(-0.851566\pi\)
−0.893230 + 0.449600i \(0.851566\pi\)
\(432\) 0 0
\(433\) 245.082i 0.566008i −0.959119 0.283004i \(-0.908669\pi\)
0.959119 0.283004i \(-0.0913310\pi\)
\(434\) −539.256 + 351.440i −1.24253 + 0.809770i
\(435\) 0 0
\(436\) −309.112 255.327i −0.708973 0.585613i
\(437\) 415.027i 0.949718i
\(438\) 0 0
\(439\) −69.4826 −0.158275 −0.0791374 0.996864i \(-0.525217\pi\)
−0.0791374 + 0.996864i \(0.525217\pi\)
\(440\) 682.174 + 174.330i 1.55040 + 0.396204i
\(441\) 0 0
\(442\) 43.2629 + 91.8483i 0.0978798 + 0.207802i
\(443\) 621.899i 1.40384i −0.712258 0.701918i \(-0.752327\pi\)
0.712258 0.701918i \(-0.247673\pi\)
\(444\) 0 0
\(445\) 1192.67i 2.68015i
\(446\) −194.751 413.462i −0.436661 0.927044i
\(447\) 0 0
\(448\) −159.081 + 418.804i −0.355092 + 0.934831i
\(449\) 777.572i 1.73179i 0.500229 + 0.865893i \(0.333249\pi\)
−0.500229 + 0.865893i \(0.666751\pi\)
\(450\) 0 0
\(451\) 319.283i 0.707945i
\(452\) 45.1872 + 37.3247i 0.0999717 + 0.0825768i
\(453\) 0 0
\(454\) −155.588 330.317i −0.342704 0.727571i
\(455\) −146.493 + 20.2526i −0.321963 + 0.0445112i
\(456\) 0 0
\(457\) 746.303 1.63305 0.816524 0.577312i \(-0.195898\pi\)
0.816524 + 0.577312i \(0.195898\pi\)
\(458\) −282.931 600.670i −0.617753 1.31151i
\(459\) 0 0
\(460\) −433.116 357.755i −0.941557 0.777727i
\(461\) 289.301i 0.627550i −0.949497 0.313775i \(-0.898406\pi\)
0.949497 0.313775i \(-0.101594\pi\)
\(462\) 0 0
\(463\) 317.745i 0.686275i 0.939285 + 0.343137i \(0.111490\pi\)
−0.939285 + 0.343137i \(0.888510\pi\)
\(464\) 54.8056 + 284.963i 0.118115 + 0.614145i
\(465\) 0 0
\(466\) 651.626 306.932i 1.39834 0.658653i
\(467\) 152.473 0.326495 0.163248 0.986585i \(-0.447803\pi\)
0.163248 + 0.986585i \(0.447803\pi\)
\(468\) 0 0
\(469\) 19.3758 + 140.151i 0.0413129 + 0.298829i
\(470\) 228.967 + 486.104i 0.487164 + 1.03426i
\(471\) 0 0
\(472\) 65.6710 + 16.7822i 0.139134 + 0.0355556i
\(473\) 584.621i 1.23598i
\(474\) 0 0
\(475\) 1560.84i 3.28597i
\(476\) −521.519 321.915i −1.09563 0.676292i
\(477\) 0 0
\(478\) −284.023 602.988i −0.594189 1.26148i
\(479\) 413.409i 0.863067i −0.902097 0.431533i \(-0.857973\pi\)
0.902097 0.431533i \(-0.142027\pi\)
\(480\) 0 0
\(481\) 74.9844i 0.155893i
\(482\) 600.139 282.681i 1.24510 0.586474i
\(483\) 0 0
\(484\) −70.4390 + 85.2771i −0.145535 + 0.176192i
\(485\) 1596.57 3.29191
\(486\) 0 0
\(487\) 135.886i 0.279027i −0.990220 0.139513i \(-0.955446\pi\)
0.990220 0.139513i \(-0.0445538\pi\)
\(488\) 580.883 + 148.445i 1.19033 + 0.304190i
\(489\) 0 0
\(490\) 674.112 585.254i 1.37574 1.19440i
\(491\) 813.773i 1.65738i 0.559708 + 0.828690i \(0.310913\pi\)
−0.559708 + 0.828690i \(0.689087\pi\)
\(492\) 0 0
\(493\) −396.979 −0.805231
\(494\) 112.962 53.2079i 0.228668 0.107708i
\(495\) 0 0
\(496\) −138.932 722.381i −0.280104 1.45641i
\(497\) 20.8128 + 150.545i 0.0418768 + 0.302908i
\(498\) 0 0
\(499\) 91.2098 0.182785 0.0913925 0.995815i \(-0.470868\pi\)
0.0913925 + 0.995815i \(0.470868\pi\)
\(500\) 926.538 + 765.322i 1.85308 + 1.53064i
\(501\) 0 0
\(502\) −298.907 634.588i −0.595432 1.26412i
\(503\) 546.674i 1.08683i 0.839465 + 0.543414i \(0.182869\pi\)
−0.839465 + 0.543414i \(0.817131\pi\)
\(504\) 0 0
\(505\) −649.213 −1.28557
\(506\) −269.511 + 126.946i −0.532630 + 0.250882i
\(507\) 0 0
\(508\) −70.9065 58.5689i −0.139580 0.115293i
\(509\) 366.160i 0.719372i −0.933073 0.359686i \(-0.882884\pi\)
0.933073 0.359686i \(-0.117116\pi\)
\(510\) 0 0
\(511\) −694.806 + 96.0564i −1.35970 + 0.187977i
\(512\) −374.420 349.219i −0.731289 0.682068i
\(513\) 0 0
\(514\) 308.156 + 654.223i 0.599524 + 1.27281i
\(515\) 768.610i 1.49245i
\(516\) 0 0
\(517\) 284.954 0.551168
\(518\) −247.143 379.220i −0.477110 0.732085i
\(519\) 0 0
\(520\) 41.8465 163.751i 0.0804741 0.314905i
\(521\) 252.033 0.483748 0.241874 0.970308i \(-0.422238\pi\)
0.241874 + 0.970308i \(0.422238\pi\)
\(522\) 0 0
\(523\) 335.060i 0.640651i −0.947308 0.320325i \(-0.896208\pi\)
0.947308 0.320325i \(-0.103792\pi\)
\(524\) −394.925 + 478.117i −0.753674 + 0.912437i
\(525\) 0 0
\(526\) 217.512 + 461.785i 0.413522 + 0.877919i
\(527\) 1006.34 1.90956
\(528\) 0 0
\(529\) −291.311 −0.550683
\(530\) −1083.89 + 510.537i −2.04507 + 0.963278i
\(531\) 0 0
\(532\) −395.915 + 641.403i −0.744201 + 1.20564i
\(533\) 76.6415 0.143793
\(534\) 0 0
\(535\) −735.392 −1.37456
\(536\) −156.661 40.0348i −0.292279 0.0746918i
\(537\) 0 0
\(538\) −255.491 + 120.343i −0.474890 + 0.223685i
\(539\) −128.446 455.665i −0.238304 0.845390i
\(540\) 0 0
\(541\) 197.089i 0.364305i 0.983270 + 0.182152i \(0.0583065\pi\)
−0.983270 + 0.182152i \(0.941694\pi\)
\(542\) 345.674 + 733.876i 0.637775 + 1.35401i
\(543\) 0 0
\(544\) 565.878 412.768i 1.04022 0.758764i
\(545\) −913.049 −1.67532
\(546\) 0 0
\(547\) 296.822 0.542637 0.271318 0.962490i \(-0.412540\pi\)
0.271318 + 0.962490i \(0.412540\pi\)
\(548\) −202.206 167.023i −0.368989 0.304786i
\(549\) 0 0
\(550\) 1013.58 477.421i 1.84287 0.868037i
\(551\) 488.234i 0.886087i
\(552\) 0 0
\(553\) 547.687 75.7174i 0.990393 0.136921i
\(554\) −56.3417 + 26.5383i −0.101700 + 0.0479032i
\(555\) 0 0
\(556\) 462.206 + 381.783i 0.831306 + 0.686660i
\(557\) −64.7524 −0.116252 −0.0581261 0.998309i \(-0.518513\pi\)
−0.0581261 + 0.998309i \(0.518513\pi\)
\(558\) 0 0
\(559\) −140.334 −0.251044
\(560\) 328.079 + 966.063i 0.585855 + 1.72511i
\(561\) 0 0
\(562\) −27.5609 + 12.9819i −0.0490408 + 0.0230995i
\(563\) 143.148 0.254260 0.127130 0.991886i \(-0.459424\pi\)
0.127130 + 0.991886i \(0.459424\pi\)
\(564\) 0 0
\(565\) 133.473 0.236236
\(566\) 402.566 189.619i 0.711248 0.335016i
\(567\) 0 0
\(568\) −168.280 43.0040i −0.296268 0.0757113i
\(569\) 566.510i 0.995625i 0.867285 + 0.497812i \(0.165863\pi\)
−0.867285 + 0.497812i \(0.834137\pi\)
\(570\) 0 0
\(571\) 788.303 1.38057 0.690283 0.723539i \(-0.257486\pi\)
0.690283 + 0.723539i \(0.257486\pi\)
\(572\) −69.1044 57.0803i −0.120812 0.0997908i
\(573\) 0 0
\(574\) −387.601 + 252.605i −0.675263 + 0.440078i
\(575\) −893.901 −1.55461
\(576\) 0 0
\(577\) 273.614i 0.474200i 0.971485 + 0.237100i \(0.0761970\pi\)
−0.971485 + 0.237100i \(0.923803\pi\)
\(578\) 162.008 + 343.948i 0.280291 + 0.595065i
\(579\) 0 0
\(580\) 509.514 + 420.859i 0.878473 + 0.725620i
\(581\) 64.8286 + 468.925i 0.111581 + 0.807100i
\(582\) 0 0
\(583\) 635.374i 1.08983i
\(584\) 198.475 776.657i 0.339854 1.32989i
\(585\) 0 0
\(586\) −116.294 + 54.7774i −0.198454 + 0.0934767i
\(587\) −2.97914 −0.00507520 −0.00253760 0.999997i \(-0.500808\pi\)
−0.00253760 + 0.999997i \(0.500808\pi\)
\(588\) 0 0
\(589\) 1237.67i 2.10131i
\(590\) 139.646 65.7768i 0.236688 0.111486i
\(591\) 0 0
\(592\) 507.998 97.7008i 0.858106 0.165035i
\(593\) 586.465 0.988979 0.494490 0.869184i \(-0.335355\pi\)
0.494490 + 0.869184i \(0.335355\pi\)
\(594\) 0 0
\(595\) −1382.57 + 191.140i −2.32365 + 0.321243i
\(596\) 162.354 196.554i 0.272406 0.329789i
\(597\) 0 0
\(598\) 30.4725 + 64.6940i 0.0509574 + 0.108184i
\(599\) −44.6708 −0.0745757 −0.0372878 0.999305i \(-0.511872\pi\)
−0.0372878 + 0.999305i \(0.511872\pi\)
\(600\) 0 0
\(601\) 185.280i 0.308286i 0.988049 + 0.154143i \(0.0492617\pi\)
−0.988049 + 0.154143i \(0.950738\pi\)
\(602\) 709.713 462.529i 1.17892 0.768321i
\(603\) 0 0
\(604\) 270.678 + 223.580i 0.448142 + 0.370166i
\(605\) 251.890i 0.416347i
\(606\) 0 0
\(607\) 485.191 0.799326 0.399663 0.916662i \(-0.369127\pi\)
0.399663 + 0.916662i \(0.369127\pi\)
\(608\) −507.652 695.958i −0.834954 1.14467i
\(609\) 0 0
\(610\) 1235.22 581.819i 2.02495 0.953801i
\(611\) 68.4010i 0.111949i
\(612\) 0 0
\(613\) 504.370i 0.822790i −0.911457 0.411395i \(-0.865042\pi\)
0.911457 0.411395i \(-0.134958\pi\)
\(614\) 740.143 348.626i 1.20544 0.567795i
\(615\) 0 0
\(616\) 537.615 + 60.9107i 0.872752 + 0.0988810i
\(617\) 20.6090i 0.0334019i −0.999861 0.0167010i \(-0.994684\pi\)
0.999861 0.0167010i \(-0.00531633\pi\)
\(618\) 0 0
\(619\) 925.741i 1.49554i −0.663957 0.747771i \(-0.731124\pi\)
0.663957 0.747771i \(-0.268876\pi\)
\(620\) −1291.62 1066.88i −2.08325 1.72077i
\(621\) 0 0
\(622\) 211.755 99.7419i 0.340442 0.160357i
\(623\) −125.510 907.856i −0.201461 1.45723i
\(624\) 0 0
\(625\) 1287.27 2.05962
\(626\) 11.7240 5.52231i 0.0187285 0.00882158i
\(627\) 0 0
\(628\) −33.0202 + 39.9760i −0.0525799 + 0.0636560i
\(629\) 707.687i 1.12510i
\(630\) 0 0
\(631\) 902.920i 1.43094i 0.698646 + 0.715468i \(0.253786\pi\)
−0.698646 + 0.715468i \(0.746214\pi\)
\(632\) −156.450 + 612.208i −0.247547 + 0.968683i
\(633\) 0 0
\(634\) −343.787 729.869i −0.542250 1.15121i
\(635\) −209.442 −0.329830
\(636\) 0 0
\(637\) −109.379 + 30.8325i −0.171710 + 0.0484026i
\(638\) 317.050 149.339i 0.496944 0.234073i
\(639\) 0 0
\(640\) −1163.89 70.1398i −1.81858 0.109593i
\(641\) 235.354i 0.367167i 0.983004 + 0.183584i \(0.0587698\pi\)
−0.983004 + 0.183584i \(0.941230\pi\)
\(642\) 0 0
\(643\) 189.811i 0.295197i −0.989047 0.147598i \(-0.952846\pi\)
0.989047 0.147598i \(-0.0471543\pi\)
\(644\) −367.336 226.743i −0.570397 0.352086i
\(645\) 0 0
\(646\) 1066.11 502.165i 1.65032 0.777345i
\(647\) 9.78084i 0.0151172i −0.999971 0.00755861i \(-0.997594\pi\)
0.999971 0.00755861i \(-0.00240600\pi\)
\(648\) 0 0
\(649\) 81.8605i 0.126133i
\(650\) −114.601 243.302i −0.176310 0.374310i
\(651\) 0 0
\(652\) −329.580 + 399.006i −0.505490 + 0.611972i
\(653\) 700.168 1.07223 0.536117 0.844144i \(-0.319891\pi\)
0.536117 + 0.844144i \(0.319891\pi\)
\(654\) 0 0
\(655\) 1412.25i 2.15611i
\(656\) −99.8600 519.225i −0.152226 0.791502i
\(657\) 0 0
\(658\) 225.444 + 345.926i 0.342621 + 0.525723i
\(659\) 584.716i 0.887277i 0.896206 + 0.443639i \(0.146313\pi\)
−0.896206 + 0.443639i \(0.853687\pi\)
\(660\) 0 0
\(661\) 687.188 1.03962 0.519809 0.854282i \(-0.326003\pi\)
0.519809 + 0.854282i \(0.326003\pi\)
\(662\) −74.6544 158.493i −0.112771 0.239416i
\(663\) 0 0
\(664\) −524.167 133.951i −0.789408 0.201733i
\(665\) 235.078 + 1700.39i 0.353500 + 2.55697i
\(666\) 0 0
\(667\) −279.615 −0.419213
\(668\) −584.379 482.698i −0.874819 0.722602i
\(669\) 0 0
\(670\) −333.132 + 156.914i −0.497212 + 0.234200i
\(671\) 724.084i 1.07911i
\(672\) 0 0
\(673\) −394.412 −0.586050 −0.293025 0.956105i \(-0.594662\pi\)
−0.293025 + 0.956105i \(0.594662\pi\)
\(674\) 216.482 + 459.596i 0.321189 + 0.681894i
\(675\) 0 0
\(676\) 416.804 504.604i 0.616574 0.746456i
\(677\) 115.342i 0.170372i −0.996365 0.0851858i \(-0.972852\pi\)
0.996365 0.0851858i \(-0.0271484\pi\)
\(678\) 0 0
\(679\) 1215.31 168.016i 1.78985 0.247446i
\(680\) 394.939 1545.44i 0.580792 2.27271i
\(681\) 0 0
\(682\) −803.720 + 378.573i −1.17848 + 0.555092i
\(683\) 208.661i 0.305506i −0.988264 0.152753i \(-0.951186\pi\)
0.988264 0.152753i \(-0.0488139\pi\)
\(684\) 0 0
\(685\) −597.272 −0.871930
\(686\) 451.543 516.434i 0.658226 0.752820i
\(687\) 0 0
\(688\) 182.848 + 950.723i 0.265767 + 1.38186i
\(689\) 152.517 0.221359
\(690\) 0 0
\(691\) 755.615i 1.09351i −0.837293 0.546755i \(-0.815863\pi\)
0.837293 0.546755i \(-0.184137\pi\)
\(692\) −953.444 787.546i −1.37781 1.13807i
\(693\) 0 0
\(694\) 374.051 176.188i 0.538979 0.253873i
\(695\) 1365.26 1.96440
\(696\) 0 0
\(697\) 723.327 1.03777
\(698\) 527.244 + 1119.35i 0.755363 + 1.60366i
\(699\) 0 0
\(700\) 1381.48 + 852.737i 1.97354 + 1.21820i
\(701\) 611.239 0.871953 0.435977 0.899958i \(-0.356403\pi\)
0.435977 + 0.899958i \(0.356403\pi\)
\(702\) 0 0
\(703\) 870.365 1.23807
\(704\) −296.664 + 542.536i −0.421398 + 0.770648i
\(705\) 0 0
\(706\) 304.883 + 647.274i 0.431845 + 0.916819i
\(707\) −494.179 + 68.3200i −0.698981 + 0.0966336i
\(708\) 0 0
\(709\) 182.040i 0.256756i 0.991725 + 0.128378i \(0.0409771\pi\)
−0.991725 + 0.128378i \(0.959023\pi\)
\(710\) −357.839 + 168.551i −0.503999 + 0.237396i
\(711\) 0 0
\(712\) 1014.81 + 259.334i 1.42529 + 0.364233i
\(713\) 708.822 0.994141
\(714\) 0 0
\(715\) −204.119 −0.285481
\(716\) −337.124 278.465i −0.470843 0.388917i
\(717\) 0 0
\(718\) −46.1369 97.9500i −0.0642575 0.136421i
\(719\) 927.993i 1.29067i 0.763899 + 0.645336i \(0.223283\pi\)
−0.763899 + 0.645336i \(0.776717\pi\)
\(720\) 0 0
\(721\) 80.8848 + 585.065i 0.112184 + 0.811463i
\(722\) −309.940 658.012i −0.429280 0.911373i
\(723\) 0 0
\(724\) 192.153 232.630i 0.265404 0.321312i
\(725\) 1051.58 1.45045
\(726\) 0 0
\(727\) 715.698 0.984453 0.492227 0.870467i \(-0.336183\pi\)
0.492227 + 0.870467i \(0.336183\pi\)
\(728\) 14.6212 129.050i 0.0200840 0.177267i
\(729\) 0 0
\(730\) −777.908 1651.52i −1.06563 2.26236i
\(731\) −1324.44 −1.81182
\(732\) 0 0
\(733\) 565.483 0.771464 0.385732 0.922611i \(-0.373949\pi\)
0.385732 + 0.922611i \(0.373949\pi\)
\(734\) −38.4611 81.6541i −0.0523994 0.111245i
\(735\) 0 0
\(736\) 398.580 290.736i 0.541549 0.395021i
\(737\) 195.282i 0.264969i
\(738\) 0 0
\(739\) 104.108 0.140876 0.0704382 0.997516i \(-0.477560\pi\)
0.0704382 + 0.997516i \(0.477560\pi\)
\(740\) 750.258 908.301i 1.01386 1.22743i
\(741\) 0 0
\(742\) −771.325 + 502.683i −1.03952 + 0.677470i
\(743\) −1159.59 −1.56068 −0.780341 0.625354i \(-0.784955\pi\)
−0.780341 + 0.625354i \(0.784955\pi\)
\(744\) 0 0
\(745\) 580.578i 0.779299i
\(746\) −897.222 + 422.614i −1.20271 + 0.566507i
\(747\) 0 0
\(748\) −652.193 538.712i −0.871915 0.720203i
\(749\) −559.779 + 77.3890i −0.747368 + 0.103323i
\(750\) 0 0
\(751\) 8.05706i 0.0107284i −0.999986 0.00536422i \(-0.998293\pi\)
0.999986 0.00536422i \(-0.00170749\pi\)
\(752\) −463.398 + 89.1230i −0.616221 + 0.118515i
\(753\) 0 0
\(754\) −35.8476 76.1054i −0.0475432 0.100936i
\(755\) 799.522 1.05897
\(756\) 0 0
\(757\) 203.142i 0.268352i 0.990958 + 0.134176i \(0.0428387\pi\)
−0.990958 + 0.134176i \(0.957161\pi\)
\(758\) −364.376 773.580i −0.480707 1.02055i
\(759\) 0 0
\(760\) −1900.70 485.725i −2.50092 0.639111i
\(761\) 1325.16 1.74134 0.870670 0.491867i \(-0.163685\pi\)
0.870670 + 0.491867i \(0.163685\pi\)
\(762\) 0 0
\(763\) −695.012 + 96.0849i −0.910893 + 0.125930i
\(764\) −520.573 + 630.232i −0.681378 + 0.824911i
\(765\) 0 0
\(766\) 139.649 65.7780i 0.182309 0.0858721i
\(767\) −19.6500 −0.0256193
\(768\) 0 0
\(769\) 27.4357i 0.0356772i −0.999841 0.0178386i \(-0.994322\pi\)
0.999841 0.0178386i \(-0.00567850\pi\)
\(770\) 1032.30 672.761i 1.34064 0.873716i
\(771\) 0 0
\(772\) 291.337 352.707i 0.377379 0.456875i
\(773\) 127.533i 0.164985i 0.996592 + 0.0824925i \(0.0262880\pi\)
−0.996592 + 0.0824925i \(0.973712\pi\)
\(774\) 0 0
\(775\) −2665.74 −3.43967
\(776\) −347.159 + 1358.48i −0.447370 + 1.75062i
\(777\) 0 0
\(778\) 435.361 + 924.284i 0.559590 + 1.18803i
\(779\) 889.600i 1.14198i
\(780\) 0 0
\(781\) 209.765i 0.268585i
\(782\) 287.593 + 610.568i 0.367766 + 0.780778i
\(783\) 0 0
\(784\) 351.397 + 700.840i 0.448210 + 0.893928i
\(785\) 118.080i 0.150421i
\(786\) 0 0
\(787\) 151.856i 0.192956i −0.995335 0.0964781i \(-0.969242\pi\)
0.995335 0.0964781i \(-0.0307578\pi\)
\(788\) 578.866 700.805i 0.734601 0.889346i
\(789\) 0 0
\(790\) 613.194 + 1301.83i 0.776194 + 1.64788i
\(791\) 101.599 14.0461i 0.128444 0.0177573i
\(792\) 0 0
\(793\) −173.811 −0.219182
\(794\) −12.7235 27.0123i −0.0160245 0.0340205i
\(795\) 0 0
\(796\) −289.675 + 350.695i −0.363913 + 0.440572i
\(797\) 1136.09i 1.42545i 0.701443 + 0.712726i \(0.252540\pi\)
−0.701443 + 0.712726i \(0.747460\pi\)
\(798\) 0 0
\(799\) 645.554i 0.807953i
\(800\) −1498.98 + 1093.40i −1.87373 + 1.36675i
\(801\) 0 0
\(802\) 22.7776 10.7288i 0.0284011 0.0133776i
\(803\) −968.122 −1.20563
\(804\) 0 0
\(805\) −973.823 + 134.630i −1.20972 + 0.167243i
\(806\) 90.8735 + 192.927i 0.112746 + 0.239363i
\(807\) 0 0
\(808\) 141.165 552.396i 0.174709 0.683659i
\(809\) 438.239i 0.541705i 0.962621 + 0.270852i \(0.0873055\pi\)
−0.962621 + 0.270852i \(0.912695\pi\)
\(810\) 0 0
\(811\) 1406.16i 1.73386i −0.498427 0.866931i \(-0.666089\pi\)
0.498427 0.866931i \(-0.333911\pi\)
\(812\) 432.130 + 266.739i 0.532180 + 0.328496i
\(813\) 0 0
\(814\) −266.223 565.199i −0.327055 0.694347i
\(815\) 1178.58i 1.44611i
\(816\) 0 0
\(817\) 1628.89i 1.99375i
\(818\) −222.140 + 104.634i −0.271565 + 0.127914i
\(819\) 0 0
\(820\) −928.374 766.839i −1.13216 0.935169i
\(821\) 592.105 0.721200 0.360600 0.932721i \(-0.382572\pi\)
0.360600 + 0.932721i \(0.382572\pi\)
\(822\) 0 0
\(823\) 1078.89i 1.31092i 0.755229 + 0.655461i \(0.227526\pi\)
−0.755229 + 0.655461i \(0.772474\pi\)
\(824\) −653.988 167.127i −0.793675 0.202824i
\(825\) 0 0
\(826\) 99.3762 64.7648i 0.120310 0.0784078i
\(827\) 111.468i 0.134785i 0.997727 + 0.0673927i \(0.0214680\pi\)
−0.997727 + 0.0673927i \(0.978532\pi\)
\(828\) 0 0
\(829\) −109.080 −0.131580 −0.0657900 0.997833i \(-0.520957\pi\)
−0.0657900 + 0.997833i \(0.520957\pi\)
\(830\) −1114.61 + 525.011i −1.34291 + 0.632543i
\(831\) 0 0
\(832\) 130.232 + 71.2120i 0.156528 + 0.0855913i
\(833\) −1032.30 + 290.990i −1.23925 + 0.349328i
\(834\) 0 0
\(835\) −1726.13 −2.06722
\(836\) −662.548 + 802.115i −0.792521 + 0.959467i
\(837\) 0 0
\(838\) −73.2744 155.564i −0.0874397 0.185637i
\(839\) 1297.65i 1.54667i −0.633999 0.773334i \(-0.718588\pi\)
0.633999 0.773334i \(-0.281412\pi\)
\(840\) 0 0
\(841\) −512.064 −0.608875
\(842\) 58.8272 27.7091i 0.0698661 0.0329087i
\(843\) 0 0
\(844\) −990.942 + 1199.69i −1.17410 + 1.42143i
\(845\) 1490.49i 1.76389i
\(846\) 0 0
\(847\) 26.5076 + 191.738i 0.0312959 + 0.226373i
\(848\) −198.721 1033.26i −0.234341 1.21846i
\(849\) 0 0
\(850\) −1081.58 2296.23i −1.27245 2.70145i
\(851\) 498.464i 0.585739i
\(852\) 0 0
\(853\) −1099.79 −1.28932 −0.644658 0.764471i \(-0.723000\pi\)
−0.644658 + 0.764471i \(0.723000\pi\)
\(854\) 879.018 572.868i 1.02929 0.670805i
\(855\) 0 0
\(856\) 159.904 625.723i 0.186803 0.730985i
\(857\) −616.955 −0.719900 −0.359950 0.932972i \(-0.617206\pi\)
−0.359950 + 0.932972i \(0.617206\pi\)
\(858\) 0 0
\(859\) 1202.72i 1.40014i 0.714075 + 0.700069i \(0.246848\pi\)
−0.714075 + 0.700069i \(0.753152\pi\)
\(860\) 1699.89 + 1404.11i 1.97662 + 1.63269i
\(861\) 0 0
\(862\) −656.195 1393.12i −0.761247 1.61615i
\(863\) −481.815 −0.558303 −0.279151 0.960247i \(-0.590053\pi\)
−0.279151 + 0.960247i \(0.590053\pi\)
\(864\) 0 0
\(865\) −2816.26 −3.25580
\(866\) 443.434 208.869i 0.512049 0.241188i
\(867\) 0 0
\(868\) −1095.45 676.181i −1.26204 0.779011i
\(869\) 763.131 0.878171
\(870\) 0 0
\(871\) 46.8760 0.0538186
\(872\) 198.534 776.887i 0.227676 0.890926i
\(873\) 0 0
\(874\) 750.922 353.703i 0.859178 0.404695i
\(875\) 2083.24 288.006i 2.38084 0.329150i
\(876\) 0 0
\(877\) 275.163i 0.313754i −0.987618 0.156877i \(-0.949857\pi\)
0.987618 0.156877i \(-0.0501427\pi\)
\(878\) −59.2159 125.717i −0.0674441 0.143186i
\(879\) 0 0
\(880\) 265.957 + 1382.85i 0.302224 + 1.57142i
\(881\) −718.744 −0.815827 −0.407914 0.913020i \(-0.633744\pi\)
−0.407914 + 0.913020i \(0.633744\pi\)
\(882\) 0 0
\(883\) −1561.31 −1.76819 −0.884095 0.467308i \(-0.845224\pi\)
−0.884095 + 0.467308i \(0.845224\pi\)
\(884\) −129.314 + 156.554i −0.146283 + 0.177097i
\(885\) 0 0
\(886\) 1125.22 530.008i 1.27000 0.598203i
\(887\) 983.157i 1.10841i −0.832381 0.554204i \(-0.813023\pi\)
0.832381 0.554204i \(-0.186977\pi\)
\(888\) 0 0
\(889\) −159.427 + 22.0407i −0.179333 + 0.0247927i
\(890\) 2157.93 1016.44i 2.42464 1.14207i
\(891\) 0 0
\(892\) 582.115 704.738i 0.652595 0.790065i
\(893\) −793.950 −0.889082
\(894\) 0 0
\(895\) −995.789 −1.11261
\(896\) −893.332 + 69.0918i −0.997022 + 0.0771114i
\(897\) 0 0
\(898\) −1406.89 + 662.679i −1.56669 + 0.737950i
\(899\) −833.852 −0.927533
\(900\) 0 0
\(901\) 1439.42 1.59758
\(902\) −577.690 + 272.106i −0.640454 + 0.301670i
\(903\) 0 0
\(904\) −29.0224 + 113.568i −0.0321044 + 0.125629i
\(905\) 687.137i 0.759267i
\(906\) 0 0
\(907\) 1121.27 1.23624 0.618119 0.786085i \(-0.287895\pi\)
0.618119 + 0.786085i \(0.287895\pi\)
\(908\) 465.055 563.020i 0.512175 0.620066i
\(909\) 0 0
\(910\) −161.491 247.795i −0.177463 0.272302i
\(911\) 1308.23 1.43604 0.718020 0.696022i \(-0.245048\pi\)
0.718020 + 0.696022i \(0.245048\pi\)
\(912\) 0 0
\(913\) 653.386i 0.715647i
\(914\) 636.030 + 1350.31i 0.695876 + 1.47736i
\(915\) 0 0
\(916\) 845.687 1023.83i 0.923239 1.11772i
\(917\) 148.618 + 1075.00i 0.162070 + 1.17230i
\(918\) 0 0
\(919\) 992.984i 1.08050i 0.841503 + 0.540252i \(0.181671\pi\)
−0.841503 + 0.540252i \(0.818329\pi\)
\(920\) 278.178 1088.54i 0.302367 1.18320i
\(921\) 0 0
\(922\) 523.441 246.554i 0.567724 0.267412i
\(923\) 50.3525 0.0545531
\(924\) 0 0
\(925\) 1874.63i 2.02662i
\(926\) −574.907 + 270.796i −0.620850 + 0.292436i
\(927\) 0 0
\(928\) −468.886 + 342.019i −0.505265 + 0.368555i
\(929\) 47.0391 0.0506342 0.0253171 0.999679i \(-0.491940\pi\)
0.0253171 + 0.999679i \(0.491940\pi\)
\(930\) 0 0
\(931\) 357.881 + 1269.59i 0.384405 + 1.36369i
\(932\) 1110.68 + 917.427i 1.19172 + 0.984364i
\(933\) 0 0
\(934\) 129.944 + 275.875i 0.139126 + 0.295369i
\(935\) −1926.43 −2.06036
\(936\) 0 0
\(937\) 1808.57i 1.93017i −0.261932 0.965086i \(-0.584360\pi\)
0.261932 0.965086i \(-0.415640\pi\)
\(938\) −237.067 + 154.500i −0.252736 + 0.164712i
\(939\) 0 0
\(940\) −684.388 + 828.555i −0.728072 + 0.881442i
\(941\) 628.185i 0.667572i −0.942649 0.333786i \(-0.891674\pi\)
0.942649 0.333786i \(-0.108326\pi\)
\(942\) 0 0
\(943\) 509.480 0.540276
\(944\) 25.6029 + 133.123i 0.0271217 + 0.141020i
\(945\) 0 0
\(946\) 1057.77 498.238i 1.11815 0.526679i
\(947\) 1130.40i 1.19366i −0.802367 0.596831i \(-0.796426\pi\)
0.802367 0.596831i \(-0.203574\pi\)
\(948\) 0 0
\(949\) 232.390i 0.244879i
\(950\) −2824.07 + 1330.21i −2.97271 + 1.40022i
\(951\) 0 0
\(952\) 137.991 1217.95i 0.144949 1.27936i
\(953\) 781.337i 0.819871i −0.912114 0.409936i \(-0.865551\pi\)
0.912114 0.409936i \(-0.134449\pi\)
\(954\) 0 0
\(955\) 1861.57i 1.94929i
\(956\) 848.950 1027.78i 0.888023 1.07509i
\(957\) 0 0
\(958\) 747.994 352.324i 0.780787 0.367771i
\(959\) −454.643 + 62.8540i −0.474080 + 0.0655412i
\(960\) 0 0
\(961\) 1152.81 1.19960
\(962\) −135.672 + 63.9048i −0.141031 + 0.0664291i
\(963\) 0 0
\(964\) 1022.93 + 844.939i 1.06113 + 0.876493i
\(965\) 1041.82i 1.07961i
\(966\) 0 0
\(967\) 1674.13i 1.73126i −0.500685 0.865629i \(-0.666919\pi\)
0.500685 0.865629i \(-0.333081\pi\)
\(968\) −214.326 54.7709i −0.221411 0.0565815i
\(969\) 0 0
\(970\) 1360.67 + 2888.73i 1.40275 + 2.97808i
\(971\) 271.907 0.280028 0.140014 0.990150i \(-0.455285\pi\)
0.140014 + 0.990150i \(0.455285\pi\)
\(972\) 0 0
\(973\) 1039.23 143.673i 1.06807 0.147660i
\(974\) 245.863 115.808i 0.252426 0.118899i
\(975\) 0 0
\(976\) 226.467 + 1177.52i 0.232036 + 1.20648i
\(977\) 1639.40i 1.67799i −0.544138 0.838995i \(-0.683143\pi\)
0.544138 0.838995i \(-0.316857\pi\)
\(978\) 0 0
\(979\) 1264.98i 1.29211i
\(980\) 1633.43 + 720.915i 1.66676 + 0.735627i
\(981\) 0 0
\(982\) −1472.39 + 693.531i −1.49938 + 0.706244i
\(983\) 824.584i 0.838844i 0.907791 + 0.419422i \(0.137767\pi\)
−0.907791 + 0.419422i \(0.862233\pi\)
\(984\) 0 0
\(985\) 2070.02i 2.10155i
\(986\) −338.322 718.267i −0.343126 0.728466i
\(987\) 0 0
\(988\) 192.542 + 159.040i 0.194880 + 0.160971i
\(989\) −932.878 −0.943254
\(990\) 0 0
\(991\) 888.843i 0.896916i 0.893804 + 0.448458i \(0.148027\pi\)
−0.893804 + 0.448458i \(0.851973\pi\)
\(992\) 1188.62 867.017i 1.19821 0.874009i
\(993\) 0 0
\(994\) −254.649 + 165.958i −0.256186 + 0.166960i
\(995\) 1035.88i 1.04108i
\(996\) 0 0
\(997\) −43.3671 −0.0434976 −0.0217488 0.999763i \(-0.506923\pi\)
−0.0217488 + 0.999763i \(0.506923\pi\)
\(998\) 77.7327 + 165.029i 0.0778885 + 0.165360i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.e.c.251.32 yes 48
3.2 odd 2 inner 504.3.e.c.251.18 yes 48
4.3 odd 2 2016.3.e.c.1007.24 48
7.6 odd 2 inner 504.3.e.c.251.31 yes 48
8.3 odd 2 inner 504.3.e.c.251.19 yes 48
8.5 even 2 2016.3.e.c.1007.5 48
12.11 even 2 2016.3.e.c.1007.33 48
21.20 even 2 inner 504.3.e.c.251.17 48
24.5 odd 2 2016.3.e.c.1007.8 48
24.11 even 2 inner 504.3.e.c.251.29 yes 48
28.27 even 2 2016.3.e.c.1007.7 48
56.13 odd 2 2016.3.e.c.1007.34 48
56.27 even 2 inner 504.3.e.c.251.20 yes 48
84.83 odd 2 2016.3.e.c.1007.6 48
168.83 odd 2 inner 504.3.e.c.251.30 yes 48
168.125 even 2 2016.3.e.c.1007.23 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.c.251.17 48 21.20 even 2 inner
504.3.e.c.251.18 yes 48 3.2 odd 2 inner
504.3.e.c.251.19 yes 48 8.3 odd 2 inner
504.3.e.c.251.20 yes 48 56.27 even 2 inner
504.3.e.c.251.29 yes 48 24.11 even 2 inner
504.3.e.c.251.30 yes 48 168.83 odd 2 inner
504.3.e.c.251.31 yes 48 7.6 odd 2 inner
504.3.e.c.251.32 yes 48 1.1 even 1 trivial
2016.3.e.c.1007.5 48 8.5 even 2
2016.3.e.c.1007.6 48 84.83 odd 2
2016.3.e.c.1007.7 48 28.27 even 2
2016.3.e.c.1007.8 48 24.5 odd 2
2016.3.e.c.1007.23 48 168.125 even 2
2016.3.e.c.1007.24 48 4.3 odd 2
2016.3.e.c.1007.33 48 12.11 even 2
2016.3.e.c.1007.34 48 56.13 odd 2