Properties

Label 504.3.e.c.251.29
Level $504$
Weight $3$
Character 504.251
Analytic conductor $13.733$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(251,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.29
Character \(\chi\) \(=\) 504.251
Dual form 504.3.e.c.251.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.852241 - 1.80933i) q^{2} +(-2.54737 - 3.08398i) q^{4} +9.10939i q^{5} +(-0.958628 - 6.93405i) q^{7} +(-7.75091 + 1.98075i) q^{8} +(16.4819 + 7.76340i) q^{10} -9.66169i q^{11} -2.31922 q^{13} +(-13.3630 - 4.17501i) q^{14} +(-3.02182 + 15.7121i) q^{16} -21.8883 q^{17} -26.9198i q^{19} +(28.0931 - 23.2050i) q^{20} +(-17.4812 - 8.23410i) q^{22} +15.4172 q^{23} -57.9809 q^{25} +(-1.97653 + 4.19623i) q^{26} +(-18.9425 + 20.6200i) q^{28} -18.1366 q^{29} -45.9762 q^{31} +(25.8530 + 18.8579i) q^{32} +(-18.6541 + 39.6032i) q^{34} +(63.1649 - 8.73251i) q^{35} -32.3318i q^{37} +(-48.7069 - 22.9422i) q^{38} +(-18.0434 - 70.6061i) q^{40} -33.0463 q^{41} -60.5091 q^{43} +(-29.7964 + 24.6119i) q^{44} +(13.1391 - 27.8948i) q^{46} -29.4932i q^{47} +(-47.1621 + 13.2943i) q^{49} +(-49.4138 + 104.907i) q^{50} +(5.90790 + 7.15241i) q^{52} +65.7621 q^{53} +88.0121 q^{55} +(21.1648 + 51.8464i) q^{56} +(-15.4568 + 32.8152i) q^{58} +8.47268 q^{59} +74.9438 q^{61} +(-39.1828 + 83.1863i) q^{62} +(56.1533 - 30.7052i) q^{64} -21.1266i q^{65} +20.2120 q^{67} +(55.7575 + 67.5029i) q^{68} +(38.0318 - 121.729i) q^{70} +21.7110 q^{71} +100.202i q^{73} +(-58.4989 - 27.5545i) q^{74} +(-83.0201 + 68.5747i) q^{76} +(-66.9947 + 9.26197i) q^{77} +78.9852i q^{79} +(-143.127 - 27.5269i) q^{80} +(-28.1634 + 59.7918i) q^{82} -67.6265 q^{83} -199.389i q^{85} +(-51.5684 + 109.481i) q^{86} +(19.1374 + 74.8869i) q^{88} +130.927 q^{89} +(2.22326 + 16.0816i) q^{91} +(-39.2732 - 47.5461i) q^{92} +(-53.3629 - 25.1353i) q^{94} +245.223 q^{95} -175.267i q^{97} +(-16.1396 + 96.6619i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 144 q^{22} - 336 q^{25} - 232 q^{28} - 384 q^{43} + 736 q^{46} + 368 q^{49} - 432 q^{58} + 480 q^{64} - 896 q^{67} + 264 q^{70} - 48 q^{88} - 576 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.852241 1.80933i 0.426121 0.904666i
\(3\) 0 0
\(4\) −2.54737 3.08398i −0.636842 0.770994i
\(5\) 9.10939i 1.82188i 0.412542 + 0.910939i \(0.364641\pi\)
−0.412542 + 0.910939i \(0.635359\pi\)
\(6\) 0 0
\(7\) −0.958628 6.93405i −0.136947 0.990578i
\(8\) −7.75091 + 1.98075i −0.968864 + 0.247593i
\(9\) 0 0
\(10\) 16.4819 + 7.76340i 1.64819 + 0.776340i
\(11\) 9.66169i 0.878336i −0.898405 0.439168i \(-0.855273\pi\)
0.898405 0.439168i \(-0.144727\pi\)
\(12\) 0 0
\(13\) −2.31922 −0.178401 −0.0892006 0.996014i \(-0.528431\pi\)
−0.0892006 + 0.996014i \(0.528431\pi\)
\(14\) −13.3630 4.17501i −0.954499 0.298215i
\(15\) 0 0
\(16\) −3.02182 + 15.7121i −0.188864 + 0.982003i
\(17\) −21.8883 −1.28755 −0.643773 0.765217i \(-0.722632\pi\)
−0.643773 + 0.765217i \(0.722632\pi\)
\(18\) 0 0
\(19\) 26.9198i 1.41683i −0.705795 0.708416i \(-0.749410\pi\)
0.705795 0.708416i \(-0.250590\pi\)
\(20\) 28.0931 23.2050i 1.40466 1.16025i
\(21\) 0 0
\(22\) −17.4812 8.23410i −0.794601 0.374277i
\(23\) 15.4172 0.670311 0.335156 0.942163i \(-0.391211\pi\)
0.335156 + 0.942163i \(0.391211\pi\)
\(24\) 0 0
\(25\) −57.9809 −2.31924
\(26\) −1.97653 + 4.19623i −0.0760205 + 0.161394i
\(27\) 0 0
\(28\) −18.9425 + 20.6200i −0.676517 + 0.736427i
\(29\) −18.1366 −0.625400 −0.312700 0.949852i \(-0.601233\pi\)
−0.312700 + 0.949852i \(0.601233\pi\)
\(30\) 0 0
\(31\) −45.9762 −1.48310 −0.741552 0.670896i \(-0.765910\pi\)
−0.741552 + 0.670896i \(0.765910\pi\)
\(32\) 25.8530 + 18.8579i 0.807907 + 0.589311i
\(33\) 0 0
\(34\) −18.6541 + 39.6032i −0.548650 + 1.16480i
\(35\) 63.1649 8.73251i 1.80471 0.249500i
\(36\) 0 0
\(37\) 32.3318i 0.873832i −0.899502 0.436916i \(-0.856071\pi\)
0.899502 0.436916i \(-0.143929\pi\)
\(38\) −48.7069 22.9422i −1.28176 0.603742i
\(39\) 0 0
\(40\) −18.0434 70.6061i −0.451085 1.76515i
\(41\) −33.0463 −0.806007 −0.403004 0.915198i \(-0.632034\pi\)
−0.403004 + 0.915198i \(0.632034\pi\)
\(42\) 0 0
\(43\) −60.5091 −1.40719 −0.703594 0.710602i \(-0.748423\pi\)
−0.703594 + 0.710602i \(0.748423\pi\)
\(44\) −29.7964 + 24.6119i −0.677192 + 0.559361i
\(45\) 0 0
\(46\) 13.1391 27.8948i 0.285633 0.606408i
\(47\) 29.4932i 0.627514i −0.949503 0.313757i \(-0.898412\pi\)
0.949503 0.313757i \(-0.101588\pi\)
\(48\) 0 0
\(49\) −47.1621 + 13.2943i −0.962491 + 0.271313i
\(50\) −49.4138 + 104.907i −0.988275 + 2.09814i
\(51\) 0 0
\(52\) 5.90790 + 7.15241i 0.113613 + 0.137546i
\(53\) 65.7621 1.24079 0.620397 0.784288i \(-0.286971\pi\)
0.620397 + 0.784288i \(0.286971\pi\)
\(54\) 0 0
\(55\) 88.0121 1.60022
\(56\) 21.1648 + 51.8464i 0.377943 + 0.925829i
\(57\) 0 0
\(58\) −15.4568 + 32.8152i −0.266496 + 0.565778i
\(59\) 8.47268 0.143605 0.0718024 0.997419i \(-0.477125\pi\)
0.0718024 + 0.997419i \(0.477125\pi\)
\(60\) 0 0
\(61\) 74.9438 1.22859 0.614294 0.789077i \(-0.289441\pi\)
0.614294 + 0.789077i \(0.289441\pi\)
\(62\) −39.1828 + 83.1863i −0.631981 + 1.34171i
\(63\) 0 0
\(64\) 56.1533 30.7052i 0.877395 0.479768i
\(65\) 21.1266i 0.325025i
\(66\) 0 0
\(67\) 20.2120 0.301671 0.150836 0.988559i \(-0.451804\pi\)
0.150836 + 0.988559i \(0.451804\pi\)
\(68\) 55.7575 + 67.5029i 0.819963 + 0.992690i
\(69\) 0 0
\(70\) 38.0318 121.729i 0.543311 1.73898i
\(71\) 21.7110 0.305789 0.152894 0.988243i \(-0.451141\pi\)
0.152894 + 0.988243i \(0.451141\pi\)
\(72\) 0 0
\(73\) 100.202i 1.37263i 0.727304 + 0.686315i \(0.240773\pi\)
−0.727304 + 0.686315i \(0.759227\pi\)
\(74\) −58.4989 27.5545i −0.790526 0.372358i
\(75\) 0 0
\(76\) −83.0201 + 68.5747i −1.09237 + 0.902299i
\(77\) −66.9947 + 9.26197i −0.870061 + 0.120285i
\(78\) 0 0
\(79\) 78.9852i 0.999813i 0.866079 + 0.499906i \(0.166632\pi\)
−0.866079 + 0.499906i \(0.833368\pi\)
\(80\) −143.127 27.5269i −1.78909 0.344087i
\(81\) 0 0
\(82\) −28.1634 + 59.7918i −0.343456 + 0.729168i
\(83\) −67.6265 −0.814777 −0.407388 0.913255i \(-0.633560\pi\)
−0.407388 + 0.913255i \(0.633560\pi\)
\(84\) 0 0
\(85\) 199.389i 2.34575i
\(86\) −51.5684 + 109.481i −0.599632 + 1.27304i
\(87\) 0 0
\(88\) 19.1374 + 74.8869i 0.217470 + 0.850988i
\(89\) 130.927 1.47109 0.735546 0.677474i \(-0.236926\pi\)
0.735546 + 0.677474i \(0.236926\pi\)
\(90\) 0 0
\(91\) 2.22326 + 16.0816i 0.0244315 + 0.176720i
\(92\) −39.2732 47.5461i −0.426882 0.516806i
\(93\) 0 0
\(94\) −53.3629 25.1353i −0.567691 0.267397i
\(95\) 245.223 2.58129
\(96\) 0 0
\(97\) 175.267i 1.80688i −0.428719 0.903438i \(-0.641035\pi\)
0.428719 0.903438i \(-0.358965\pi\)
\(98\) −16.1396 + 96.6619i −0.164690 + 0.986345i
\(99\) 0 0
\(100\) 147.699 + 178.812i 1.47699 + 1.78812i
\(101\) 71.2685i 0.705629i 0.935693 + 0.352815i \(0.114775\pi\)
−0.935693 + 0.352815i \(0.885225\pi\)
\(102\) 0 0
\(103\) −84.3756 −0.819181 −0.409590 0.912270i \(-0.634328\pi\)
−0.409590 + 0.912270i \(0.634328\pi\)
\(104\) 17.9760 4.59378i 0.172847 0.0441710i
\(105\) 0 0
\(106\) 56.0452 118.986i 0.528728 1.12251i
\(107\) 80.7290i 0.754476i −0.926116 0.377238i \(-0.876874\pi\)
0.926116 0.377238i \(-0.123126\pi\)
\(108\) 0 0
\(109\) 100.232i 0.919557i −0.888034 0.459778i \(-0.847929\pi\)
0.888034 0.459778i \(-0.152071\pi\)
\(110\) 75.0076 159.243i 0.681887 1.44767i
\(111\) 0 0
\(112\) 111.845 + 5.89144i 0.998616 + 0.0526021i
\(113\) 14.6523i 0.129666i 0.997896 + 0.0648330i \(0.0206515\pi\)
−0.997896 + 0.0648330i \(0.979349\pi\)
\(114\) 0 0
\(115\) 140.441i 1.22122i
\(116\) 46.2006 + 55.9329i 0.398281 + 0.482180i
\(117\) 0 0
\(118\) 7.22077 15.3299i 0.0611930 0.129914i
\(119\) 20.9827 + 151.774i 0.176325 + 1.27541i
\(120\) 0 0
\(121\) 27.6517 0.228526
\(122\) 63.8702 135.598i 0.523527 1.11146i
\(123\) 0 0
\(124\) 117.118 + 141.790i 0.944503 + 1.14346i
\(125\) 300.436i 2.40349i
\(126\) 0 0
\(127\) 22.9919i 0.181039i −0.995895 0.0905193i \(-0.971147\pi\)
0.995895 0.0905193i \(-0.0288527\pi\)
\(128\) −7.69973 127.768i −0.0601541 0.998189i
\(129\) 0 0
\(130\) −38.2251 18.0050i −0.294039 0.138500i
\(131\) −155.033 −1.18345 −0.591727 0.806138i \(-0.701554\pi\)
−0.591727 + 0.806138i \(0.701554\pi\)
\(132\) 0 0
\(133\) −186.663 + 25.8061i −1.40348 + 0.194031i
\(134\) 17.2255 36.5702i 0.128548 0.272912i
\(135\) 0 0
\(136\) 169.654 43.3551i 1.24746 0.318788i
\(137\) 65.5667i 0.478589i −0.970947 0.239294i \(-0.923084\pi\)
0.970947 0.239294i \(-0.0769161\pi\)
\(138\) 0 0
\(139\) 149.873i 1.07823i −0.842233 0.539113i \(-0.818760\pi\)
0.842233 0.539113i \(-0.181240\pi\)
\(140\) −187.835 172.554i −1.34168 1.23253i
\(141\) 0 0
\(142\) 18.5030 39.2824i 0.130303 0.276637i
\(143\) 22.4076i 0.156696i
\(144\) 0 0
\(145\) 165.213i 1.13940i
\(146\) 181.299 + 85.3963i 1.24177 + 0.584906i
\(147\) 0 0
\(148\) −99.7104 + 82.3610i −0.673719 + 0.556493i
\(149\) −63.7340 −0.427745 −0.213873 0.976862i \(-0.568608\pi\)
−0.213873 + 0.976862i \(0.568608\pi\)
\(150\) 0 0
\(151\) 87.7691i 0.581252i 0.956837 + 0.290626i \(0.0938636\pi\)
−0.956837 + 0.290626i \(0.906136\pi\)
\(152\) 53.3213 + 208.653i 0.350798 + 1.37272i
\(153\) 0 0
\(154\) −40.3376 + 129.109i −0.261933 + 0.838370i
\(155\) 418.815i 2.70203i
\(156\) 0 0
\(157\) −12.9625 −0.0825635 −0.0412818 0.999148i \(-0.513144\pi\)
−0.0412818 + 0.999148i \(0.513144\pi\)
\(158\) 142.911 + 67.3145i 0.904497 + 0.426041i
\(159\) 0 0
\(160\) −171.784 + 235.505i −1.07365 + 1.47191i
\(161\) −14.7793 106.903i −0.0917969 0.663996i
\(162\) 0 0
\(163\) 129.380 0.793745 0.396872 0.917874i \(-0.370096\pi\)
0.396872 + 0.917874i \(0.370096\pi\)
\(164\) 84.1811 + 101.914i 0.513300 + 0.621427i
\(165\) 0 0
\(166\) −57.6341 + 122.359i −0.347193 + 0.737101i
\(167\) 189.489i 1.13466i 0.823489 + 0.567332i \(0.192024\pi\)
−0.823489 + 0.567332i \(0.807976\pi\)
\(168\) 0 0
\(169\) −163.621 −0.968173
\(170\) −360.761 169.927i −2.12212 0.999573i
\(171\) 0 0
\(172\) 154.139 + 186.609i 0.896157 + 1.08493i
\(173\) 309.161i 1.78706i 0.449008 + 0.893528i \(0.351778\pi\)
−0.449008 + 0.893528i \(0.648222\pi\)
\(174\) 0 0
\(175\) 55.5821 + 402.043i 0.317612 + 2.29739i
\(176\) 151.805 + 29.1959i 0.862529 + 0.165886i
\(177\) 0 0
\(178\) 111.582 236.891i 0.626863 1.33085i
\(179\) 109.315i 0.610696i −0.952241 0.305348i \(-0.901227\pi\)
0.952241 0.305348i \(-0.0987728\pi\)
\(180\) 0 0
\(181\) 75.4317 0.416750 0.208375 0.978049i \(-0.433183\pi\)
0.208375 + 0.978049i \(0.433183\pi\)
\(182\) 30.9917 + 9.68275i 0.170284 + 0.0532019i
\(183\) 0 0
\(184\) −119.497 + 30.5375i −0.649440 + 0.165964i
\(185\) 294.523 1.59201
\(186\) 0 0
\(187\) 211.478i 1.13090i
\(188\) −90.9562 + 75.1300i −0.483810 + 0.399627i
\(189\) 0 0
\(190\) 208.989 443.690i 1.09994 2.33521i
\(191\) 204.357 1.06993 0.534966 0.844874i \(-0.320324\pi\)
0.534966 + 0.844874i \(0.320324\pi\)
\(192\) 0 0
\(193\) −114.368 −0.592579 −0.296290 0.955098i \(-0.595749\pi\)
−0.296290 + 0.955098i \(0.595749\pi\)
\(194\) −317.116 149.370i −1.63462 0.769947i
\(195\) 0 0
\(196\) 161.139 + 111.581i 0.822136 + 0.569291i
\(197\) −227.241 −1.15351 −0.576753 0.816919i \(-0.695680\pi\)
−0.576753 + 0.816919i \(0.695680\pi\)
\(198\) 0 0
\(199\) −113.715 −0.571434 −0.285717 0.958314i \(-0.592232\pi\)
−0.285717 + 0.958314i \(0.592232\pi\)
\(200\) 449.405 114.846i 2.24703 0.574228i
\(201\) 0 0
\(202\) 128.948 + 60.7380i 0.638359 + 0.300683i
\(203\) 17.3863 + 125.760i 0.0856466 + 0.619508i
\(204\) 0 0
\(205\) 301.032i 1.46845i
\(206\) −71.9084 + 152.664i −0.349070 + 0.741085i
\(207\) 0 0
\(208\) 7.00825 36.4397i 0.0336935 0.175191i
\(209\) −260.091 −1.24445
\(210\) 0 0
\(211\) 389.006 1.84363 0.921815 0.387630i \(-0.126706\pi\)
0.921815 + 0.387630i \(0.126706\pi\)
\(212\) −167.520 202.809i −0.790191 0.956645i
\(213\) 0 0
\(214\) −146.066 68.8006i −0.682549 0.321498i
\(215\) 551.201i 2.56373i
\(216\) 0 0
\(217\) 44.0741 + 318.801i 0.203106 + 1.46913i
\(218\) −181.352 85.4216i −0.831892 0.391842i
\(219\) 0 0
\(220\) −224.199 271.427i −1.01909 1.23376i
\(221\) 50.7636 0.229700
\(222\) 0 0
\(223\) 228.516 1.02474 0.512368 0.858766i \(-0.328768\pi\)
0.512368 + 0.858766i \(0.328768\pi\)
\(224\) 105.978 197.344i 0.473118 0.880999i
\(225\) 0 0
\(226\) 26.5108 + 12.4873i 0.117304 + 0.0552534i
\(227\) 182.563 0.804242 0.402121 0.915587i \(-0.368273\pi\)
0.402121 + 0.915587i \(0.368273\pi\)
\(228\) 0 0
\(229\) 331.984 1.44971 0.724857 0.688900i \(-0.241906\pi\)
0.724857 + 0.688900i \(0.241906\pi\)
\(230\) 254.104 + 119.689i 1.10480 + 0.520389i
\(231\) 0 0
\(232\) 140.575 35.9240i 0.605928 0.154845i
\(233\) 360.147i 1.54570i 0.634592 + 0.772848i \(0.281168\pi\)
−0.634592 + 0.772848i \(0.718832\pi\)
\(234\) 0 0
\(235\) 268.665 1.14325
\(236\) −21.5830 26.1296i −0.0914536 0.110718i
\(237\) 0 0
\(238\) 292.493 + 91.3837i 1.22896 + 0.383965i
\(239\) −333.265 −1.39442 −0.697208 0.716869i \(-0.745575\pi\)
−0.697208 + 0.716869i \(0.745575\pi\)
\(240\) 0 0
\(241\) 331.691i 1.37631i −0.725564 0.688155i \(-0.758421\pi\)
0.725564 0.688155i \(-0.241579\pi\)
\(242\) 23.5659 50.0311i 0.0973797 0.206740i
\(243\) 0 0
\(244\) −190.910 231.125i −0.782416 0.947234i
\(245\) −121.103 429.618i −0.494299 1.75354i
\(246\) 0 0
\(247\) 62.4329i 0.252765i
\(248\) 356.358 91.0672i 1.43693 0.367206i
\(249\) 0 0
\(250\) −543.589 256.044i −2.17436 1.02418i
\(251\) 350.730 1.39733 0.698666 0.715448i \(-0.253777\pi\)
0.698666 + 0.715448i \(0.253777\pi\)
\(252\) 0 0
\(253\) 148.956i 0.588758i
\(254\) −41.6000 19.5947i −0.163780 0.0771443i
\(255\) 0 0
\(256\) −237.737 94.9580i −0.928661 0.370930i
\(257\) −361.582 −1.40694 −0.703468 0.710727i \(-0.748366\pi\)
−0.703468 + 0.710727i \(0.748366\pi\)
\(258\) 0 0
\(259\) −224.190 + 30.9941i −0.865599 + 0.119668i
\(260\) −65.1541 + 53.8174i −0.250593 + 0.206990i
\(261\) 0 0
\(262\) −132.125 + 280.505i −0.504295 + 1.07063i
\(263\) 255.224 0.970434 0.485217 0.874394i \(-0.338741\pi\)
0.485217 + 0.874394i \(0.338741\pi\)
\(264\) 0 0
\(265\) 599.053i 2.26058i
\(266\) −112.390 + 359.729i −0.422520 + 1.35236i
\(267\) 0 0
\(268\) −51.4874 62.3333i −0.192117 0.232587i
\(269\) 141.207i 0.524934i 0.964941 + 0.262467i \(0.0845360\pi\)
−0.964941 + 0.262467i \(0.915464\pi\)
\(270\) 0 0
\(271\) −405.606 −1.49670 −0.748350 0.663304i \(-0.769154\pi\)
−0.748350 + 0.663304i \(0.769154\pi\)
\(272\) 66.1424 343.910i 0.243171 1.26437i
\(273\) 0 0
\(274\) −118.632 55.8786i −0.432963 0.203937i
\(275\) 560.194i 2.03707i
\(276\) 0 0
\(277\) 31.1395i 0.112417i −0.998419 0.0562084i \(-0.982099\pi\)
0.998419 0.0562084i \(-0.0179011\pi\)
\(278\) −271.171 127.728i −0.975435 0.459455i
\(279\) 0 0
\(280\) −472.289 + 192.799i −1.68675 + 0.688567i
\(281\) 15.2327i 0.0542087i −0.999633 0.0271044i \(-0.991371\pi\)
0.999633 0.0271044i \(-0.00862864\pi\)
\(282\) 0 0
\(283\) 222.494i 0.786199i −0.919496 0.393100i \(-0.871403\pi\)
0.919496 0.393100i \(-0.128597\pi\)
\(284\) −55.3060 66.9563i −0.194739 0.235761i
\(285\) 0 0
\(286\) 40.5427 + 19.0967i 0.141758 + 0.0667715i
\(287\) 31.6791 + 229.145i 0.110380 + 0.798414i
\(288\) 0 0
\(289\) 190.097 0.657773
\(290\) −298.926 140.802i −1.03078 0.485523i
\(291\) 0 0
\(292\) 309.021 255.252i 1.05829 0.874149i
\(293\) 64.2745i 0.219367i 0.993967 + 0.109683i \(0.0349837\pi\)
−0.993967 + 0.109683i \(0.965016\pi\)
\(294\) 0 0
\(295\) 77.1809i 0.261630i
\(296\) 64.0410 + 250.601i 0.216355 + 0.846624i
\(297\) 0 0
\(298\) −54.3168 + 115.316i −0.182271 + 0.386967i
\(299\) −35.7557 −0.119584
\(300\) 0 0
\(301\) 58.0057 + 419.573i 0.192710 + 1.39393i
\(302\) 158.803 + 74.8004i 0.525839 + 0.247684i
\(303\) 0 0
\(304\) 422.966 + 81.3468i 1.39133 + 0.267588i
\(305\) 682.692i 2.23834i
\(306\) 0 0
\(307\) 409.069i 1.33247i −0.745740 0.666237i \(-0.767904\pi\)
0.745740 0.666237i \(-0.232096\pi\)
\(308\) 199.224 + 183.016i 0.646831 + 0.594209i
\(309\) 0 0
\(310\) −757.776 356.932i −2.44444 1.15139i
\(311\) 117.035i 0.376318i −0.982139 0.188159i \(-0.939748\pi\)
0.982139 0.188159i \(-0.0602520\pi\)
\(312\) 0 0
\(313\) 6.47974i 0.0207021i −0.999946 0.0103510i \(-0.996705\pi\)
0.999946 0.0103510i \(-0.00329489\pi\)
\(314\) −11.0472 + 23.4534i −0.0351820 + 0.0746924i
\(315\) 0 0
\(316\) 243.589 201.205i 0.770850 0.636723i
\(317\) −403.391 −1.27253 −0.636263 0.771472i \(-0.719521\pi\)
−0.636263 + 0.771472i \(0.719521\pi\)
\(318\) 0 0
\(319\) 175.230i 0.549311i
\(320\) 279.705 + 511.522i 0.874079 + 1.59851i
\(321\) 0 0
\(322\) −206.019 64.3667i −0.639811 0.199897i
\(323\) 589.228i 1.82424i
\(324\) 0 0
\(325\) 134.470 0.413755
\(326\) 110.263 234.092i 0.338231 0.718074i
\(327\) 0 0
\(328\) 256.139 65.4563i 0.780912 0.199562i
\(329\) −204.507 + 28.2730i −0.621602 + 0.0859360i
\(330\) 0 0
\(331\) −87.5977 −0.264646 −0.132323 0.991207i \(-0.542244\pi\)
−0.132323 + 0.991207i \(0.542244\pi\)
\(332\) 172.270 + 208.558i 0.518884 + 0.628188i
\(333\) 0 0
\(334\) 342.848 + 161.490i 1.02649 + 0.483504i
\(335\) 184.119i 0.549608i
\(336\) 0 0
\(337\) 254.014 0.753752 0.376876 0.926264i \(-0.376998\pi\)
0.376876 + 0.926264i \(0.376998\pi\)
\(338\) −139.445 + 296.045i −0.412559 + 0.875873i
\(339\) 0 0
\(340\) −614.910 + 507.917i −1.80856 + 1.49387i
\(341\) 444.208i 1.30266i
\(342\) 0 0
\(343\) 137.394 + 314.280i 0.400567 + 0.916267i
\(344\) 469.001 119.853i 1.36337 0.348410i
\(345\) 0 0
\(346\) 559.374 + 263.479i 1.61669 + 0.761501i
\(347\) 206.734i 0.595777i 0.954601 + 0.297888i \(0.0962823\pi\)
−0.954601 + 0.297888i \(0.903718\pi\)
\(348\) 0 0
\(349\) −618.655 −1.77265 −0.886325 0.463063i \(-0.846750\pi\)
−0.886325 + 0.463063i \(0.846750\pi\)
\(350\) 774.798 + 242.071i 2.21371 + 0.691631i
\(351\) 0 0
\(352\) 182.200 249.784i 0.517613 0.709613i
\(353\) −357.742 −1.01343 −0.506717 0.862113i \(-0.669141\pi\)
−0.506717 + 0.862113i \(0.669141\pi\)
\(354\) 0 0
\(355\) 197.774i 0.557110i
\(356\) −333.520 403.776i −0.936854 1.13420i
\(357\) 0 0
\(358\) −197.786 93.1624i −0.552476 0.260230i
\(359\) −54.1360 −0.150797 −0.0753983 0.997153i \(-0.524023\pi\)
−0.0753983 + 0.997153i \(0.524023\pi\)
\(360\) 0 0
\(361\) −363.676 −1.00741
\(362\) 64.2861 136.481i 0.177586 0.377020i
\(363\) 0 0
\(364\) 43.9317 47.8222i 0.120691 0.131380i
\(365\) −912.779 −2.50077
\(366\) 0 0
\(367\) 45.1294 0.122968 0.0614842 0.998108i \(-0.480417\pi\)
0.0614842 + 0.998108i \(0.480417\pi\)
\(368\) −46.5879 + 242.235i −0.126597 + 0.658248i
\(369\) 0 0
\(370\) 251.004 532.889i 0.678390 1.44024i
\(371\) −63.0414 455.998i −0.169923 1.22910i
\(372\) 0 0
\(373\) 495.886i 1.32945i −0.747087 0.664726i \(-0.768548\pi\)
0.747087 0.664726i \(-0.231452\pi\)
\(374\) 382.634 + 180.230i 1.02308 + 0.481899i
\(375\) 0 0
\(376\) 58.4185 + 228.599i 0.155368 + 0.607976i
\(377\) 42.0627 0.111572
\(378\) 0 0
\(379\) −427.550 −1.12810 −0.564050 0.825741i \(-0.690757\pi\)
−0.564050 + 0.825741i \(0.690757\pi\)
\(380\) −624.674 756.262i −1.64388 1.99016i
\(381\) 0 0
\(382\) 174.162 369.750i 0.455920 0.967932i
\(383\) 77.1824i 0.201521i −0.994911 0.100760i \(-0.967872\pi\)
0.994911 0.100760i \(-0.0321275\pi\)
\(384\) 0 0
\(385\) −84.3708 610.280i −0.219145 1.58514i
\(386\) −97.4689 + 206.929i −0.252510 + 0.536086i
\(387\) 0 0
\(388\) −540.519 + 446.470i −1.39309 + 1.15070i
\(389\) 510.843 1.31322 0.656610 0.754230i \(-0.271990\pi\)
0.656610 + 0.754230i \(0.271990\pi\)
\(390\) 0 0
\(391\) −337.455 −0.863056
\(392\) 339.216 196.459i 0.865348 0.501172i
\(393\) 0 0
\(394\) −193.664 + 411.154i −0.491533 + 1.04354i
\(395\) −719.507 −1.82154
\(396\) 0 0
\(397\) 14.9294 0.0376056 0.0188028 0.999823i \(-0.494015\pi\)
0.0188028 + 0.999823i \(0.494015\pi\)
\(398\) −96.9129 + 205.749i −0.243500 + 0.516957i
\(399\) 0 0
\(400\) 175.208 910.999i 0.438020 2.27750i
\(401\) 12.5890i 0.0313940i 0.999877 + 0.0156970i \(0.00499671\pi\)
−0.999877 + 0.0156970i \(0.995003\pi\)
\(402\) 0 0
\(403\) 106.629 0.264588
\(404\) 219.790 181.547i 0.544036 0.449374i
\(405\) 0 0
\(406\) 242.359 + 75.7205i 0.596944 + 0.186504i
\(407\) −312.380 −0.767518
\(408\) 0 0
\(409\) 122.775i 0.300183i 0.988672 + 0.150091i \(0.0479568\pi\)
−0.988672 + 0.150091i \(0.952043\pi\)
\(410\) −544.666 256.552i −1.32845 0.625736i
\(411\) 0 0
\(412\) 214.936 + 260.212i 0.521689 + 0.631584i
\(413\) −8.12215 58.7500i −0.0196662 0.142252i
\(414\) 0 0
\(415\) 616.036i 1.48442i
\(416\) −59.9587 43.7356i −0.144132 0.105134i
\(417\) 0 0
\(418\) −221.660 + 470.591i −0.530288 + 1.12582i
\(419\) 85.9785 0.205199 0.102600 0.994723i \(-0.467284\pi\)
0.102600 + 0.994723i \(0.467284\pi\)
\(420\) 0 0
\(421\) 32.5132i 0.0772285i 0.999254 + 0.0386143i \(0.0122944\pi\)
−0.999254 + 0.0386143i \(0.987706\pi\)
\(422\) 331.527 703.841i 0.785609 1.66787i
\(423\) 0 0
\(424\) −509.716 + 130.258i −1.20216 + 0.307212i
\(425\) 1269.10 2.98612
\(426\) 0 0
\(427\) −71.8432 519.664i −0.168251 1.21701i
\(428\) −248.966 + 205.647i −0.581697 + 0.480483i
\(429\) 0 0
\(430\) −997.306 469.756i −2.31932 1.09246i
\(431\) −769.964 −1.78646 −0.893230 0.449600i \(-0.851566\pi\)
−0.893230 + 0.449600i \(0.851566\pi\)
\(432\) 0 0
\(433\) 245.082i 0.566008i −0.959119 0.283004i \(-0.908669\pi\)
0.959119 0.283004i \(-0.0913310\pi\)
\(434\) 614.379 + 191.951i 1.41562 + 0.442283i
\(435\) 0 0
\(436\) −309.112 + 255.327i −0.708973 + 0.585613i
\(437\) 415.027i 0.949718i
\(438\) 0 0
\(439\) 69.4826 0.158275 0.0791374 0.996864i \(-0.474783\pi\)
0.0791374 + 0.996864i \(0.474783\pi\)
\(440\) −682.174 + 174.330i −1.55040 + 0.396204i
\(441\) 0 0
\(442\) 43.2629 91.8483i 0.0978798 0.207802i
\(443\) 621.899i 1.40384i 0.712258 + 0.701918i \(0.247673\pi\)
−0.712258 + 0.701918i \(0.752327\pi\)
\(444\) 0 0
\(445\) 1192.67i 2.68015i
\(446\) 194.751 413.462i 0.436661 0.927044i
\(447\) 0 0
\(448\) −266.741 359.935i −0.595405 0.803426i
\(449\) 777.572i 1.73179i −0.500229 0.865893i \(-0.666751\pi\)
0.500229 0.865893i \(-0.333249\pi\)
\(450\) 0 0
\(451\) 319.283i 0.707945i
\(452\) 45.1872 37.3247i 0.0999717 0.0825768i
\(453\) 0 0
\(454\) 155.588 330.317i 0.342704 0.727571i
\(455\) −146.493 + 20.2526i −0.321963 + 0.0445112i
\(456\) 0 0
\(457\) 746.303 1.63305 0.816524 0.577312i \(-0.195898\pi\)
0.816524 + 0.577312i \(0.195898\pi\)
\(458\) 282.931 600.670i 0.617753 1.31151i
\(459\) 0 0
\(460\) 433.116 357.755i 0.941557 0.777727i
\(461\) 289.301i 0.627550i −0.949497 0.313775i \(-0.898406\pi\)
0.949497 0.313775i \(-0.101594\pi\)
\(462\) 0 0
\(463\) 317.745i 0.686275i −0.939285 0.343137i \(-0.888510\pi\)
0.939285 0.343137i \(-0.111490\pi\)
\(464\) 54.8056 284.963i 0.118115 0.614145i
\(465\) 0 0
\(466\) 651.626 + 306.932i 1.39834 + 0.658653i
\(467\) −152.473 −0.326495 −0.163248 0.986585i \(-0.552197\pi\)
−0.163248 + 0.986585i \(0.552197\pi\)
\(468\) 0 0
\(469\) −19.3758 140.151i −0.0413129 0.298829i
\(470\) 228.967 486.104i 0.487164 1.03426i
\(471\) 0 0
\(472\) −65.6710 + 16.7822i −0.139134 + 0.0355556i
\(473\) 584.621i 1.23598i
\(474\) 0 0
\(475\) 1560.84i 3.28597i
\(476\) 414.618 451.335i 0.871046 0.948184i
\(477\) 0 0
\(478\) −284.023 + 602.988i −0.594189 + 1.26148i
\(479\) 413.409i 0.863067i −0.902097 0.431533i \(-0.857973\pi\)
0.902097 0.431533i \(-0.142027\pi\)
\(480\) 0 0
\(481\) 74.9844i 0.155893i
\(482\) −600.139 282.681i −1.24510 0.586474i
\(483\) 0 0
\(484\) −70.4390 85.2771i −0.145535 0.176192i
\(485\) 1596.57 3.29191
\(486\) 0 0
\(487\) 135.886i 0.279027i 0.990220 + 0.139513i \(0.0445538\pi\)
−0.990220 + 0.139513i \(0.955446\pi\)
\(488\) −580.883 + 148.445i −1.19033 + 0.304190i
\(489\) 0 0
\(490\) −880.530 147.022i −1.79700 0.300044i
\(491\) 813.773i 1.65738i −0.559708 0.828690i \(-0.689087\pi\)
0.559708 0.828690i \(-0.310913\pi\)
\(492\) 0 0
\(493\) 396.979 0.805231
\(494\) 112.962 + 53.2079i 0.228668 + 0.107708i
\(495\) 0 0
\(496\) 138.932 722.381i 0.280104 1.45641i
\(497\) −20.8128 150.545i −0.0418768 0.302908i
\(498\) 0 0
\(499\) 91.2098 0.182785 0.0913925 0.995815i \(-0.470868\pi\)
0.0913925 + 0.995815i \(0.470868\pi\)
\(500\) −926.538 + 765.322i −1.85308 + 1.53064i
\(501\) 0 0
\(502\) 298.907 634.588i 0.595432 1.26412i
\(503\) 546.674i 1.08683i 0.839465 + 0.543414i \(0.182869\pi\)
−0.839465 + 0.543414i \(0.817131\pi\)
\(504\) 0 0
\(505\) −649.213 −1.28557
\(506\) −269.511 126.946i −0.532630 0.250882i
\(507\) 0 0
\(508\) −70.9065 + 58.5689i −0.139580 + 0.115293i
\(509\) 366.160i 0.719372i −0.933073 0.359686i \(-0.882884\pi\)
0.933073 0.359686i \(-0.117116\pi\)
\(510\) 0 0
\(511\) 694.806 96.0564i 1.35970 0.187977i
\(512\) −374.420 + 349.219i −0.731289 + 0.682068i
\(513\) 0 0
\(514\) −308.156 + 654.223i −0.599524 + 1.27281i
\(515\) 768.610i 1.49245i
\(516\) 0 0
\(517\) −284.954 −0.551168
\(518\) −134.985 + 432.049i −0.260590 + 0.834071i
\(519\) 0 0
\(520\) 41.8465 + 163.751i 0.0804741 + 0.314905i
\(521\) −252.033 −0.483748 −0.241874 0.970308i \(-0.577762\pi\)
−0.241874 + 0.970308i \(0.577762\pi\)
\(522\) 0 0
\(523\) 335.060i 0.640651i −0.947308 0.320325i \(-0.896208\pi\)
0.947308 0.320325i \(-0.103792\pi\)
\(524\) 394.925 + 478.117i 0.753674 + 0.912437i
\(525\) 0 0
\(526\) 217.512 461.785i 0.413522 0.877919i
\(527\) 1006.34 1.90956
\(528\) 0 0
\(529\) −291.311 −0.550683
\(530\) 1083.89 + 510.537i 2.04507 + 0.963278i
\(531\) 0 0
\(532\) 555.086 + 509.928i 1.04339 + 0.958511i
\(533\) 76.6415 0.143793
\(534\) 0 0
\(535\) 735.392 1.37456
\(536\) −156.661 + 40.0348i −0.292279 + 0.0746918i
\(537\) 0 0
\(538\) 255.491 + 120.343i 0.474890 + 0.223685i
\(539\) 128.446 + 455.665i 0.238304 + 0.845390i
\(540\) 0 0
\(541\) 197.089i 0.364305i −0.983270 0.182152i \(-0.941694\pi\)
0.983270 0.182152i \(-0.0583065\pi\)
\(542\) −345.674 + 733.876i −0.637775 + 1.35401i
\(543\) 0 0
\(544\) −565.878 412.768i −1.04022 0.758764i
\(545\) 913.049 1.67532
\(546\) 0 0
\(547\) 296.822 0.542637 0.271318 0.962490i \(-0.412540\pi\)
0.271318 + 0.962490i \(0.412540\pi\)
\(548\) −202.206 + 167.023i −0.368989 + 0.304786i
\(549\) 0 0
\(550\) 1013.58 + 477.421i 1.84287 + 0.868037i
\(551\) 488.234i 0.886087i
\(552\) 0 0
\(553\) 547.687 75.7174i 0.990393 0.136921i
\(554\) −56.3417 26.5383i −0.101700 0.0479032i
\(555\) 0 0
\(556\) −462.206 + 381.783i −0.831306 + 0.686660i
\(557\) −64.7524 −0.116252 −0.0581261 0.998309i \(-0.518513\pi\)
−0.0581261 + 0.998309i \(0.518513\pi\)
\(558\) 0 0
\(559\) 140.334 0.251044
\(560\) −53.6674 + 1018.84i −0.0958346 + 1.81936i
\(561\) 0 0
\(562\) −27.5609 12.9819i −0.0490408 0.0230995i
\(563\) −143.148 −0.254260 −0.127130 0.991886i \(-0.540576\pi\)
−0.127130 + 0.991886i \(0.540576\pi\)
\(564\) 0 0
\(565\) −133.473 −0.236236
\(566\) −402.566 189.619i −0.711248 0.335016i
\(567\) 0 0
\(568\) −168.280 + 43.0040i −0.296268 + 0.0757113i
\(569\) 566.510i 0.995625i −0.867285 0.497812i \(-0.834137\pi\)
0.867285 0.497812i \(-0.165863\pi\)
\(570\) 0 0
\(571\) 788.303 1.38057 0.690283 0.723539i \(-0.257486\pi\)
0.690283 + 0.723539i \(0.257486\pi\)
\(572\) 69.1044 57.0803i 0.120812 0.0997908i
\(573\) 0 0
\(574\) 441.597 + 137.969i 0.769333 + 0.240363i
\(575\) −893.901 −1.55461
\(576\) 0 0
\(577\) 273.614i 0.474200i 0.971485 + 0.237100i \(0.0761970\pi\)
−0.971485 + 0.237100i \(0.923803\pi\)
\(578\) 162.008 343.948i 0.280291 0.595065i
\(579\) 0 0
\(580\) −509.514 + 420.859i −0.878473 + 0.725620i
\(581\) 64.8286 + 468.925i 0.111581 + 0.807100i
\(582\) 0 0
\(583\) 635.374i 1.08983i
\(584\) −198.475 776.657i −0.339854 1.32989i
\(585\) 0 0
\(586\) 116.294 + 54.7774i 0.198454 + 0.0934767i
\(587\) 2.97914 0.00507520 0.00253760 0.999997i \(-0.499192\pi\)
0.00253760 + 0.999997i \(0.499192\pi\)
\(588\) 0 0
\(589\) 1237.67i 2.10131i
\(590\) 139.646 + 65.7768i 0.236688 + 0.111486i
\(591\) 0 0
\(592\) 507.998 + 97.7008i 0.858106 + 0.165035i
\(593\) −586.465 −0.988979 −0.494490 0.869184i \(-0.664645\pi\)
−0.494490 + 0.869184i \(0.664645\pi\)
\(594\) 0 0
\(595\) −1382.57 + 191.140i −2.32365 + 0.321243i
\(596\) 162.354 + 196.554i 0.272406 + 0.329789i
\(597\) 0 0
\(598\) −30.4725 + 64.6940i −0.0509574 + 0.108184i
\(599\) −44.6708 −0.0745757 −0.0372878 0.999305i \(-0.511872\pi\)
−0.0372878 + 0.999305i \(0.511872\pi\)
\(600\) 0 0
\(601\) 185.280i 0.308286i 0.988049 + 0.154143i \(0.0492617\pi\)
−0.988049 + 0.154143i \(0.950738\pi\)
\(602\) 808.582 + 252.626i 1.34316 + 0.419645i
\(603\) 0 0
\(604\) 270.678 223.580i 0.448142 0.370166i
\(605\) 251.890i 0.416347i
\(606\) 0 0
\(607\) −485.191 −0.799326 −0.399663 0.916662i \(-0.630873\pi\)
−0.399663 + 0.916662i \(0.630873\pi\)
\(608\) 507.652 695.958i 0.834954 1.14467i
\(609\) 0 0
\(610\) 1235.22 + 581.819i 2.02495 + 0.953801i
\(611\) 68.4010i 0.111949i
\(612\) 0 0
\(613\) 504.370i 0.822790i 0.911457 + 0.411395i \(0.134958\pi\)
−0.911457 + 0.411395i \(0.865042\pi\)
\(614\) −740.143 348.626i −1.20544 0.567795i
\(615\) 0 0
\(616\) 500.924 204.488i 0.813189 0.331961i
\(617\) 20.6090i 0.0334019i 0.999861 + 0.0167010i \(0.00531633\pi\)
−0.999861 + 0.0167010i \(0.994684\pi\)
\(618\) 0 0
\(619\) 925.741i 1.49554i −0.663957 0.747771i \(-0.731124\pi\)
0.663957 0.747771i \(-0.268876\pi\)
\(620\) −1291.62 + 1066.88i −2.08325 + 1.72077i
\(621\) 0 0
\(622\) −211.755 99.7419i −0.340442 0.160357i
\(623\) −125.510 907.856i −0.201461 1.45723i
\(624\) 0 0
\(625\) 1287.27 2.05962
\(626\) −11.7240 5.52231i −0.0187285 0.00882158i
\(627\) 0 0
\(628\) 33.0202 + 39.9760i 0.0525799 + 0.0636560i
\(629\) 707.687i 1.12510i
\(630\) 0 0
\(631\) 902.920i 1.43094i −0.698646 0.715468i \(-0.746214\pi\)
0.698646 0.715468i \(-0.253786\pi\)
\(632\) −156.450 612.208i −0.247547 0.968683i
\(633\) 0 0
\(634\) −343.787 + 729.869i −0.542250 + 1.15121i
\(635\) 209.442 0.329830
\(636\) 0 0
\(637\) 109.379 30.8325i 0.171710 0.0484026i
\(638\) 317.050 + 149.339i 0.496944 + 0.234073i
\(639\) 0 0
\(640\) 1163.89 70.1398i 1.81858 0.109593i
\(641\) 235.354i 0.367167i −0.983004 0.183584i \(-0.941230\pi\)
0.983004 0.183584i \(-0.0587698\pi\)
\(642\) 0 0
\(643\) 189.811i 0.295197i −0.989047 0.147598i \(-0.952846\pi\)
0.989047 0.147598i \(-0.0471543\pi\)
\(644\) −292.039 + 317.901i −0.453477 + 0.493635i
\(645\) 0 0
\(646\) 1066.11 + 502.165i 1.65032 + 0.777345i
\(647\) 9.78084i 0.0151172i −0.999971 0.00755861i \(-0.997594\pi\)
0.999971 0.00755861i \(-0.00240600\pi\)
\(648\) 0 0
\(649\) 81.8605i 0.126133i
\(650\) 114.601 243.302i 0.176310 0.374310i
\(651\) 0 0
\(652\) −329.580 399.006i −0.505490 0.611972i
\(653\) 700.168 1.07223 0.536117 0.844144i \(-0.319891\pi\)
0.536117 + 0.844144i \(0.319891\pi\)
\(654\) 0 0
\(655\) 1412.25i 2.15611i
\(656\) 99.8600 519.225i 0.152226 0.791502i
\(657\) 0 0
\(658\) −123.134 + 394.117i −0.187134 + 0.598961i
\(659\) 584.716i 0.887277i −0.896206 0.443639i \(-0.853687\pi\)
0.896206 0.443639i \(-0.146313\pi\)
\(660\) 0 0
\(661\) −687.188 −1.03962 −0.519809 0.854282i \(-0.673997\pi\)
−0.519809 + 0.854282i \(0.673997\pi\)
\(662\) −74.6544 + 158.493i −0.112771 + 0.239416i
\(663\) 0 0
\(664\) 524.167 133.951i 0.789408 0.201733i
\(665\) −235.078 1700.39i −0.353500 2.55697i
\(666\) 0 0
\(667\) −279.615 −0.419213
\(668\) 584.379 482.698i 0.874819 0.722602i
\(669\) 0 0
\(670\) 333.132 + 156.914i 0.497212 + 0.234200i
\(671\) 724.084i 1.07911i
\(672\) 0 0
\(673\) −394.412 −0.586050 −0.293025 0.956105i \(-0.594662\pi\)
−0.293025 + 0.956105i \(0.594662\pi\)
\(674\) 216.482 459.596i 0.321189 0.681894i
\(675\) 0 0
\(676\) 416.804 + 504.604i 0.616574 + 0.746456i
\(677\) 115.342i 0.170372i −0.996365 0.0851858i \(-0.972852\pi\)
0.996365 0.0851858i \(-0.0271484\pi\)
\(678\) 0 0
\(679\) −1215.31 + 168.016i −1.78985 + 0.247446i
\(680\) 394.939 + 1545.44i 0.580792 + 2.27271i
\(681\) 0 0
\(682\) 803.720 + 378.573i 1.17848 + 0.555092i
\(683\) 208.661i 0.305506i 0.988264 + 0.152753i \(0.0488139\pi\)
−0.988264 + 0.152753i \(0.951186\pi\)
\(684\) 0 0
\(685\) 597.272 0.871930
\(686\) 685.730 + 19.2499i 0.999606 + 0.0280611i
\(687\) 0 0
\(688\) 182.848 950.723i 0.265767 1.38186i
\(689\) −152.517 −0.221359
\(690\) 0 0
\(691\) 755.615i 1.09351i −0.837293 0.546755i \(-0.815863\pi\)
0.837293 0.546755i \(-0.184137\pi\)
\(692\) 953.444 787.546i 1.37781 1.13807i
\(693\) 0 0
\(694\) 374.051 + 176.188i 0.538979 + 0.253873i
\(695\) 1365.26 1.96440
\(696\) 0 0
\(697\) 723.327 1.03777
\(698\) −527.244 + 1119.35i −0.755363 + 1.60366i
\(699\) 0 0
\(700\) 1098.30 1195.56i 1.56900 1.70795i
\(701\) 611.239 0.871953 0.435977 0.899958i \(-0.356403\pi\)
0.435977 + 0.899958i \(0.356403\pi\)
\(702\) 0 0
\(703\) −870.365 −1.23807
\(704\) −296.664 542.536i −0.421398 0.770648i
\(705\) 0 0
\(706\) −304.883 + 647.274i −0.431845 + 0.916819i
\(707\) 494.179 68.3200i 0.698981 0.0966336i
\(708\) 0 0
\(709\) 182.040i 0.256756i −0.991725 0.128378i \(-0.959023\pi\)
0.991725 0.128378i \(-0.0409771\pi\)
\(710\) 357.839 + 168.551i 0.503999 + 0.237396i
\(711\) 0 0
\(712\) −1014.81 + 259.334i −1.42529 + 0.364233i
\(713\) −708.822 −0.994141
\(714\) 0 0
\(715\) −204.119 −0.285481
\(716\) −337.124 + 278.465i −0.470843 + 0.388917i
\(717\) 0 0
\(718\) −46.1369 + 97.9500i −0.0642575 + 0.136421i
\(719\) 927.993i 1.29067i 0.763899 + 0.645336i \(0.223283\pi\)
−0.763899 + 0.645336i \(0.776717\pi\)
\(720\) 0 0
\(721\) 80.8848 + 585.065i 0.112184 + 0.811463i
\(722\) −309.940 + 658.012i −0.429280 + 0.911373i
\(723\) 0 0
\(724\) −192.153 232.630i −0.265404 0.321312i
\(725\) 1051.58 1.45045
\(726\) 0 0
\(727\) −715.698 −0.984453 −0.492227 0.870467i \(-0.663817\pi\)
−0.492227 + 0.870467i \(0.663817\pi\)
\(728\) −49.0858 120.243i −0.0674256 0.165169i
\(729\) 0 0
\(730\) −777.908 + 1651.52i −1.06563 + 2.26236i
\(731\) 1324.44 1.81182
\(732\) 0 0
\(733\) −565.483 −0.771464 −0.385732 0.922611i \(-0.626051\pi\)
−0.385732 + 0.922611i \(0.626051\pi\)
\(734\) 38.4611 81.6541i 0.0523994 0.111245i
\(735\) 0 0
\(736\) 398.580 + 290.736i 0.541549 + 0.395021i
\(737\) 195.282i 0.264969i
\(738\) 0 0
\(739\) 104.108 0.140876 0.0704382 0.997516i \(-0.477560\pi\)
0.0704382 + 0.997516i \(0.477560\pi\)
\(740\) −750.258 908.301i −1.01386 1.22743i
\(741\) 0 0
\(742\) −878.778 274.557i −1.18434 0.370023i
\(743\) −1159.59 −1.56068 −0.780341 0.625354i \(-0.784955\pi\)
−0.780341 + 0.625354i \(0.784955\pi\)
\(744\) 0 0
\(745\) 580.578i 0.779299i
\(746\) −897.222 422.614i −1.20271 0.566507i
\(747\) 0 0
\(748\) 652.193 538.712i 0.871915 0.720203i
\(749\) −559.779 + 77.3890i −0.747368 + 0.103323i
\(750\) 0 0
\(751\) 8.05706i 0.0107284i 0.999986 + 0.00536422i \(0.00170749\pi\)
−0.999986 + 0.00536422i \(0.998293\pi\)
\(752\) 463.398 + 89.1230i 0.616221 + 0.118515i
\(753\) 0 0
\(754\) 35.8476 76.1054i 0.0475432 0.100936i
\(755\) −799.522 −1.05897
\(756\) 0 0
\(757\) 203.142i 0.268352i −0.990958 0.134176i \(-0.957161\pi\)
0.990958 0.134176i \(-0.0428387\pi\)
\(758\) −364.376 + 773.580i −0.480707 + 1.02055i
\(759\) 0 0
\(760\) −1900.70 + 485.725i −2.50092 + 0.639111i
\(761\) −1325.16 −1.74134 −0.870670 0.491867i \(-0.836315\pi\)
−0.870670 + 0.491867i \(0.836315\pi\)
\(762\) 0 0
\(763\) −695.012 + 96.0849i −0.910893 + 0.125930i
\(764\) −520.573 630.232i −0.681378 0.824911i
\(765\) 0 0
\(766\) −139.649 65.7780i −0.182309 0.0858721i
\(767\) −19.6500 −0.0256193
\(768\) 0 0
\(769\) 27.4357i 0.0356772i −0.999841 0.0178386i \(-0.994322\pi\)
0.999841 0.0178386i \(-0.00567850\pi\)
\(770\) −1176.10 367.451i −1.52741 0.477209i
\(771\) 0 0
\(772\) 291.337 + 352.707i 0.377379 + 0.456875i
\(773\) 127.533i 0.164985i 0.996592 + 0.0824925i \(0.0262880\pi\)
−0.996592 + 0.0824925i \(0.973712\pi\)
\(774\) 0 0
\(775\) 2665.74 3.43967
\(776\) 347.159 + 1358.48i 0.447370 + 1.75062i
\(777\) 0 0
\(778\) 435.361 924.284i 0.559590 1.18803i
\(779\) 889.600i 1.14198i
\(780\) 0 0
\(781\) 209.765i 0.268585i
\(782\) −287.593 + 610.568i −0.367766 + 0.780778i
\(783\) 0 0
\(784\) −66.3661 781.186i −0.0846507 0.996411i
\(785\) 118.080i 0.150421i
\(786\) 0 0
\(787\) 151.856i 0.192956i −0.995335 0.0964781i \(-0.969242\pi\)
0.995335 0.0964781i \(-0.0307578\pi\)
\(788\) 578.866 + 700.805i 0.734601 + 0.889346i
\(789\) 0 0
\(790\) −613.194 + 1301.83i −0.776194 + 1.64788i
\(791\) 101.599 14.0461i 0.128444 0.0177573i
\(792\) 0 0
\(793\) −173.811 −0.219182
\(794\) 12.7235 27.0123i 0.0160245 0.0340205i
\(795\) 0 0
\(796\) 289.675 + 350.695i 0.363913 + 0.440572i
\(797\) 1136.09i 1.42545i 0.701443 + 0.712726i \(0.252540\pi\)
−0.701443 + 0.712726i \(0.747460\pi\)
\(798\) 0 0
\(799\) 645.554i 0.807953i
\(800\) −1498.98 1093.40i −1.87373 1.36675i
\(801\) 0 0
\(802\) 22.7776 + 10.7288i 0.0284011 + 0.0133776i
\(803\) 968.122 1.20563
\(804\) 0 0
\(805\) 973.823 134.630i 1.20972 0.167243i
\(806\) 90.8735 192.927i 0.112746 0.239363i
\(807\) 0 0
\(808\) −141.165 552.396i −0.174709 0.683659i
\(809\) 438.239i 0.541705i −0.962621 0.270852i \(-0.912695\pi\)
0.962621 0.270852i \(-0.0873055\pi\)
\(810\) 0 0
\(811\) 1406.16i 1.73386i −0.498427 0.866931i \(-0.666089\pi\)
0.498427 0.866931i \(-0.333911\pi\)
\(812\) 343.552 373.976i 0.423094 0.460562i
\(813\) 0 0
\(814\) −266.223 + 565.199i −0.327055 + 0.694347i
\(815\) 1178.58i 1.44611i
\(816\) 0 0
\(817\) 1628.89i 1.99375i
\(818\) 222.140 + 104.634i 0.271565 + 0.127914i
\(819\) 0 0
\(820\) −928.374 + 766.839i −1.13216 + 0.935169i
\(821\) 592.105 0.721200 0.360600 0.932721i \(-0.382572\pi\)
0.360600 + 0.932721i \(0.382572\pi\)
\(822\) 0 0
\(823\) 1078.89i 1.31092i −0.755229 0.655461i \(-0.772474\pi\)
0.755229 0.655461i \(-0.227526\pi\)
\(824\) 653.988 167.127i 0.793675 0.202824i
\(825\) 0 0
\(826\) −113.220 35.3735i −0.137071 0.0428251i
\(827\) 111.468i 0.134785i −0.997727 0.0673927i \(-0.978532\pi\)
0.997727 0.0673927i \(-0.0214680\pi\)
\(828\) 0 0
\(829\) 109.080 0.131580 0.0657900 0.997833i \(-0.479043\pi\)
0.0657900 + 0.997833i \(0.479043\pi\)
\(830\) −1114.61 525.011i −1.34291 0.632543i
\(831\) 0 0
\(832\) −130.232 + 71.2120i −0.156528 + 0.0855913i
\(833\) 1032.30 290.990i 1.23925 0.349328i
\(834\) 0 0
\(835\) −1726.13 −2.06722
\(836\) 662.548 + 802.115i 0.792521 + 0.959467i
\(837\) 0 0
\(838\) 73.2744 155.564i 0.0874397 0.185637i
\(839\) 1297.65i 1.54667i −0.633999 0.773334i \(-0.718588\pi\)
0.633999 0.773334i \(-0.281412\pi\)
\(840\) 0 0
\(841\) −512.064 −0.608875
\(842\) 58.8272 + 27.7091i 0.0698661 + 0.0329087i
\(843\) 0 0
\(844\) −990.942 1199.69i −1.17410 1.42143i
\(845\) 1490.49i 1.76389i
\(846\) 0 0
\(847\) −26.5076 191.738i −0.0312959 0.226373i
\(848\) −198.721 + 1033.26i −0.234341 + 1.21846i
\(849\) 0 0
\(850\) 1081.58 2296.23i 1.27245 2.70145i
\(851\) 498.464i 0.585739i
\(852\) 0 0
\(853\) 1099.79 1.28932 0.644658 0.764471i \(-0.277000\pi\)
0.644658 + 0.764471i \(0.277000\pi\)
\(854\) −1001.47 312.891i −1.17269 0.366383i
\(855\) 0 0
\(856\) 159.904 + 625.723i 0.186803 + 0.730985i
\(857\) 616.955 0.719900 0.359950 0.932972i \(-0.382794\pi\)
0.359950 + 0.932972i \(0.382794\pi\)
\(858\) 0 0
\(859\) 1202.72i 1.40014i 0.714075 + 0.700069i \(0.246848\pi\)
−0.714075 + 0.700069i \(0.753152\pi\)
\(860\) −1699.89 + 1404.11i −1.97662 + 1.63269i
\(861\) 0 0
\(862\) −656.195 + 1393.12i −0.761247 + 1.61615i
\(863\) −481.815 −0.558303 −0.279151 0.960247i \(-0.590053\pi\)
−0.279151 + 0.960247i \(0.590053\pi\)
\(864\) 0 0
\(865\) −2816.26 −3.25580
\(866\) −443.434 208.869i −0.512049 0.241188i
\(867\) 0 0
\(868\) 870.903 948.028i 1.00334 1.09220i
\(869\) 763.131 0.878171
\(870\) 0 0
\(871\) −46.8760 −0.0538186
\(872\) 198.534 + 776.887i 0.227676 + 0.890926i
\(873\) 0 0
\(874\) −750.922 353.703i −0.859178 0.404695i
\(875\) −2083.24 + 288.006i −2.38084 + 0.329150i
\(876\) 0 0
\(877\) 275.163i 0.313754i 0.987618 + 0.156877i \(0.0501427\pi\)
−0.987618 + 0.156877i \(0.949857\pi\)
\(878\) 59.2159 125.717i 0.0674441 0.143186i
\(879\) 0 0
\(880\) −265.957 + 1382.85i −0.302224 + 1.57142i
\(881\) 718.744 0.815827 0.407914 0.913020i \(-0.366256\pi\)
0.407914 + 0.913020i \(0.366256\pi\)
\(882\) 0 0
\(883\) −1561.31 −1.76819 −0.884095 0.467308i \(-0.845224\pi\)
−0.884095 + 0.467308i \(0.845224\pi\)
\(884\) −129.314 156.554i −0.146283 0.177097i
\(885\) 0 0
\(886\) 1125.22 + 530.008i 1.27000 + 0.598203i
\(887\) 983.157i 1.10841i −0.832381 0.554204i \(-0.813023\pi\)
0.832381 0.554204i \(-0.186977\pi\)
\(888\) 0 0
\(889\) −159.427 + 22.0407i −0.179333 + 0.0247927i
\(890\) 2157.93 + 1016.44i 2.42464 + 1.14207i
\(891\) 0 0
\(892\) −582.115 704.738i −0.652595 0.790065i
\(893\) −793.950 −0.889082
\(894\) 0 0
\(895\) 995.789 1.11261
\(896\) −878.570 + 175.872i −0.980547 + 0.196286i
\(897\) 0 0
\(898\) −1406.89 662.679i −1.56669 0.737950i
\(899\) 833.852 0.927533
\(900\) 0 0
\(901\) −1439.42 −1.59758
\(902\) 577.690 + 272.106i 0.640454 + 0.301670i
\(903\) 0 0
\(904\) −29.0224 113.568i −0.0321044 0.125629i
\(905\) 687.137i 0.759267i
\(906\) 0 0
\(907\) 1121.27 1.23624 0.618119 0.786085i \(-0.287895\pi\)
0.618119 + 0.786085i \(0.287895\pi\)
\(908\) −465.055 563.020i −0.512175 0.620066i
\(909\) 0 0
\(910\) −88.2039 + 282.315i −0.0969273 + 0.310236i
\(911\) 1308.23 1.43604 0.718020 0.696022i \(-0.245048\pi\)
0.718020 + 0.696022i \(0.245048\pi\)
\(912\) 0 0
\(913\) 653.386i 0.715647i
\(914\) 636.030 1350.31i 0.695876 1.47736i
\(915\) 0 0
\(916\) −845.687 1023.83i −0.923239 1.11772i
\(917\) 148.618 + 1075.00i 0.162070 + 1.17230i
\(918\) 0 0
\(919\) 992.984i 1.08050i −0.841503 0.540252i \(-0.818329\pi\)
0.841503 0.540252i \(-0.181671\pi\)
\(920\) −278.178 1088.54i −0.302367 1.18320i
\(921\) 0 0
\(922\) −523.441 246.554i −0.567724 0.267412i
\(923\) −50.3525 −0.0545531
\(924\) 0 0
\(925\) 1874.63i 2.02662i
\(926\) −574.907 270.796i −0.620850 0.292436i
\(927\) 0 0
\(928\) −468.886 342.019i −0.505265 0.368555i
\(929\) −47.0391 −0.0506342 −0.0253171 0.999679i \(-0.508060\pi\)
−0.0253171 + 0.999679i \(0.508060\pi\)
\(930\) 0 0
\(931\) 357.881 + 1269.59i 0.384405 + 1.36369i
\(932\) 1110.68 917.427i 1.19172 0.984364i
\(933\) 0 0
\(934\) −129.944 + 275.875i −0.139126 + 0.295369i
\(935\) −1926.43 −2.06036
\(936\) 0 0
\(937\) 1808.57i 1.93017i −0.261932 0.965086i \(-0.584360\pi\)
0.261932 0.965086i \(-0.415640\pi\)
\(938\) −270.092 84.3852i −0.287945 0.0899629i
\(939\) 0 0
\(940\) −684.388 828.555i −0.728072 0.881442i
\(941\) 628.185i 0.667572i −0.942649 0.333786i \(-0.891674\pi\)
0.942649 0.333786i \(-0.108326\pi\)
\(942\) 0 0
\(943\) −509.480 −0.540276
\(944\) −25.6029 + 133.123i −0.0271217 + 0.141020i
\(945\) 0 0
\(946\) 1057.77 + 498.238i 1.11815 + 0.526679i
\(947\) 1130.40i 1.19366i 0.802367 + 0.596831i \(0.203574\pi\)
−0.802367 + 0.596831i \(0.796426\pi\)
\(948\) 0 0
\(949\) 232.390i 0.244879i
\(950\) 2824.07 + 1330.21i 2.97271 + 1.40022i
\(951\) 0 0
\(952\) −463.262 1134.83i −0.486619 1.19205i
\(953\) 781.337i 0.819871i 0.912114 + 0.409936i \(0.134449\pi\)
−0.912114 + 0.409936i \(0.865551\pi\)
\(954\) 0 0
\(955\) 1861.57i 1.94929i
\(956\) 848.950 + 1027.78i 0.888023 + 1.07509i
\(957\) 0 0
\(958\) −747.994 352.324i −0.780787 0.367771i
\(959\) −454.643 + 62.8540i −0.474080 + 0.0655412i
\(960\) 0 0
\(961\) 1152.81 1.19960
\(962\) 135.672 + 63.9048i 0.141031 + 0.0664291i
\(963\) 0 0
\(964\) −1022.93 + 844.939i −1.06113 + 0.876493i
\(965\) 1041.82i 1.07961i
\(966\) 0 0
\(967\) 1674.13i 1.73126i 0.500685 + 0.865629i \(0.333081\pi\)
−0.500685 + 0.865629i \(0.666919\pi\)
\(968\) −214.326 + 54.7709i −0.221411 + 0.0565815i
\(969\) 0 0
\(970\) 1360.67 2888.73i 1.40275 2.97808i
\(971\) −271.907 −0.280028 −0.140014 0.990150i \(-0.544715\pi\)
−0.140014 + 0.990150i \(0.544715\pi\)
\(972\) 0 0
\(973\) −1039.23 + 143.673i −1.06807 + 0.147660i
\(974\) 245.863 + 115.808i 0.252426 + 0.118899i
\(975\) 0 0
\(976\) −226.467 + 1177.52i −0.232036 + 1.20648i
\(977\) 1639.40i 1.67799i 0.544138 + 0.838995i \(0.316857\pi\)
−0.544138 + 0.838995i \(0.683143\pi\)
\(978\) 0 0
\(979\) 1264.98i 1.29211i
\(980\) −1016.44 + 1467.87i −1.03718 + 1.49783i
\(981\) 0 0
\(982\) −1472.39 693.531i −1.49938 0.706244i
\(983\) 824.584i 0.838844i 0.907791 + 0.419422i \(0.137767\pi\)
−0.907791 + 0.419422i \(0.862233\pi\)
\(984\) 0 0
\(985\) 2070.02i 2.10155i
\(986\) 338.322 718.267i 0.343126 0.728466i
\(987\) 0 0
\(988\) 192.542 159.040i 0.194880 0.160971i
\(989\) −932.878 −0.943254
\(990\) 0 0
\(991\) 888.843i 0.896916i −0.893804 0.448458i \(-0.851973\pi\)
0.893804 0.448458i \(-0.148027\pi\)
\(992\) −1188.62 867.017i −1.19821 0.874009i
\(993\) 0 0
\(994\) −290.124 90.6436i −0.291875 0.0911908i
\(995\) 1035.88i 1.04108i
\(996\) 0 0
\(997\) 43.3671 0.0434976 0.0217488 0.999763i \(-0.493077\pi\)
0.0217488 + 0.999763i \(0.493077\pi\)
\(998\) 77.7327 165.029i 0.0778885 0.165360i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.e.c.251.29 yes 48
3.2 odd 2 inner 504.3.e.c.251.19 yes 48
4.3 odd 2 2016.3.e.c.1007.8 48
7.6 odd 2 inner 504.3.e.c.251.30 yes 48
8.3 odd 2 inner 504.3.e.c.251.18 yes 48
8.5 even 2 2016.3.e.c.1007.33 48
12.11 even 2 2016.3.e.c.1007.5 48
21.20 even 2 inner 504.3.e.c.251.20 yes 48
24.5 odd 2 2016.3.e.c.1007.24 48
24.11 even 2 inner 504.3.e.c.251.32 yes 48
28.27 even 2 2016.3.e.c.1007.23 48
56.13 odd 2 2016.3.e.c.1007.6 48
56.27 even 2 inner 504.3.e.c.251.17 48
84.83 odd 2 2016.3.e.c.1007.34 48
168.83 odd 2 inner 504.3.e.c.251.31 yes 48
168.125 even 2 2016.3.e.c.1007.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.c.251.17 48 56.27 even 2 inner
504.3.e.c.251.18 yes 48 8.3 odd 2 inner
504.3.e.c.251.19 yes 48 3.2 odd 2 inner
504.3.e.c.251.20 yes 48 21.20 even 2 inner
504.3.e.c.251.29 yes 48 1.1 even 1 trivial
504.3.e.c.251.30 yes 48 7.6 odd 2 inner
504.3.e.c.251.31 yes 48 168.83 odd 2 inner
504.3.e.c.251.32 yes 48 24.11 even 2 inner
2016.3.e.c.1007.5 48 12.11 even 2
2016.3.e.c.1007.6 48 56.13 odd 2
2016.3.e.c.1007.7 48 168.125 even 2
2016.3.e.c.1007.8 48 4.3 odd 2
2016.3.e.c.1007.23 48 28.27 even 2
2016.3.e.c.1007.24 48 24.5 odd 2
2016.3.e.c.1007.33 48 8.5 even 2
2016.3.e.c.1007.34 48 84.83 odd 2