Properties

Label 2-2016-168.83-c2-0-11
Degree $2$
Conductor $2016$
Sign $-0.929 - 0.368i$
Analytic cond. $54.9320$
Root an. cond. $7.41161$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.10i·5-s + (−0.958 − 6.93i)7-s − 9.66i·11-s + 2.31·13-s + 21.8·17-s + 26.9i·19-s − 15.4·23-s − 57.9·25-s − 18.1·29-s − 45.9·31-s + (63.1 − 8.73i)35-s + 32.3i·37-s + 33.0·41-s + 60.5·43-s + 29.4i·47-s + ⋯
L(s)  = 1  + 1.82i·5-s + (−0.136 − 0.990i)7-s − 0.878i·11-s + 0.178·13-s + 1.28·17-s + 1.41i·19-s − 0.670·23-s − 2.31·25-s − 0.625·29-s − 1.48·31-s + (1.80 − 0.249i)35-s + 0.873i·37-s + 0.806·41-s + 1.40·43-s + 0.627i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.929 - 0.368i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.929 - 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2016\)    =    \(2^{5} \cdot 3^{2} \cdot 7\)
Sign: $-0.929 - 0.368i$
Analytic conductor: \(54.9320\)
Root analytic conductor: \(7.41161\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2016} (1007, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2016,\ (\ :1),\ -0.929 - 0.368i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.9636305789\)
\(L(\frac12)\) \(\approx\) \(0.9636305789\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (0.958 + 6.93i)T \)
good5 \( 1 - 9.10iT - 25T^{2} \)
11 \( 1 + 9.66iT - 121T^{2} \)
13 \( 1 - 2.31T + 169T^{2} \)
17 \( 1 - 21.8T + 289T^{2} \)
19 \( 1 - 26.9iT - 361T^{2} \)
23 \( 1 + 15.4T + 529T^{2} \)
29 \( 1 + 18.1T + 841T^{2} \)
31 \( 1 + 45.9T + 961T^{2} \)
37 \( 1 - 32.3iT - 1.36e3T^{2} \)
41 \( 1 - 33.0T + 1.68e3T^{2} \)
43 \( 1 - 60.5T + 1.84e3T^{2} \)
47 \( 1 - 29.4iT - 2.20e3T^{2} \)
53 \( 1 - 65.7T + 2.80e3T^{2} \)
59 \( 1 - 8.47T + 3.48e3T^{2} \)
61 \( 1 + 74.9T + 3.72e3T^{2} \)
67 \( 1 + 20.2T + 4.48e3T^{2} \)
71 \( 1 + 21.7T + 5.04e3T^{2} \)
73 \( 1 - 100. iT - 5.32e3T^{2} \)
79 \( 1 - 78.9iT - 6.24e3T^{2} \)
83 \( 1 + 67.6T + 6.88e3T^{2} \)
89 \( 1 + 130.T + 7.92e3T^{2} \)
97 \( 1 + 175. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.640523931974869499421003979560, −8.288767954650446098557132982454, −7.52948366184725595860443210487, −7.16215596189296138121986838525, −6.00905049843365030533501217947, −5.78006517260331929819445346725, −3.96009437243115934827242313701, −3.57801548828665470887981982148, −2.71070397442132521240619977468, −1.35087080699882175350582603326, 0.24558293881127937971220686806, 1.46931717075958590154012959056, 2.40444096586384172282235630501, 3.82005685911471872880800478591, 4.66443003940326679032916835365, 5.45750561590563397301845488691, 5.85733802767434085812317376414, 7.28045141745289374065978346666, 7.901132674606086252703878547808, 8.948932050232932812434660870461

Graph of the $Z$-function along the critical line