Properties

Label 2016.3.e.c.1007.24
Level $2016$
Weight $3$
Character 2016.1007
Analytic conductor $54.932$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,3,Mod(1007,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1007"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-336] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1007.24
Character \(\chi\) \(=\) 2016.1007
Dual form 2016.3.e.c.1007.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.10939i q^{5} +(-0.958628 - 6.93405i) q^{7} -9.66169i q^{11} +2.31922 q^{13} +21.8883 q^{17} +26.9198i q^{19} -15.4172 q^{23} -57.9809 q^{25} -18.1366 q^{29} -45.9762 q^{31} +(63.1649 - 8.73251i) q^{35} +32.3318i q^{37} +33.0463 q^{41} +60.5091 q^{43} +29.4932i q^{47} +(-47.1621 + 13.2943i) q^{49} +65.7621 q^{53} +88.0121 q^{55} +8.47268 q^{59} -74.9438 q^{61} +21.1266i q^{65} -20.2120 q^{67} -21.7110 q^{71} +100.202i q^{73} +(-66.9947 + 9.26197i) q^{77} +78.9852i q^{79} -67.6265 q^{83} +199.389i q^{85} -130.927 q^{89} +(-2.22326 - 16.0816i) q^{91} -245.223 q^{95} -175.267i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 336 q^{25} + 384 q^{43} + 368 q^{49} + 896 q^{67} + 576 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 9.10939i 1.82188i 0.412542 + 0.910939i \(0.364641\pi\)
−0.412542 + 0.910939i \(0.635359\pi\)
\(6\) 0 0
\(7\) −0.958628 6.93405i −0.136947 0.990578i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 9.66169i 0.878336i −0.898405 0.439168i \(-0.855273\pi\)
0.898405 0.439168i \(-0.144727\pi\)
\(12\) 0 0
\(13\) 2.31922 0.178401 0.0892006 0.996014i \(-0.471569\pi\)
0.0892006 + 0.996014i \(0.471569\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 21.8883 1.28755 0.643773 0.765217i \(-0.277368\pi\)
0.643773 + 0.765217i \(0.277368\pi\)
\(18\) 0 0
\(19\) 26.9198i 1.41683i 0.705795 + 0.708416i \(0.250590\pi\)
−0.705795 + 0.708416i \(0.749410\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −15.4172 −0.670311 −0.335156 0.942163i \(-0.608789\pi\)
−0.335156 + 0.942163i \(0.608789\pi\)
\(24\) 0 0
\(25\) −57.9809 −2.31924
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −18.1366 −0.625400 −0.312700 0.949852i \(-0.601233\pi\)
−0.312700 + 0.949852i \(0.601233\pi\)
\(30\) 0 0
\(31\) −45.9762 −1.48310 −0.741552 0.670896i \(-0.765910\pi\)
−0.741552 + 0.670896i \(0.765910\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 63.1649 8.73251i 1.80471 0.249500i
\(36\) 0 0
\(37\) 32.3318i 0.873832i 0.899502 + 0.436916i \(0.143929\pi\)
−0.899502 + 0.436916i \(0.856071\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 33.0463 0.806007 0.403004 0.915198i \(-0.367966\pi\)
0.403004 + 0.915198i \(0.367966\pi\)
\(42\) 0 0
\(43\) 60.5091 1.40719 0.703594 0.710602i \(-0.251577\pi\)
0.703594 + 0.710602i \(0.251577\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 29.4932i 0.627514i 0.949503 + 0.313757i \(0.101588\pi\)
−0.949503 + 0.313757i \(0.898412\pi\)
\(48\) 0 0
\(49\) −47.1621 + 13.2943i −0.962491 + 0.271313i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 65.7621 1.24079 0.620397 0.784288i \(-0.286971\pi\)
0.620397 + 0.784288i \(0.286971\pi\)
\(54\) 0 0
\(55\) 88.0121 1.60022
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.47268 0.143605 0.0718024 0.997419i \(-0.477125\pi\)
0.0718024 + 0.997419i \(0.477125\pi\)
\(60\) 0 0
\(61\) −74.9438 −1.22859 −0.614294 0.789077i \(-0.710559\pi\)
−0.614294 + 0.789077i \(0.710559\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 21.1266i 0.325025i
\(66\) 0 0
\(67\) −20.2120 −0.301671 −0.150836 0.988559i \(-0.548196\pi\)
−0.150836 + 0.988559i \(0.548196\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −21.7110 −0.305789 −0.152894 0.988243i \(-0.548859\pi\)
−0.152894 + 0.988243i \(0.548859\pi\)
\(72\) 0 0
\(73\) 100.202i 1.37263i 0.727304 + 0.686315i \(0.240773\pi\)
−0.727304 + 0.686315i \(0.759227\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −66.9947 + 9.26197i −0.870061 + 0.120285i
\(78\) 0 0
\(79\) 78.9852i 0.999813i 0.866079 + 0.499906i \(0.166632\pi\)
−0.866079 + 0.499906i \(0.833368\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −67.6265 −0.814777 −0.407388 0.913255i \(-0.633560\pi\)
−0.407388 + 0.913255i \(0.633560\pi\)
\(84\) 0 0
\(85\) 199.389i 2.34575i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −130.927 −1.47109 −0.735546 0.677474i \(-0.763074\pi\)
−0.735546 + 0.677474i \(0.763074\pi\)
\(90\) 0 0
\(91\) −2.22326 16.0816i −0.0244315 0.176720i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −245.223 −2.58129
\(96\) 0 0
\(97\) 175.267i 1.80688i −0.428719 0.903438i \(-0.641035\pi\)
0.428719 0.903438i \(-0.358965\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 71.2685i 0.705629i 0.935693 + 0.352815i \(0.114775\pi\)
−0.935693 + 0.352815i \(0.885225\pi\)
\(102\) 0 0
\(103\) −84.3756 −0.819181 −0.409590 0.912270i \(-0.634328\pi\)
−0.409590 + 0.912270i \(0.634328\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 80.7290i 0.754476i −0.926116 0.377238i \(-0.876874\pi\)
0.926116 0.377238i \(-0.123126\pi\)
\(108\) 0 0
\(109\) 100.232i 0.919557i 0.888034 + 0.459778i \(0.152071\pi\)
−0.888034 + 0.459778i \(0.847929\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.6523i 0.129666i −0.997896 0.0648330i \(-0.979349\pi\)
0.997896 0.0648330i \(-0.0206515\pi\)
\(114\) 0 0
\(115\) 140.441i 1.22122i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −20.9827 151.774i −0.176325 1.27541i
\(120\) 0 0
\(121\) 27.6517 0.228526
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 300.436i 2.40349i
\(126\) 0 0
\(127\) 22.9919i 0.181039i −0.995895 0.0905193i \(-0.971147\pi\)
0.995895 0.0905193i \(-0.0288527\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −155.033 −1.18345 −0.591727 0.806138i \(-0.701554\pi\)
−0.591727 + 0.806138i \(0.701554\pi\)
\(132\) 0 0
\(133\) 186.663 25.8061i 1.40348 0.194031i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 65.5667i 0.478589i 0.970947 + 0.239294i \(0.0769161\pi\)
−0.970947 + 0.239294i \(0.923084\pi\)
\(138\) 0 0
\(139\) 149.873i 1.07823i 0.842233 + 0.539113i \(0.181240\pi\)
−0.842233 + 0.539113i \(0.818760\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 22.4076i 0.156696i
\(144\) 0 0
\(145\) 165.213i 1.13940i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −63.7340 −0.427745 −0.213873 0.976862i \(-0.568608\pi\)
−0.213873 + 0.976862i \(0.568608\pi\)
\(150\) 0 0
\(151\) 87.7691i 0.581252i 0.956837 + 0.290626i \(0.0938636\pi\)
−0.956837 + 0.290626i \(0.906136\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 418.815i 2.70203i
\(156\) 0 0
\(157\) 12.9625 0.0825635 0.0412818 0.999148i \(-0.486856\pi\)
0.0412818 + 0.999148i \(0.486856\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 14.7793 + 106.903i 0.0917969 + 0.663996i
\(162\) 0 0
\(163\) −129.380 −0.793745 −0.396872 0.917874i \(-0.629904\pi\)
−0.396872 + 0.917874i \(0.629904\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 189.489i 1.13466i −0.823489 0.567332i \(-0.807976\pi\)
0.823489 0.567332i \(-0.192024\pi\)
\(168\) 0 0
\(169\) −163.621 −0.968173
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 309.161i 1.78706i 0.449008 + 0.893528i \(0.351778\pi\)
−0.449008 + 0.893528i \(0.648222\pi\)
\(174\) 0 0
\(175\) 55.5821 + 402.043i 0.317612 + 2.29739i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 109.315i 0.610696i −0.952241 0.305348i \(-0.901227\pi\)
0.952241 0.305348i \(-0.0987728\pi\)
\(180\) 0 0
\(181\) −75.4317 −0.416750 −0.208375 0.978049i \(-0.566817\pi\)
−0.208375 + 0.978049i \(0.566817\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −294.523 −1.59201
\(186\) 0 0
\(187\) 211.478i 1.13090i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −204.357 −1.06993 −0.534966 0.844874i \(-0.679676\pi\)
−0.534966 + 0.844874i \(0.679676\pi\)
\(192\) 0 0
\(193\) −114.368 −0.592579 −0.296290 0.955098i \(-0.595749\pi\)
−0.296290 + 0.955098i \(0.595749\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −227.241 −1.15351 −0.576753 0.816919i \(-0.695680\pi\)
−0.576753 + 0.816919i \(0.695680\pi\)
\(198\) 0 0
\(199\) −113.715 −0.571434 −0.285717 0.958314i \(-0.592232\pi\)
−0.285717 + 0.958314i \(0.592232\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 17.3863 + 125.760i 0.0856466 + 0.619508i
\(204\) 0 0
\(205\) 301.032i 1.46845i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 260.091 1.24445
\(210\) 0 0
\(211\) −389.006 −1.84363 −0.921815 0.387630i \(-0.873294\pi\)
−0.921815 + 0.387630i \(0.873294\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 551.201i 2.56373i
\(216\) 0 0
\(217\) 44.0741 + 318.801i 0.203106 + 1.46913i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 50.7636 0.229700
\(222\) 0 0
\(223\) 228.516 1.02474 0.512368 0.858766i \(-0.328768\pi\)
0.512368 + 0.858766i \(0.328768\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 182.563 0.804242 0.402121 0.915587i \(-0.368273\pi\)
0.402121 + 0.915587i \(0.368273\pi\)
\(228\) 0 0
\(229\) −331.984 −1.44971 −0.724857 0.688900i \(-0.758094\pi\)
−0.724857 + 0.688900i \(0.758094\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 360.147i 1.54570i −0.634592 0.772848i \(-0.718832\pi\)
0.634592 0.772848i \(-0.281168\pi\)
\(234\) 0 0
\(235\) −268.665 −1.14325
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 333.265 1.39442 0.697208 0.716869i \(-0.254425\pi\)
0.697208 + 0.716869i \(0.254425\pi\)
\(240\) 0 0
\(241\) 331.691i 1.37631i −0.725564 0.688155i \(-0.758421\pi\)
0.725564 0.688155i \(-0.241579\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −121.103 429.618i −0.494299 1.75354i
\(246\) 0 0
\(247\) 62.4329i 0.252765i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 350.730 1.39733 0.698666 0.715448i \(-0.253777\pi\)
0.698666 + 0.715448i \(0.253777\pi\)
\(252\) 0 0
\(253\) 148.956i 0.588758i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 361.582 1.40694 0.703468 0.710727i \(-0.251634\pi\)
0.703468 + 0.710727i \(0.251634\pi\)
\(258\) 0 0
\(259\) 224.190 30.9941i 0.865599 0.119668i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −255.224 −0.970434 −0.485217 0.874394i \(-0.661259\pi\)
−0.485217 + 0.874394i \(0.661259\pi\)
\(264\) 0 0
\(265\) 599.053i 2.26058i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 141.207i 0.524934i 0.964941 + 0.262467i \(0.0845360\pi\)
−0.964941 + 0.262467i \(0.915464\pi\)
\(270\) 0 0
\(271\) −405.606 −1.49670 −0.748350 0.663304i \(-0.769154\pi\)
−0.748350 + 0.663304i \(0.769154\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 560.194i 2.03707i
\(276\) 0 0
\(277\) 31.1395i 0.112417i 0.998419 + 0.0562084i \(0.0179011\pi\)
−0.998419 + 0.0562084i \(0.982099\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.2327i 0.0542087i 0.999633 + 0.0271044i \(0.00862864\pi\)
−0.999633 + 0.0271044i \(0.991371\pi\)
\(282\) 0 0
\(283\) 222.494i 0.786199i 0.919496 + 0.393100i \(0.128597\pi\)
−0.919496 + 0.393100i \(0.871403\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −31.6791 229.145i −0.110380 0.798414i
\(288\) 0 0
\(289\) 190.097 0.657773
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 64.2745i 0.219367i 0.993967 + 0.109683i \(0.0349837\pi\)
−0.993967 + 0.109683i \(0.965016\pi\)
\(294\) 0 0
\(295\) 77.1809i 0.261630i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −35.7557 −0.119584
\(300\) 0 0
\(301\) −58.0057 419.573i −0.192710 1.39393i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 682.692i 2.23834i
\(306\) 0 0
\(307\) 409.069i 1.33247i 0.745740 + 0.666237i \(0.232096\pi\)
−0.745740 + 0.666237i \(0.767904\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 117.035i 0.376318i 0.982139 + 0.188159i \(0.0602520\pi\)
−0.982139 + 0.188159i \(0.939748\pi\)
\(312\) 0 0
\(313\) 6.47974i 0.0207021i −0.999946 0.0103510i \(-0.996705\pi\)
0.999946 0.0103510i \(-0.00329489\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −403.391 −1.27253 −0.636263 0.771472i \(-0.719521\pi\)
−0.636263 + 0.771472i \(0.719521\pi\)
\(318\) 0 0
\(319\) 175.230i 0.549311i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 589.228i 1.82424i
\(324\) 0 0
\(325\) −134.470 −0.413755
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 204.507 28.2730i 0.621602 0.0859360i
\(330\) 0 0
\(331\) 87.5977 0.264646 0.132323 0.991207i \(-0.457756\pi\)
0.132323 + 0.991207i \(0.457756\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 184.119i 0.549608i
\(336\) 0 0
\(337\) 254.014 0.753752 0.376876 0.926264i \(-0.376998\pi\)
0.376876 + 0.926264i \(0.376998\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 444.208i 1.30266i
\(342\) 0 0
\(343\) 137.394 + 314.280i 0.400567 + 0.916267i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 206.734i 0.595777i 0.954601 + 0.297888i \(0.0962823\pi\)
−0.954601 + 0.297888i \(0.903718\pi\)
\(348\) 0 0
\(349\) 618.655 1.77265 0.886325 0.463063i \(-0.153250\pi\)
0.886325 + 0.463063i \(0.153250\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 357.742 1.01343 0.506717 0.862113i \(-0.330859\pi\)
0.506717 + 0.862113i \(0.330859\pi\)
\(354\) 0 0
\(355\) 197.774i 0.557110i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 54.1360 0.150797 0.0753983 0.997153i \(-0.475977\pi\)
0.0753983 + 0.997153i \(0.475977\pi\)
\(360\) 0 0
\(361\) −363.676 −1.00741
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −912.779 −2.50077
\(366\) 0 0
\(367\) 45.1294 0.122968 0.0614842 0.998108i \(-0.480417\pi\)
0.0614842 + 0.998108i \(0.480417\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −63.0414 455.998i −0.169923 1.22910i
\(372\) 0 0
\(373\) 495.886i 1.32945i 0.747087 + 0.664726i \(0.231452\pi\)
−0.747087 + 0.664726i \(0.768548\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −42.0627 −0.111572
\(378\) 0 0
\(379\) 427.550 1.12810 0.564050 0.825741i \(-0.309243\pi\)
0.564050 + 0.825741i \(0.309243\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 77.1824i 0.201521i 0.994911 + 0.100760i \(0.0321275\pi\)
−0.994911 + 0.100760i \(0.967872\pi\)
\(384\) 0 0
\(385\) −84.3708 610.280i −0.219145 1.58514i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 510.843 1.31322 0.656610 0.754230i \(-0.271990\pi\)
0.656610 + 0.754230i \(0.271990\pi\)
\(390\) 0 0
\(391\) −337.455 −0.863056
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −719.507 −1.82154
\(396\) 0 0
\(397\) −14.9294 −0.0376056 −0.0188028 0.999823i \(-0.505985\pi\)
−0.0188028 + 0.999823i \(0.505985\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.5890i 0.0313940i −0.999877 0.0156970i \(-0.995003\pi\)
0.999877 0.0156970i \(-0.00499671\pi\)
\(402\) 0 0
\(403\) −106.629 −0.264588
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 312.380 0.767518
\(408\) 0 0
\(409\) 122.775i 0.300183i 0.988672 + 0.150091i \(0.0479568\pi\)
−0.988672 + 0.150091i \(0.952043\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.12215 58.7500i −0.0196662 0.142252i
\(414\) 0 0
\(415\) 616.036i 1.48442i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 85.9785 0.205199 0.102600 0.994723i \(-0.467284\pi\)
0.102600 + 0.994723i \(0.467284\pi\)
\(420\) 0 0
\(421\) 32.5132i 0.0772285i −0.999254 0.0386143i \(-0.987706\pi\)
0.999254 0.0386143i \(-0.0122944\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1269.10 −2.98612
\(426\) 0 0
\(427\) 71.8432 + 519.664i 0.168251 + 1.21701i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 769.964 1.78646 0.893230 0.449600i \(-0.148434\pi\)
0.893230 + 0.449600i \(0.148434\pi\)
\(432\) 0 0
\(433\) 245.082i 0.566008i −0.959119 0.283004i \(-0.908669\pi\)
0.959119 0.283004i \(-0.0913310\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 415.027i 0.949718i
\(438\) 0 0
\(439\) 69.4826 0.158275 0.0791374 0.996864i \(-0.474783\pi\)
0.0791374 + 0.996864i \(0.474783\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 621.899i 1.40384i 0.712258 + 0.701918i \(0.247673\pi\)
−0.712258 + 0.701918i \(0.752327\pi\)
\(444\) 0 0
\(445\) 1192.67i 2.68015i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 777.572i 1.73179i 0.500229 + 0.865893i \(0.333249\pi\)
−0.500229 + 0.865893i \(0.666751\pi\)
\(450\) 0 0
\(451\) 319.283i 0.707945i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 146.493 20.2526i 0.321963 0.0445112i
\(456\) 0 0
\(457\) 746.303 1.63305 0.816524 0.577312i \(-0.195898\pi\)
0.816524 + 0.577312i \(0.195898\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 289.301i 0.627550i −0.949497 0.313775i \(-0.898406\pi\)
0.949497 0.313775i \(-0.101594\pi\)
\(462\) 0 0
\(463\) 317.745i 0.686275i −0.939285 0.343137i \(-0.888510\pi\)
0.939285 0.343137i \(-0.111490\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −152.473 −0.326495 −0.163248 0.986585i \(-0.552197\pi\)
−0.163248 + 0.986585i \(0.552197\pi\)
\(468\) 0 0
\(469\) 19.3758 + 140.151i 0.0413129 + 0.298829i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 584.621i 1.23598i
\(474\) 0 0
\(475\) 1560.84i 3.28597i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 413.409i 0.863067i 0.902097 + 0.431533i \(0.142027\pi\)
−0.902097 + 0.431533i \(0.857973\pi\)
\(480\) 0 0
\(481\) 74.9844i 0.155893i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1596.57 3.29191
\(486\) 0 0
\(487\) 135.886i 0.279027i 0.990220 + 0.139513i \(0.0445538\pi\)
−0.990220 + 0.139513i \(0.955446\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 813.773i 1.65738i −0.559708 0.828690i \(-0.689087\pi\)
0.559708 0.828690i \(-0.310913\pi\)
\(492\) 0 0
\(493\) −396.979 −0.805231
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20.8128 + 150.545i 0.0418768 + 0.302908i
\(498\) 0 0
\(499\) −91.2098 −0.182785 −0.0913925 0.995815i \(-0.529132\pi\)
−0.0913925 + 0.995815i \(0.529132\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 546.674i 1.08683i −0.839465 0.543414i \(-0.817131\pi\)
0.839465 0.543414i \(-0.182869\pi\)
\(504\) 0 0
\(505\) −649.213 −1.28557
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 366.160i 0.719372i −0.933073 0.359686i \(-0.882884\pi\)
0.933073 0.359686i \(-0.117116\pi\)
\(510\) 0 0
\(511\) 694.806 96.0564i 1.35970 0.187977i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 768.610i 1.49245i
\(516\) 0 0
\(517\) 284.954 0.551168
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 252.033 0.483748 0.241874 0.970308i \(-0.422238\pi\)
0.241874 + 0.970308i \(0.422238\pi\)
\(522\) 0 0
\(523\) 335.060i 0.640651i 0.947308 + 0.320325i \(0.103792\pi\)
−0.947308 + 0.320325i \(0.896208\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1006.34 −1.90956
\(528\) 0 0
\(529\) −291.311 −0.550683
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 76.6415 0.143793
\(534\) 0 0
\(535\) 735.392 1.37456
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 128.446 + 455.665i 0.238304 + 0.845390i
\(540\) 0 0
\(541\) 197.089i 0.364305i 0.983270 + 0.182152i \(0.0583065\pi\)
−0.983270 + 0.182152i \(0.941694\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −913.049 −1.67532
\(546\) 0 0
\(547\) −296.822 −0.542637 −0.271318 0.962490i \(-0.587460\pi\)
−0.271318 + 0.962490i \(0.587460\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 488.234i 0.886087i
\(552\) 0 0
\(553\) 547.687 75.7174i 0.990393 0.136921i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −64.7524 −0.116252 −0.0581261 0.998309i \(-0.518513\pi\)
−0.0581261 + 0.998309i \(0.518513\pi\)
\(558\) 0 0
\(559\) 140.334 0.251044
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −143.148 −0.254260 −0.127130 0.991886i \(-0.540576\pi\)
−0.127130 + 0.991886i \(0.540576\pi\)
\(564\) 0 0
\(565\) 133.473 0.236236
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 566.510i 0.995625i 0.867285 + 0.497812i \(0.165863\pi\)
−0.867285 + 0.497812i \(0.834137\pi\)
\(570\) 0 0
\(571\) −788.303 −1.38057 −0.690283 0.723539i \(-0.742514\pi\)
−0.690283 + 0.723539i \(0.742514\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 893.901 1.55461
\(576\) 0 0
\(577\) 273.614i 0.474200i 0.971485 + 0.237100i \(0.0761970\pi\)
−0.971485 + 0.237100i \(0.923803\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 64.8286 + 468.925i 0.111581 + 0.807100i
\(582\) 0 0
\(583\) 635.374i 1.08983i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.97914 0.00507520 0.00253760 0.999997i \(-0.499192\pi\)
0.00253760 + 0.999997i \(0.499192\pi\)
\(588\) 0 0
\(589\) 1237.67i 2.10131i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 586.465 0.988979 0.494490 0.869184i \(-0.335355\pi\)
0.494490 + 0.869184i \(0.335355\pi\)
\(594\) 0 0
\(595\) 1382.57 191.140i 2.32365 0.321243i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 44.6708 0.0745757 0.0372878 0.999305i \(-0.488128\pi\)
0.0372878 + 0.999305i \(0.488128\pi\)
\(600\) 0 0
\(601\) 185.280i 0.308286i 0.988049 + 0.154143i \(0.0492617\pi\)
−0.988049 + 0.154143i \(0.950738\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 251.890i 0.416347i
\(606\) 0 0
\(607\) −485.191 −0.799326 −0.399663 0.916662i \(-0.630873\pi\)
−0.399663 + 0.916662i \(0.630873\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 68.4010i 0.111949i
\(612\) 0 0
\(613\) 504.370i 0.822790i −0.911457 0.411395i \(-0.865042\pi\)
0.911457 0.411395i \(-0.134958\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.6090i 0.0334019i −0.999861 0.0167010i \(-0.994684\pi\)
0.999861 0.0167010i \(-0.00531633\pi\)
\(618\) 0 0
\(619\) 925.741i 1.49554i 0.663957 + 0.747771i \(0.268876\pi\)
−0.663957 + 0.747771i \(0.731124\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 125.510 + 907.856i 0.201461 + 1.45723i
\(624\) 0 0
\(625\) 1287.27 2.05962
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 707.687i 1.12510i
\(630\) 0 0
\(631\) 902.920i 1.43094i −0.698646 0.715468i \(-0.746214\pi\)
0.698646 0.715468i \(-0.253786\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 209.442 0.329830
\(636\) 0 0
\(637\) −109.379 + 30.8325i −0.171710 + 0.0484026i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 235.354i 0.367167i 0.983004 + 0.183584i \(0.0587698\pi\)
−0.983004 + 0.183584i \(0.941230\pi\)
\(642\) 0 0
\(643\) 189.811i 0.295197i 0.989047 + 0.147598i \(0.0471543\pi\)
−0.989047 + 0.147598i \(0.952846\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.78084i 0.0151172i 0.999971 + 0.00755861i \(0.00240600\pi\)
−0.999971 + 0.00755861i \(0.997594\pi\)
\(648\) 0 0
\(649\) 81.8605i 0.126133i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 700.168 1.07223 0.536117 0.844144i \(-0.319891\pi\)
0.536117 + 0.844144i \(0.319891\pi\)
\(654\) 0 0
\(655\) 1412.25i 2.15611i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 584.716i 0.887277i −0.896206 0.443639i \(-0.853687\pi\)
0.896206 0.443639i \(-0.146313\pi\)
\(660\) 0 0
\(661\) 687.188 1.03962 0.519809 0.854282i \(-0.326003\pi\)
0.519809 + 0.854282i \(0.326003\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 235.078 + 1700.39i 0.353500 + 2.55697i
\(666\) 0 0
\(667\) 279.615 0.419213
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 724.084i 1.07911i
\(672\) 0 0
\(673\) −394.412 −0.586050 −0.293025 0.956105i \(-0.594662\pi\)
−0.293025 + 0.956105i \(0.594662\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 115.342i 0.170372i −0.996365 0.0851858i \(-0.972852\pi\)
0.996365 0.0851858i \(-0.0271484\pi\)
\(678\) 0 0
\(679\) −1215.31 + 168.016i −1.78985 + 0.247446i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 208.661i 0.305506i 0.988264 + 0.152753i \(0.0488139\pi\)
−0.988264 + 0.152753i \(0.951186\pi\)
\(684\) 0 0
\(685\) −597.272 −0.871930
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 152.517 0.221359
\(690\) 0 0
\(691\) 755.615i 1.09351i 0.837293 + 0.546755i \(0.184137\pi\)
−0.837293 + 0.546755i \(0.815863\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1365.26 −1.96440
\(696\) 0 0
\(697\) 723.327 1.03777
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 611.239 0.871953 0.435977 0.899958i \(-0.356403\pi\)
0.435977 + 0.899958i \(0.356403\pi\)
\(702\) 0 0
\(703\) −870.365 −1.23807
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 494.179 68.3200i 0.698981 0.0966336i
\(708\) 0 0
\(709\) 182.040i 0.256756i 0.991725 + 0.128378i \(0.0409771\pi\)
−0.991725 + 0.128378i \(0.959023\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 708.822 0.994141
\(714\) 0 0
\(715\) 204.119 0.285481
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 927.993i 1.29067i −0.763899 0.645336i \(-0.776717\pi\)
0.763899 0.645336i \(-0.223283\pi\)
\(720\) 0 0
\(721\) 80.8848 + 585.065i 0.112184 + 0.811463i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1051.58 1.45045
\(726\) 0 0
\(727\) −715.698 −0.984453 −0.492227 0.870467i \(-0.663817\pi\)
−0.492227 + 0.870467i \(0.663817\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1324.44 1.81182
\(732\) 0 0
\(733\) 565.483 0.771464 0.385732 0.922611i \(-0.373949\pi\)
0.385732 + 0.922611i \(0.373949\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 195.282i 0.264969i
\(738\) 0 0
\(739\) −104.108 −0.140876 −0.0704382 0.997516i \(-0.522440\pi\)
−0.0704382 + 0.997516i \(0.522440\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1159.59 1.56068 0.780341 0.625354i \(-0.215045\pi\)
0.780341 + 0.625354i \(0.215045\pi\)
\(744\) 0 0
\(745\) 580.578i 0.779299i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −559.779 + 77.3890i −0.747368 + 0.103323i
\(750\) 0 0
\(751\) 8.05706i 0.0107284i 0.999986 + 0.00536422i \(0.00170749\pi\)
−0.999986 + 0.00536422i \(0.998293\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −799.522 −1.05897
\(756\) 0 0
\(757\) 203.142i 0.268352i 0.990958 + 0.134176i \(0.0428387\pi\)
−0.990958 + 0.134176i \(0.957161\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1325.16 1.74134 0.870670 0.491867i \(-0.163685\pi\)
0.870670 + 0.491867i \(0.163685\pi\)
\(762\) 0 0
\(763\) 695.012 96.0849i 0.910893 0.125930i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19.6500 0.0256193
\(768\) 0 0
\(769\) 27.4357i 0.0356772i −0.999841 0.0178386i \(-0.994322\pi\)
0.999841 0.0178386i \(-0.00567850\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 127.533i 0.164985i 0.996592 + 0.0824925i \(0.0262880\pi\)
−0.996592 + 0.0824925i \(0.973712\pi\)
\(774\) 0 0
\(775\) 2665.74 3.43967
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 889.600i 1.14198i
\(780\) 0 0
\(781\) 209.765i 0.268585i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 118.080i 0.150421i
\(786\) 0 0
\(787\) 151.856i 0.192956i 0.995335 + 0.0964781i \(0.0307578\pi\)
−0.995335 + 0.0964781i \(0.969242\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −101.599 + 14.0461i −0.128444 + 0.0177573i
\(792\) 0 0
\(793\) −173.811 −0.219182
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1136.09i 1.42545i 0.701443 + 0.712726i \(0.252540\pi\)
−0.701443 + 0.712726i \(0.747460\pi\)
\(798\) 0 0
\(799\) 645.554i 0.807953i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 968.122 1.20563
\(804\) 0 0
\(805\) −973.823 + 134.630i −1.20972 + 0.167243i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 438.239i 0.541705i 0.962621 + 0.270852i \(0.0873055\pi\)
−0.962621 + 0.270852i \(0.912695\pi\)
\(810\) 0 0
\(811\) 1406.16i 1.73386i 0.498427 + 0.866931i \(0.333911\pi\)
−0.498427 + 0.866931i \(0.666089\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1178.58i 1.44611i
\(816\) 0 0
\(817\) 1628.89i 1.99375i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 592.105 0.721200 0.360600 0.932721i \(-0.382572\pi\)
0.360600 + 0.932721i \(0.382572\pi\)
\(822\) 0 0
\(823\) 1078.89i 1.31092i −0.755229 0.655461i \(-0.772474\pi\)
0.755229 0.655461i \(-0.227526\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 111.468i 0.134785i −0.997727 0.0673927i \(-0.978532\pi\)
0.997727 0.0673927i \(-0.0214680\pi\)
\(828\) 0 0
\(829\) −109.080 −0.131580 −0.0657900 0.997833i \(-0.520957\pi\)
−0.0657900 + 0.997833i \(0.520957\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1032.30 + 290.990i −1.23925 + 0.349328i
\(834\) 0 0
\(835\) 1726.13 2.06722
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1297.65i 1.54667i 0.633999 + 0.773334i \(0.281412\pi\)
−0.633999 + 0.773334i \(0.718588\pi\)
\(840\) 0 0
\(841\) −512.064 −0.608875
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1490.49i 1.76389i
\(846\) 0 0
\(847\) −26.5076 191.738i −0.0312959 0.226373i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 498.464i 0.585739i
\(852\) 0 0
\(853\) −1099.79 −1.28932 −0.644658 0.764471i \(-0.723000\pi\)
−0.644658 + 0.764471i \(0.723000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −616.955 −0.719900 −0.359950 0.932972i \(-0.617206\pi\)
−0.359950 + 0.932972i \(0.617206\pi\)
\(858\) 0 0
\(859\) 1202.72i 1.40014i −0.714075 0.700069i \(-0.753152\pi\)
0.714075 0.700069i \(-0.246848\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 481.815 0.558303 0.279151 0.960247i \(-0.409947\pi\)
0.279151 + 0.960247i \(0.409947\pi\)
\(864\) 0 0
\(865\) −2816.26 −3.25580
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 763.131 0.878171
\(870\) 0 0
\(871\) −46.8760 −0.0538186
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2083.24 + 288.006i −2.38084 + 0.329150i
\(876\) 0 0
\(877\) 275.163i 0.313754i −0.987618 0.156877i \(-0.949857\pi\)
0.987618 0.156877i \(-0.0501427\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −718.744 −0.815827 −0.407914 0.913020i \(-0.633744\pi\)
−0.407914 + 0.913020i \(0.633744\pi\)
\(882\) 0 0
\(883\) 1561.31 1.76819 0.884095 0.467308i \(-0.154776\pi\)
0.884095 + 0.467308i \(0.154776\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 983.157i 1.10841i 0.832381 + 0.554204i \(0.186977\pi\)
−0.832381 + 0.554204i \(0.813023\pi\)
\(888\) 0 0
\(889\) −159.427 + 22.0407i −0.179333 + 0.0247927i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −793.950 −0.889082
\(894\) 0 0
\(895\) 995.789 1.11261
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 833.852 0.927533
\(900\) 0 0
\(901\) 1439.42 1.59758
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 687.137i 0.759267i
\(906\) 0 0
\(907\) −1121.27 −1.23624 −0.618119 0.786085i \(-0.712105\pi\)
−0.618119 + 0.786085i \(0.712105\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1308.23 −1.43604 −0.718020 0.696022i \(-0.754952\pi\)
−0.718020 + 0.696022i \(0.754952\pi\)
\(912\) 0 0
\(913\) 653.386i 0.715647i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 148.618 + 1075.00i 0.162070 + 1.17230i
\(918\) 0 0
\(919\) 992.984i 1.08050i −0.841503 0.540252i \(-0.818329\pi\)
0.841503 0.540252i \(-0.181671\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −50.3525 −0.0545531
\(924\) 0 0
\(925\) 1874.63i 2.02662i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 47.0391 0.0506342 0.0253171 0.999679i \(-0.491940\pi\)
0.0253171 + 0.999679i \(0.491940\pi\)
\(930\) 0 0
\(931\) −357.881 1269.59i −0.384405 1.36369i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1926.43 2.06036
\(936\) 0 0
\(937\) 1808.57i 1.93017i −0.261932 0.965086i \(-0.584360\pi\)
0.261932 0.965086i \(-0.415640\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 628.185i 0.667572i −0.942649 0.333786i \(-0.891674\pi\)
0.942649 0.333786i \(-0.108326\pi\)
\(942\) 0 0
\(943\) −509.480 −0.540276
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1130.40i 1.19366i 0.802367 + 0.596831i \(0.203574\pi\)
−0.802367 + 0.596831i \(0.796426\pi\)
\(948\) 0 0
\(949\) 232.390i 0.244879i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 781.337i 0.819871i −0.912114 0.409936i \(-0.865551\pi\)
0.912114 0.409936i \(-0.134449\pi\)
\(954\) 0 0
\(955\) 1861.57i 1.94929i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 454.643 62.8540i 0.474080 0.0655412i
\(960\) 0 0
\(961\) 1152.81 1.19960
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1041.82i 1.07961i
\(966\) 0 0
\(967\) 1674.13i 1.73126i 0.500685 + 0.865629i \(0.333081\pi\)
−0.500685 + 0.865629i \(0.666919\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −271.907 −0.280028 −0.140014 0.990150i \(-0.544715\pi\)
−0.140014 + 0.990150i \(0.544715\pi\)
\(972\) 0 0
\(973\) 1039.23 143.673i 1.06807 0.147660i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1639.40i 1.67799i −0.544138 0.838995i \(-0.683143\pi\)
0.544138 0.838995i \(-0.316857\pi\)
\(978\) 0 0
\(979\) 1264.98i 1.29211i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 824.584i 0.838844i −0.907791 0.419422i \(-0.862233\pi\)
0.907791 0.419422i \(-0.137767\pi\)
\(984\) 0 0
\(985\) 2070.02i 2.10155i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −932.878 −0.943254
\(990\) 0 0
\(991\) 888.843i 0.896916i −0.893804 0.448458i \(-0.851973\pi\)
0.893804 0.448458i \(-0.148027\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1035.88i 1.04108i
\(996\) 0 0
\(997\) −43.3671 −0.0434976 −0.0217488 0.999763i \(-0.506923\pi\)
−0.0217488 + 0.999763i \(0.506923\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.e.c.1007.24 48
3.2 odd 2 inner 2016.3.e.c.1007.33 48
4.3 odd 2 504.3.e.c.251.32 yes 48
7.6 odd 2 inner 2016.3.e.c.1007.7 48
8.3 odd 2 inner 2016.3.e.c.1007.5 48
8.5 even 2 504.3.e.c.251.19 yes 48
12.11 even 2 504.3.e.c.251.18 yes 48
21.20 even 2 inner 2016.3.e.c.1007.6 48
24.5 odd 2 504.3.e.c.251.29 yes 48
24.11 even 2 inner 2016.3.e.c.1007.8 48
28.27 even 2 504.3.e.c.251.31 yes 48
56.13 odd 2 504.3.e.c.251.20 yes 48
56.27 even 2 inner 2016.3.e.c.1007.34 48
84.83 odd 2 504.3.e.c.251.17 48
168.83 odd 2 inner 2016.3.e.c.1007.23 48
168.125 even 2 504.3.e.c.251.30 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.c.251.17 48 84.83 odd 2
504.3.e.c.251.18 yes 48 12.11 even 2
504.3.e.c.251.19 yes 48 8.5 even 2
504.3.e.c.251.20 yes 48 56.13 odd 2
504.3.e.c.251.29 yes 48 24.5 odd 2
504.3.e.c.251.30 yes 48 168.125 even 2
504.3.e.c.251.31 yes 48 28.27 even 2
504.3.e.c.251.32 yes 48 4.3 odd 2
2016.3.e.c.1007.5 48 8.3 odd 2 inner
2016.3.e.c.1007.6 48 21.20 even 2 inner
2016.3.e.c.1007.7 48 7.6 odd 2 inner
2016.3.e.c.1007.8 48 24.11 even 2 inner
2016.3.e.c.1007.23 48 168.83 odd 2 inner
2016.3.e.c.1007.24 48 1.1 even 1 trivial
2016.3.e.c.1007.33 48 3.2 odd 2 inner
2016.3.e.c.1007.34 48 56.27 even 2 inner