Properties

Label 504.2.cx.a.425.22
Level $504$
Weight $2$
Character 504.425
Analytic conductor $4.024$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(185,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.185"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 425.22
Character \(\chi\) \(=\) 504.425
Dual form 504.2.cx.a.185.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70521 + 0.303722i) q^{3} +2.22830 q^{5} +(2.51733 - 0.814280i) q^{7} +(2.81551 + 1.03582i) q^{9} +2.12135i q^{11} +(-5.10339 + 2.94644i) q^{13} +(3.79973 + 0.676785i) q^{15} +(-2.34020 - 4.05335i) q^{17} +(-4.54550 - 2.62435i) q^{19} +(4.53990 - 0.623952i) q^{21} -4.36380i q^{23} -0.0346748 q^{25} +(4.48644 + 2.62143i) q^{27} +(-2.25182 - 1.30009i) q^{29} +(6.59237 + 3.80611i) q^{31} +(-0.644302 + 3.61736i) q^{33} +(5.60937 - 1.81446i) q^{35} +(-1.80274 + 3.12244i) q^{37} +(-9.59726 + 3.47430i) q^{39} +(0.0395039 + 0.0684228i) q^{41} +(-1.24922 + 2.16371i) q^{43} +(6.27379 + 2.30813i) q^{45} +(1.89837 + 3.28807i) q^{47} +(5.67390 - 4.09962i) q^{49} +(-2.75945 - 7.62260i) q^{51} +(-4.08014 + 2.35567i) q^{53} +4.72701i q^{55} +(-6.95397 - 5.85564i) q^{57} +(6.59695 - 11.4262i) q^{59} +(-7.06624 + 4.07970i) q^{61} +(7.93100 + 0.314897i) q^{63} +(-11.3719 + 6.56556i) q^{65} +(2.37614 - 4.11559i) q^{67} +(1.32538 - 7.44121i) q^{69} -10.0325i q^{71} +(-12.6610 + 7.30986i) q^{73} +(-0.0591279 - 0.0105315i) q^{75} +(1.72737 + 5.34014i) q^{77} +(7.27414 + 12.5992i) q^{79} +(6.85414 + 5.83273i) q^{81} +(6.41294 - 11.1075i) q^{83} +(-5.21468 - 9.03209i) q^{85} +(-3.44497 - 2.90086i) q^{87} +(2.73464 - 4.73654i) q^{89} +(-10.4477 + 11.5728i) q^{91} +(10.0854 + 8.49248i) q^{93} +(-10.1287 - 5.84783i) q^{95} +(-12.9290 - 7.46454i) q^{97} +(-2.19734 + 5.97268i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{9} + 8 q^{15} - 10 q^{21} + 48 q^{25} + 18 q^{27} + 18 q^{29} + 18 q^{31} + 12 q^{33} - 4 q^{39} - 6 q^{41} - 6 q^{43} - 18 q^{45} + 18 q^{47} - 12 q^{49} + 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70521 + 0.303722i 0.984505 + 0.175354i
\(4\) 0 0
\(5\) 2.22830 0.996526 0.498263 0.867026i \(-0.333971\pi\)
0.498263 + 0.867026i \(0.333971\pi\)
\(6\) 0 0
\(7\) 2.51733 0.814280i 0.951461 0.307769i
\(8\) 0 0
\(9\) 2.81551 + 1.03582i 0.938502 + 0.345274i
\(10\) 0 0
\(11\) 2.12135i 0.639612i 0.947483 + 0.319806i \(0.103618\pi\)
−0.947483 + 0.319806i \(0.896382\pi\)
\(12\) 0 0
\(13\) −5.10339 + 2.94644i −1.41542 + 0.817196i −0.995892 0.0905443i \(-0.971139\pi\)
−0.419533 + 0.907740i \(0.637806\pi\)
\(14\) 0 0
\(15\) 3.79973 + 0.676785i 0.981086 + 0.174745i
\(16\) 0 0
\(17\) −2.34020 4.05335i −0.567583 0.983082i −0.996804 0.0798828i \(-0.974545\pi\)
0.429222 0.903199i \(-0.358788\pi\)
\(18\) 0 0
\(19\) −4.54550 2.62435i −1.04281 0.602066i −0.122181 0.992508i \(-0.538989\pi\)
−0.920628 + 0.390442i \(0.872322\pi\)
\(20\) 0 0
\(21\) 4.53990 0.623952i 0.990687 0.136158i
\(22\) 0 0
\(23\) 4.36380i 0.909915i −0.890513 0.454958i \(-0.849654\pi\)
0.890513 0.454958i \(-0.150346\pi\)
\(24\) 0 0
\(25\) −0.0346748 −0.00693496
\(26\) 0 0
\(27\) 4.48644 + 2.62143i 0.863415 + 0.504495i
\(28\) 0 0
\(29\) −2.25182 1.30009i −0.418152 0.241420i 0.276134 0.961119i \(-0.410947\pi\)
−0.694286 + 0.719699i \(0.744280\pi\)
\(30\) 0 0
\(31\) 6.59237 + 3.80611i 1.18402 + 0.683597i 0.956942 0.290278i \(-0.0937479\pi\)
0.227083 + 0.973876i \(0.427081\pi\)
\(32\) 0 0
\(33\) −0.644302 + 3.61736i −0.112159 + 0.629701i
\(34\) 0 0
\(35\) 5.60937 1.81446i 0.948156 0.306700i
\(36\) 0 0
\(37\) −1.80274 + 3.12244i −0.296369 + 0.513326i −0.975302 0.220874i \(-0.929109\pi\)
0.678934 + 0.734200i \(0.262442\pi\)
\(38\) 0 0
\(39\) −9.59726 + 3.47430i −1.53679 + 0.556333i
\(40\) 0 0
\(41\) 0.0395039 + 0.0684228i 0.00616948 + 0.0106858i 0.869094 0.494648i \(-0.164703\pi\)
−0.862924 + 0.505333i \(0.831370\pi\)
\(42\) 0 0
\(43\) −1.24922 + 2.16371i −0.190504 + 0.329962i −0.945417 0.325862i \(-0.894345\pi\)
0.754914 + 0.655824i \(0.227679\pi\)
\(44\) 0 0
\(45\) 6.27379 + 2.30813i 0.935242 + 0.344075i
\(46\) 0 0
\(47\) 1.89837 + 3.28807i 0.276905 + 0.479614i 0.970614 0.240642i \(-0.0773578\pi\)
−0.693709 + 0.720256i \(0.744024\pi\)
\(48\) 0 0
\(49\) 5.67390 4.09962i 0.810557 0.585660i
\(50\) 0 0
\(51\) −2.75945 7.62260i −0.386401 1.06738i
\(52\) 0 0
\(53\) −4.08014 + 2.35567i −0.560451 + 0.323576i −0.753326 0.657647i \(-0.771552\pi\)
0.192876 + 0.981223i \(0.438219\pi\)
\(54\) 0 0
\(55\) 4.72701i 0.637390i
\(56\) 0 0
\(57\) −6.95397 5.85564i −0.921076 0.775598i
\(58\) 0 0
\(59\) 6.59695 11.4262i 0.858849 1.48757i −0.0141784 0.999899i \(-0.504513\pi\)
0.873028 0.487671i \(-0.162153\pi\)
\(60\) 0 0
\(61\) −7.06624 + 4.07970i −0.904740 + 0.522352i −0.878735 0.477310i \(-0.841612\pi\)
−0.0260047 + 0.999662i \(0.508278\pi\)
\(62\) 0 0
\(63\) 7.93100 + 0.314897i 0.999213 + 0.0396733i
\(64\) 0 0
\(65\) −11.3719 + 6.56556i −1.41051 + 0.814357i
\(66\) 0 0
\(67\) 2.37614 4.11559i 0.290292 0.502800i −0.683587 0.729869i \(-0.739581\pi\)
0.973879 + 0.227069i \(0.0729144\pi\)
\(68\) 0 0
\(69\) 1.32538 7.44121i 0.159557 0.895816i
\(70\) 0 0
\(71\) 10.0325i 1.19064i −0.803490 0.595318i \(-0.797026\pi\)
0.803490 0.595318i \(-0.202974\pi\)
\(72\) 0 0
\(73\) −12.6610 + 7.30986i −1.48186 + 0.855554i −0.999788 0.0205755i \(-0.993450\pi\)
−0.482075 + 0.876130i \(0.660117\pi\)
\(74\) 0 0
\(75\) −0.0591279 0.0105315i −0.00682750 0.00121607i
\(76\) 0 0
\(77\) 1.72737 + 5.34014i 0.196853 + 0.608566i
\(78\) 0 0
\(79\) 7.27414 + 12.5992i 0.818405 + 1.41752i 0.906857 + 0.421439i \(0.138475\pi\)
−0.0884516 + 0.996080i \(0.528192\pi\)
\(80\) 0 0
\(81\) 6.85414 + 5.83273i 0.761571 + 0.648081i
\(82\) 0 0
\(83\) 6.41294 11.1075i 0.703911 1.21921i −0.263172 0.964749i \(-0.584769\pi\)
0.967083 0.254461i \(-0.0818982\pi\)
\(84\) 0 0
\(85\) −5.21468 9.03209i −0.565611 0.979667i
\(86\) 0 0
\(87\) −3.44497 2.90086i −0.369339 0.311004i
\(88\) 0 0
\(89\) 2.73464 4.73654i 0.289871 0.502072i −0.683907 0.729569i \(-0.739721\pi\)
0.973779 + 0.227497i \(0.0730541\pi\)
\(90\) 0 0
\(91\) −10.4477 + 11.5728i −1.09521 + 1.21315i
\(92\) 0 0
\(93\) 10.0854 + 8.49248i 1.04581 + 0.880629i
\(94\) 0 0
\(95\) −10.1287 5.84783i −1.03919 0.599975i
\(96\) 0 0
\(97\) −12.9290 7.46454i −1.31274 0.757909i −0.330188 0.943915i \(-0.607112\pi\)
−0.982549 + 0.186006i \(0.940446\pi\)
\(98\) 0 0
\(99\) −2.19734 + 5.97268i −0.220841 + 0.600277i
\(100\) 0 0
\(101\) −3.26604 −0.324983 −0.162492 0.986710i \(-0.551953\pi\)
−0.162492 + 0.986710i \(0.551953\pi\)
\(102\) 0 0
\(103\) 4.76828i 0.469833i 0.972016 + 0.234916i \(0.0754817\pi\)
−0.972016 + 0.234916i \(0.924518\pi\)
\(104\) 0 0
\(105\) 10.1163 1.39035i 0.987246 0.135685i
\(106\) 0 0
\(107\) 6.39655 + 3.69305i 0.618378 + 0.357021i 0.776237 0.630441i \(-0.217126\pi\)
−0.157859 + 0.987462i \(0.550459\pi\)
\(108\) 0 0
\(109\) −1.17349 2.03254i −0.112400 0.194682i 0.804338 0.594173i \(-0.202520\pi\)
−0.916737 + 0.399490i \(0.869187\pi\)
\(110\) 0 0
\(111\) −4.02241 + 4.77689i −0.381790 + 0.453402i
\(112\) 0 0
\(113\) 11.8961 6.86824i 1.11909 0.646109i 0.177925 0.984044i \(-0.443062\pi\)
0.941170 + 0.337935i \(0.109728\pi\)
\(114\) 0 0
\(115\) 9.72386i 0.906754i
\(116\) 0 0
\(117\) −17.4206 + 3.00952i −1.61054 + 0.278230i
\(118\) 0 0
\(119\) −9.19163 8.29804i −0.842595 0.760680i
\(120\) 0 0
\(121\) 6.49987 0.590897
\(122\) 0 0
\(123\) 0.0465811 + 0.128674i 0.00420008 + 0.0116021i
\(124\) 0 0
\(125\) −11.2188 −1.00344
\(126\) 0 0
\(127\) −5.97913 −0.530562 −0.265281 0.964171i \(-0.585465\pi\)
−0.265281 + 0.964171i \(0.585465\pi\)
\(128\) 0 0
\(129\) −2.78735 + 3.31017i −0.245412 + 0.291444i
\(130\) 0 0
\(131\) −20.9585 −1.83115 −0.915576 0.402146i \(-0.868264\pi\)
−0.915576 + 0.402146i \(0.868264\pi\)
\(132\) 0 0
\(133\) −13.5795 2.90503i −1.17749 0.251898i
\(134\) 0 0
\(135\) 9.99713 + 5.84134i 0.860416 + 0.502742i
\(136\) 0 0
\(137\) 3.46483i 0.296021i −0.988986 0.148010i \(-0.952713\pi\)
0.988986 0.148010i \(-0.0472869\pi\)
\(138\) 0 0
\(139\) −0.379607 + 0.219166i −0.0321979 + 0.0185895i −0.516013 0.856581i \(-0.672584\pi\)
0.483815 + 0.875170i \(0.339251\pi\)
\(140\) 0 0
\(141\) 2.23846 + 6.18344i 0.188512 + 0.520739i
\(142\) 0 0
\(143\) −6.25044 10.8261i −0.522688 0.905322i
\(144\) 0 0
\(145\) −5.01773 2.89699i −0.416700 0.240582i
\(146\) 0 0
\(147\) 10.9204 5.26744i 0.900695 0.434451i
\(148\) 0 0
\(149\) 17.5006i 1.43370i 0.697225 + 0.716852i \(0.254418\pi\)
−0.697225 + 0.716852i \(0.745582\pi\)
\(150\) 0 0
\(151\) −0.374840 −0.0305040 −0.0152520 0.999884i \(-0.504855\pi\)
−0.0152520 + 0.999884i \(0.504855\pi\)
\(152\) 0 0
\(153\) −2.39030 13.8363i −0.193244 1.11860i
\(154\) 0 0
\(155\) 14.6898 + 8.48115i 1.17991 + 0.681223i
\(156\) 0 0
\(157\) 17.6279 + 10.1775i 1.40686 + 0.812249i 0.995084 0.0990372i \(-0.0315763\pi\)
0.411773 + 0.911286i \(0.364910\pi\)
\(158\) 0 0
\(159\) −7.67299 + 2.77769i −0.608507 + 0.220285i
\(160\) 0 0
\(161\) −3.55336 10.9851i −0.280044 0.865749i
\(162\) 0 0
\(163\) −7.25400 + 12.5643i −0.568177 + 0.984112i 0.428569 + 0.903509i \(0.359018\pi\)
−0.996746 + 0.0806027i \(0.974316\pi\)
\(164\) 0 0
\(165\) −1.43570 + 8.06056i −0.111769 + 0.627514i
\(166\) 0 0
\(167\) 7.62510 + 13.2071i 0.590048 + 1.02199i 0.994225 + 0.107313i \(0.0342246\pi\)
−0.404177 + 0.914681i \(0.632442\pi\)
\(168\) 0 0
\(169\) 10.8630 18.8153i 0.835619 1.44733i
\(170\) 0 0
\(171\) −10.0795 12.0972i −0.770800 0.925095i
\(172\) 0 0
\(173\) 0.940679 + 1.62930i 0.0715185 + 0.123874i 0.899567 0.436783i \(-0.143882\pi\)
−0.828048 + 0.560657i \(0.810549\pi\)
\(174\) 0 0
\(175\) −0.0872878 + 0.0282350i −0.00659834 + 0.00213436i
\(176\) 0 0
\(177\) 14.7196 17.4805i 1.10639 1.31392i
\(178\) 0 0
\(179\) −8.64064 + 4.98867i −0.645831 + 0.372871i −0.786857 0.617135i \(-0.788293\pi\)
0.141026 + 0.990006i \(0.454960\pi\)
\(180\) 0 0
\(181\) 11.2828i 0.838641i −0.907838 0.419320i \(-0.862268\pi\)
0.907838 0.419320i \(-0.137732\pi\)
\(182\) 0 0
\(183\) −13.2885 + 4.81058i −0.982318 + 0.355608i
\(184\) 0 0
\(185\) −4.01705 + 6.95773i −0.295339 + 0.511543i
\(186\) 0 0
\(187\) 8.59858 4.96439i 0.628791 0.363032i
\(188\) 0 0
\(189\) 13.4284 + 2.94579i 0.976773 + 0.214275i
\(190\) 0 0
\(191\) −11.1418 + 6.43270i −0.806189 + 0.465454i −0.845631 0.533768i \(-0.820775\pi\)
0.0394414 + 0.999222i \(0.487442\pi\)
\(192\) 0 0
\(193\) 6.01861 10.4245i 0.433229 0.750374i −0.563920 0.825829i \(-0.690708\pi\)
0.997149 + 0.0754547i \(0.0240408\pi\)
\(194\) 0 0
\(195\) −21.3856 + 7.74179i −1.53145 + 0.554401i
\(196\) 0 0
\(197\) 27.7262i 1.97541i 0.156339 + 0.987703i \(0.450031\pi\)
−0.156339 + 0.987703i \(0.549969\pi\)
\(198\) 0 0
\(199\) 0.382862 0.221045i 0.0271404 0.0156695i −0.486368 0.873754i \(-0.661679\pi\)
0.513509 + 0.858084i \(0.328345\pi\)
\(200\) 0 0
\(201\) 5.30182 6.29628i 0.373962 0.444105i
\(202\) 0 0
\(203\) −6.72721 1.43914i −0.472157 0.101008i
\(204\) 0 0
\(205\) 0.0880266 + 0.152467i 0.00614805 + 0.0106487i
\(206\) 0 0
\(207\) 4.52012 12.2863i 0.314170 0.853957i
\(208\) 0 0
\(209\) 5.56716 9.64260i 0.385088 0.666993i
\(210\) 0 0
\(211\) −0.219300 0.379839i −0.0150972 0.0261492i 0.858378 0.513018i \(-0.171472\pi\)
−0.873475 + 0.486868i \(0.838139\pi\)
\(212\) 0 0
\(213\) 3.04709 17.1075i 0.208783 1.17219i
\(214\) 0 0
\(215\) −2.78363 + 4.82139i −0.189842 + 0.328816i
\(216\) 0 0
\(217\) 19.6944 + 4.21319i 1.33694 + 0.286010i
\(218\) 0 0
\(219\) −23.8100 + 8.61943i −1.60893 + 0.582447i
\(220\) 0 0
\(221\) 23.8859 + 13.7905i 1.60674 + 0.927653i
\(222\) 0 0
\(223\) −17.6417 10.1854i −1.18137 0.682066i −0.225041 0.974349i \(-0.572252\pi\)
−0.956332 + 0.292284i \(0.905585\pi\)
\(224\) 0 0
\(225\) −0.0976270 0.0359169i −0.00650847 0.00239446i
\(226\) 0 0
\(227\) 1.50987 0.100214 0.0501068 0.998744i \(-0.484044\pi\)
0.0501068 + 0.998744i \(0.484044\pi\)
\(228\) 0 0
\(229\) 21.2348i 1.40323i 0.712554 + 0.701617i \(0.247538\pi\)
−0.712554 + 0.701617i \(0.752462\pi\)
\(230\) 0 0
\(231\) 1.32362 + 9.63072i 0.0870879 + 0.633655i
\(232\) 0 0
\(233\) 9.85938 + 5.69231i 0.645909 + 0.372916i 0.786887 0.617097i \(-0.211691\pi\)
−0.140978 + 0.990013i \(0.545025\pi\)
\(234\) 0 0
\(235\) 4.23013 + 7.32681i 0.275944 + 0.477948i
\(236\) 0 0
\(237\) 8.57731 + 23.6936i 0.557156 + 1.53907i
\(238\) 0 0
\(239\) 14.1401 8.16380i 0.914648 0.528072i 0.0327241 0.999464i \(-0.489582\pi\)
0.881924 + 0.471392i \(0.156248\pi\)
\(240\) 0 0
\(241\) 23.9706i 1.54408i −0.635571 0.772042i \(-0.719235\pi\)
0.635571 0.772042i \(-0.280765\pi\)
\(242\) 0 0
\(243\) 9.91624 + 12.0278i 0.636127 + 0.771584i
\(244\) 0 0
\(245\) 12.6431 9.13519i 0.807741 0.583626i
\(246\) 0 0
\(247\) 30.9299 1.96802
\(248\) 0 0
\(249\) 14.3090 16.9930i 0.906798 1.07689i
\(250\) 0 0
\(251\) 25.9828 1.64002 0.820009 0.572351i \(-0.193969\pi\)
0.820009 + 0.572351i \(0.193969\pi\)
\(252\) 0 0
\(253\) 9.25715 0.581992
\(254\) 0 0
\(255\) −6.14889 16.9854i −0.385058 1.06367i
\(256\) 0 0
\(257\) −1.95957 −0.122235 −0.0611173 0.998131i \(-0.519466\pi\)
−0.0611173 + 0.998131i \(0.519466\pi\)
\(258\) 0 0
\(259\) −1.99555 + 9.32814i −0.123998 + 0.579623i
\(260\) 0 0
\(261\) −4.99335 5.99289i −0.309080 0.370951i
\(262\) 0 0
\(263\) 3.59945i 0.221952i −0.993823 0.110976i \(-0.964602\pi\)
0.993823 0.110976i \(-0.0353976\pi\)
\(264\) 0 0
\(265\) −9.09179 + 5.24915i −0.558504 + 0.322453i
\(266\) 0 0
\(267\) 6.10174 7.24623i 0.373420 0.443462i
\(268\) 0 0
\(269\) −4.06967 7.04888i −0.248132 0.429778i 0.714875 0.699252i \(-0.246483\pi\)
−0.963008 + 0.269474i \(0.913150\pi\)
\(270\) 0 0
\(271\) 16.3378 + 9.43265i 0.992452 + 0.572992i 0.906006 0.423264i \(-0.139116\pi\)
0.0864458 + 0.996257i \(0.472449\pi\)
\(272\) 0 0
\(273\) −21.3304 + 16.5608i −1.29098 + 1.00231i
\(274\) 0 0
\(275\) 0.0735574i 0.00443568i
\(276\) 0 0
\(277\) 21.6679 1.30190 0.650950 0.759120i \(-0.274371\pi\)
0.650950 + 0.759120i \(0.274371\pi\)
\(278\) 0 0
\(279\) 14.6184 + 17.5446i 0.875181 + 1.05037i
\(280\) 0 0
\(281\) 11.6851 + 6.74642i 0.697077 + 0.402457i 0.806258 0.591564i \(-0.201489\pi\)
−0.109181 + 0.994022i \(0.534823\pi\)
\(282\) 0 0
\(283\) −1.76025 1.01628i −0.104636 0.0604115i 0.446769 0.894649i \(-0.352575\pi\)
−0.551405 + 0.834238i \(0.685908\pi\)
\(284\) 0 0
\(285\) −15.4955 13.0481i −0.917877 0.772904i
\(286\) 0 0
\(287\) 0.155160 + 0.140075i 0.00915879 + 0.00826839i
\(288\) 0 0
\(289\) −2.45310 + 4.24890i −0.144300 + 0.249935i
\(290\) 0 0
\(291\) −19.7795 16.6554i −1.15949 0.976359i
\(292\) 0 0
\(293\) −15.8661 27.4809i −0.926908 1.60545i −0.788463 0.615083i \(-0.789123\pi\)
−0.138446 0.990370i \(-0.544211\pi\)
\(294\) 0 0
\(295\) 14.7000 25.4611i 0.855866 1.48240i
\(296\) 0 0
\(297\) −5.56098 + 9.51731i −0.322681 + 0.552250i
\(298\) 0 0
\(299\) 12.8577 + 22.2702i 0.743579 + 1.28792i
\(300\) 0 0
\(301\) −1.38283 + 6.46397i −0.0797048 + 0.372577i
\(302\) 0 0
\(303\) −5.56930 0.991969i −0.319948 0.0569872i
\(304\) 0 0
\(305\) −15.7457 + 9.09079i −0.901597 + 0.520537i
\(306\) 0 0
\(307\) 0.266045i 0.0151840i 0.999971 + 0.00759200i \(0.00241663\pi\)
−0.999971 + 0.00759200i \(0.997583\pi\)
\(308\) 0 0
\(309\) −1.44823 + 8.13094i −0.0823872 + 0.462553i
\(310\) 0 0
\(311\) 2.18123 3.77799i 0.123686 0.214230i −0.797533 0.603276i \(-0.793862\pi\)
0.921219 + 0.389046i \(0.127195\pi\)
\(312\) 0 0
\(313\) −13.3702 + 7.71929i −0.755728 + 0.436320i −0.827760 0.561082i \(-0.810385\pi\)
0.0720315 + 0.997402i \(0.477052\pi\)
\(314\) 0 0
\(315\) 17.6727 + 0.701686i 0.995742 + 0.0395355i
\(316\) 0 0
\(317\) 18.8143 10.8624i 1.05671 0.610094i 0.132192 0.991224i \(-0.457798\pi\)
0.924521 + 0.381130i \(0.124465\pi\)
\(318\) 0 0
\(319\) 2.75794 4.77690i 0.154415 0.267455i
\(320\) 0 0
\(321\) 9.78582 + 8.24021i 0.546191 + 0.459924i
\(322\) 0 0
\(323\) 24.5660i 1.36689i
\(324\) 0 0
\(325\) 0.176959 0.102167i 0.00981591 0.00566722i
\(326\) 0 0
\(327\) −1.38372 3.82233i −0.0765199 0.211376i
\(328\) 0 0
\(329\) 7.45623 + 6.73135i 0.411075 + 0.371111i
\(330\) 0 0
\(331\) 7.57310 + 13.1170i 0.416255 + 0.720975i 0.995559 0.0941362i \(-0.0300089\pi\)
−0.579304 + 0.815112i \(0.696676\pi\)
\(332\) 0 0
\(333\) −8.30992 + 6.92392i −0.455381 + 0.379429i
\(334\) 0 0
\(335\) 5.29475 9.17078i 0.289283 0.501053i
\(336\) 0 0
\(337\) 3.75166 + 6.49807i 0.204366 + 0.353973i 0.949931 0.312461i \(-0.101153\pi\)
−0.745564 + 0.666434i \(0.767820\pi\)
\(338\) 0 0
\(339\) 22.3715 8.09869i 1.21505 0.439860i
\(340\) 0 0
\(341\) −8.07409 + 13.9847i −0.437237 + 0.757316i
\(342\) 0 0
\(343\) 10.9448 14.9402i 0.590965 0.806697i
\(344\) 0 0
\(345\) 2.95335 16.5813i 0.159003 0.892705i
\(346\) 0 0
\(347\) 4.23981 + 2.44786i 0.227605 + 0.131408i 0.609467 0.792812i \(-0.291384\pi\)
−0.381862 + 0.924219i \(0.624717\pi\)
\(348\) 0 0
\(349\) −2.64213 1.52543i −0.141430 0.0816546i 0.427615 0.903961i \(-0.359354\pi\)
−0.569045 + 0.822306i \(0.692687\pi\)
\(350\) 0 0
\(351\) −30.6199 0.159157i −1.63437 0.00849517i
\(352\) 0 0
\(353\) −17.0378 −0.906830 −0.453415 0.891299i \(-0.649795\pi\)
−0.453415 + 0.891299i \(0.649795\pi\)
\(354\) 0 0
\(355\) 22.3554i 1.18650i
\(356\) 0 0
\(357\) −13.1534 16.9416i −0.696151 0.896646i
\(358\) 0 0
\(359\) −2.27682 1.31452i −0.120166 0.0693778i 0.438712 0.898628i \(-0.355435\pi\)
−0.558878 + 0.829250i \(0.688768\pi\)
\(360\) 0 0
\(361\) 4.27438 + 7.40344i 0.224967 + 0.389655i
\(362\) 0 0
\(363\) 11.0837 + 1.97416i 0.581741 + 0.103616i
\(364\) 0 0
\(365\) −28.2126 + 16.2886i −1.47672 + 0.852583i
\(366\) 0 0
\(367\) 18.7565i 0.979080i −0.871981 0.489540i \(-0.837165\pi\)
0.871981 0.489540i \(-0.162835\pi\)
\(368\) 0 0
\(369\) 0.0403496 + 0.233564i 0.00210052 + 0.0121588i
\(370\) 0 0
\(371\) −8.35289 + 9.25238i −0.433660 + 0.480360i
\(372\) 0 0
\(373\) 4.85959 0.251620 0.125810 0.992054i \(-0.459847\pi\)
0.125810 + 0.992054i \(0.459847\pi\)
\(374\) 0 0
\(375\) −19.1304 3.40739i −0.987890 0.175957i
\(376\) 0 0
\(377\) 15.3225 0.789151
\(378\) 0 0
\(379\) −3.46902 −0.178192 −0.0890959 0.996023i \(-0.528398\pi\)
−0.0890959 + 0.996023i \(0.528398\pi\)
\(380\) 0 0
\(381\) −10.1957 1.81600i −0.522341 0.0930363i
\(382\) 0 0
\(383\) −18.6060 −0.950720 −0.475360 0.879791i \(-0.657682\pi\)
−0.475360 + 0.879791i \(0.657682\pi\)
\(384\) 0 0
\(385\) 3.84911 + 11.8994i 0.196169 + 0.606452i
\(386\) 0 0
\(387\) −5.75839 + 4.79796i −0.292715 + 0.243894i
\(388\) 0 0
\(389\) 15.5437i 0.788098i 0.919090 + 0.394049i \(0.128926\pi\)
−0.919090 + 0.394049i \(0.871074\pi\)
\(390\) 0 0
\(391\) −17.6880 + 10.2122i −0.894521 + 0.516452i
\(392\) 0 0
\(393\) −35.7387 6.36556i −1.80278 0.321100i
\(394\) 0 0
\(395\) 16.2090 + 28.0748i 0.815562 + 1.41260i
\(396\) 0 0
\(397\) −13.0507 7.53483i −0.654996 0.378162i 0.135371 0.990795i \(-0.456777\pi\)
−0.790368 + 0.612633i \(0.790111\pi\)
\(398\) 0 0
\(399\) −22.2736 9.07809i −1.11507 0.454473i
\(400\) 0 0
\(401\) 7.78803i 0.388916i 0.980911 + 0.194458i \(0.0622947\pi\)
−0.980911 + 0.194458i \(0.937705\pi\)
\(402\) 0 0
\(403\) −44.8579 −2.23453
\(404\) 0 0
\(405\) 15.2731 + 12.9971i 0.758926 + 0.645830i
\(406\) 0 0
\(407\) −6.62379 3.82425i −0.328329 0.189561i
\(408\) 0 0
\(409\) −7.79314 4.49937i −0.385346 0.222480i 0.294796 0.955560i \(-0.404748\pi\)
−0.680142 + 0.733081i \(0.738082\pi\)
\(410\) 0 0
\(411\) 1.05235 5.90828i 0.0519084 0.291434i
\(412\) 0 0
\(413\) 7.30252 34.1354i 0.359334 1.67969i
\(414\) 0 0
\(415\) 14.2900 24.7509i 0.701466 1.21498i
\(416\) 0 0
\(417\) −0.713877 + 0.258430i −0.0349587 + 0.0126554i
\(418\) 0 0
\(419\) −6.70022 11.6051i −0.327327 0.566947i 0.654653 0.755929i \(-0.272815\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(420\) 0 0
\(421\) 9.44700 16.3627i 0.460419 0.797469i −0.538563 0.842585i \(-0.681033\pi\)
0.998982 + 0.0451166i \(0.0143659\pi\)
\(422\) 0 0
\(423\) 1.93901 + 11.2239i 0.0942778 + 0.545727i
\(424\) 0 0
\(425\) 0.0811460 + 0.140549i 0.00393616 + 0.00681763i
\(426\) 0 0
\(427\) −14.4660 + 16.0238i −0.700061 + 0.775448i
\(428\) 0 0
\(429\) −7.37021 20.3592i −0.355837 0.982950i
\(430\) 0 0
\(431\) 25.4056 14.6679i 1.22375 0.706530i 0.258031 0.966137i \(-0.416926\pi\)
0.965714 + 0.259607i \(0.0835931\pi\)
\(432\) 0 0
\(433\) 9.41744i 0.452573i −0.974061 0.226287i \(-0.927341\pi\)
0.974061 0.226287i \(-0.0726586\pi\)
\(434\) 0 0
\(435\) −7.67642 6.46398i −0.368056 0.309924i
\(436\) 0 0
\(437\) −11.4521 + 19.8356i −0.547829 + 0.948868i
\(438\) 0 0
\(439\) 27.5379 15.8990i 1.31431 0.758819i 0.331505 0.943453i \(-0.392444\pi\)
0.982807 + 0.184635i \(0.0591102\pi\)
\(440\) 0 0
\(441\) 20.2214 5.66536i 0.962922 0.269779i
\(442\) 0 0
\(443\) −32.0685 + 18.5147i −1.52362 + 0.879662i −0.524009 + 0.851713i \(0.675564\pi\)
−0.999609 + 0.0279490i \(0.991102\pi\)
\(444\) 0 0
\(445\) 6.09360 10.5544i 0.288864 0.500328i
\(446\) 0 0
\(447\) −5.31532 + 29.8423i −0.251406 + 1.41149i
\(448\) 0 0
\(449\) 19.3840i 0.914789i 0.889264 + 0.457394i \(0.151217\pi\)
−0.889264 + 0.457394i \(0.848783\pi\)
\(450\) 0 0
\(451\) −0.145149 + 0.0838017i −0.00683479 + 0.00394607i
\(452\) 0 0
\(453\) −0.639181 0.113847i −0.0300314 0.00534901i
\(454\) 0 0
\(455\) −23.2806 + 25.7876i −1.09141 + 1.20894i
\(456\) 0 0
\(457\) −5.26746 9.12351i −0.246401 0.426780i 0.716123 0.697974i \(-0.245915\pi\)
−0.962525 + 0.271194i \(0.912581\pi\)
\(458\) 0 0
\(459\) 0.126410 24.3198i 0.00590031 1.13515i
\(460\) 0 0
\(461\) 7.09138 12.2826i 0.330278 0.572059i −0.652288 0.757971i \(-0.726191\pi\)
0.982566 + 0.185912i \(0.0595240\pi\)
\(462\) 0 0
\(463\) 5.05071 + 8.74808i 0.234726 + 0.406558i 0.959193 0.282752i \(-0.0912473\pi\)
−0.724467 + 0.689310i \(0.757914\pi\)
\(464\) 0 0
\(465\) 22.4733 + 18.9238i 1.04217 + 0.877570i
\(466\) 0 0
\(467\) 11.1047 19.2340i 0.513866 0.890042i −0.486005 0.873956i \(-0.661546\pi\)
0.999871 0.0160858i \(-0.00512048\pi\)
\(468\) 0 0
\(469\) 2.63028 12.2951i 0.121455 0.567737i
\(470\) 0 0
\(471\) 26.9682 + 22.7087i 1.24263 + 1.04636i
\(472\) 0 0
\(473\) −4.58998 2.65003i −0.211048 0.121848i
\(474\) 0 0
\(475\) 0.157614 + 0.0909986i 0.00723184 + 0.00417530i
\(476\) 0 0
\(477\) −13.9277 + 2.40610i −0.637707 + 0.110168i
\(478\) 0 0
\(479\) −9.42550 −0.430662 −0.215331 0.976541i \(-0.569083\pi\)
−0.215331 + 0.976541i \(0.569083\pi\)
\(480\) 0 0
\(481\) 21.2467i 0.968765i
\(482\) 0 0
\(483\) −2.72280 19.8112i −0.123892 0.901441i
\(484\) 0 0
\(485\) −28.8096 16.6332i −1.30818 0.755276i
\(486\) 0 0
\(487\) 14.6113 + 25.3076i 0.662103 + 1.14680i 0.980062 + 0.198692i \(0.0636692\pi\)
−0.317959 + 0.948104i \(0.602997\pi\)
\(488\) 0 0
\(489\) −16.1857 + 19.2216i −0.731942 + 0.869231i
\(490\) 0 0
\(491\) 6.31308 3.64486i 0.284905 0.164490i −0.350737 0.936474i \(-0.614069\pi\)
0.635642 + 0.771984i \(0.280735\pi\)
\(492\) 0 0
\(493\) 12.1699i 0.548104i
\(494\) 0 0
\(495\) −4.89634 + 13.3089i −0.220074 + 0.598192i
\(496\) 0 0
\(497\) −8.16925 25.2550i −0.366441 1.13284i
\(498\) 0 0
\(499\) 15.6199 0.699243 0.349622 0.936891i \(-0.386310\pi\)
0.349622 + 0.936891i \(0.386310\pi\)
\(500\) 0 0
\(501\) 8.99114 + 24.8368i 0.401695 + 1.10963i
\(502\) 0 0
\(503\) −6.09425 −0.271729 −0.135865 0.990727i \(-0.543381\pi\)
−0.135865 + 0.990727i \(0.543381\pi\)
\(504\) 0 0
\(505\) −7.27772 −0.323854
\(506\) 0 0
\(507\) 24.2384 28.7848i 1.07647 1.27838i
\(508\) 0 0
\(509\) 28.3599 1.25703 0.628515 0.777798i \(-0.283663\pi\)
0.628515 + 0.777798i \(0.283663\pi\)
\(510\) 0 0
\(511\) −25.9198 + 28.7110i −1.14662 + 1.27010i
\(512\) 0 0
\(513\) −13.5135 23.6897i −0.596638 1.04592i
\(514\) 0 0
\(515\) 10.6252i 0.468201i
\(516\) 0 0
\(517\) −6.97515 + 4.02710i −0.306767 + 0.177112i
\(518\) 0 0
\(519\) 1.10920 + 3.06402i 0.0486886 + 0.134495i
\(520\) 0 0
\(521\) 19.2896 + 33.4105i 0.845091 + 1.46374i 0.885542 + 0.464559i \(0.153787\pi\)
−0.0404517 + 0.999181i \(0.512880\pi\)
\(522\) 0 0
\(523\) −24.1399 13.9372i −1.05556 0.609429i −0.131361 0.991335i \(-0.541935\pi\)
−0.924201 + 0.381905i \(0.875268\pi\)
\(524\) 0 0
\(525\) −0.157420 + 0.0216354i −0.00687037 + 0.000944246i
\(526\) 0 0
\(527\) 35.6283i 1.55199i
\(528\) 0 0
\(529\) 3.95726 0.172055
\(530\) 0 0
\(531\) 30.4093 25.3374i 1.31965 1.09955i
\(532\) 0 0
\(533\) −0.403208 0.232792i −0.0174649 0.0100833i
\(534\) 0 0
\(535\) 14.2534 + 8.22923i 0.616230 + 0.355781i
\(536\) 0 0
\(537\) −16.2493 + 5.88240i −0.701209 + 0.253844i
\(538\) 0 0
\(539\) 8.69674 + 12.0363i 0.374595 + 0.518441i
\(540\) 0 0
\(541\) −10.9182 + 18.9109i −0.469410 + 0.813041i −0.999388 0.0349697i \(-0.988867\pi\)
0.529979 + 0.848011i \(0.322200\pi\)
\(542\) 0 0
\(543\) 3.42683 19.2395i 0.147059 0.825646i
\(544\) 0 0
\(545\) −2.61489 4.52912i −0.112009 0.194006i
\(546\) 0 0
\(547\) 12.5173 21.6806i 0.535201 0.926995i −0.463953 0.885860i \(-0.653569\pi\)
0.999154 0.0411350i \(-0.0130974\pi\)
\(548\) 0 0
\(549\) −24.1209 + 4.16703i −1.02945 + 0.177845i
\(550\) 0 0
\(551\) 6.82376 + 11.8191i 0.290702 + 0.503511i
\(552\) 0 0
\(553\) 28.5707 + 25.7931i 1.21495 + 1.09683i
\(554\) 0 0
\(555\) −8.96314 + 10.6444i −0.380464 + 0.451828i
\(556\) 0 0
\(557\) −11.1937 + 6.46267i −0.474291 + 0.273832i −0.718034 0.696008i \(-0.754958\pi\)
0.243743 + 0.969840i \(0.421625\pi\)
\(558\) 0 0
\(559\) 14.7230i 0.622715i
\(560\) 0 0
\(561\) 16.1702 5.85377i 0.682707 0.247146i
\(562\) 0 0
\(563\) −7.81056 + 13.5283i −0.329176 + 0.570150i −0.982349 0.187060i \(-0.940104\pi\)
0.653173 + 0.757209i \(0.273438\pi\)
\(564\) 0 0
\(565\) 26.5082 15.3045i 1.11521 0.643865i
\(566\) 0 0
\(567\) 22.0036 + 9.10171i 0.924065 + 0.382236i
\(568\) 0 0
\(569\) −36.8986 + 21.3034i −1.54687 + 0.893087i −0.548494 + 0.836155i \(0.684799\pi\)
−0.998378 + 0.0569323i \(0.981868\pi\)
\(570\) 0 0
\(571\) 9.89848 17.1447i 0.414239 0.717482i −0.581110 0.813825i \(-0.697381\pi\)
0.995348 + 0.0963431i \(0.0307146\pi\)
\(572\) 0 0
\(573\) −20.9528 + 7.58512i −0.875317 + 0.316873i
\(574\) 0 0
\(575\) 0.151314i 0.00631022i
\(576\) 0 0
\(577\) −40.6443 + 23.4660i −1.69204 + 0.976902i −0.739178 + 0.673511i \(0.764786\pi\)
−0.952866 + 0.303391i \(0.901881\pi\)
\(578\) 0 0
\(579\) 13.4292 15.9481i 0.558097 0.662779i
\(580\) 0 0
\(581\) 7.09883 33.1833i 0.294509 1.37667i
\(582\) 0 0
\(583\) −4.99721 8.65542i −0.206963 0.358471i
\(584\) 0 0
\(585\) −38.8184 + 6.70611i −1.60494 + 0.277264i
\(586\) 0 0
\(587\) 2.18063 3.77696i 0.0900041 0.155892i −0.817509 0.575917i \(-0.804645\pi\)
0.907513 + 0.420025i \(0.137979\pi\)
\(588\) 0 0
\(589\) −19.9771 34.6013i −0.823141 1.42572i
\(590\) 0 0
\(591\) −8.42105 + 47.2790i −0.346396 + 1.94480i
\(592\) 0 0
\(593\) −2.31077 + 4.00236i −0.0948918 + 0.164357i −0.909563 0.415565i \(-0.863584\pi\)
0.814672 + 0.579922i \(0.196917\pi\)
\(594\) 0 0
\(595\) −20.4817 18.4905i −0.839668 0.758038i
\(596\) 0 0
\(597\) 0.719998 0.260646i 0.0294675 0.0106675i
\(598\) 0 0
\(599\) 22.0986 + 12.7586i 0.902924 + 0.521304i 0.878148 0.478389i \(-0.158779\pi\)
0.0247764 + 0.999693i \(0.492113\pi\)
\(600\) 0 0
\(601\) 22.6824 + 13.0957i 0.925235 + 0.534185i 0.885301 0.465018i \(-0.153952\pi\)
0.0399336 + 0.999202i \(0.487285\pi\)
\(602\) 0 0
\(603\) 10.9531 9.12622i 0.446043 0.371648i
\(604\) 0 0
\(605\) 14.4837 0.588845
\(606\) 0 0
\(607\) 5.87462i 0.238443i −0.992868 0.119222i \(-0.961960\pi\)
0.992868 0.119222i \(-0.0380399\pi\)
\(608\) 0 0
\(609\) −11.0342 4.49724i −0.447129 0.182237i
\(610\) 0 0
\(611\) −19.3762 11.1869i −0.783878 0.452572i
\(612\) 0 0
\(613\) 12.4511 + 21.5660i 0.502896 + 0.871041i 0.999994 + 0.00334675i \(0.00106531\pi\)
−0.497099 + 0.867694i \(0.665601\pi\)
\(614\) 0 0
\(615\) 0.103797 + 0.286724i 0.00418549 + 0.0115618i
\(616\) 0 0
\(617\) 26.1105 15.0749i 1.05117 0.606894i 0.128194 0.991749i \(-0.459082\pi\)
0.922977 + 0.384855i \(0.125749\pi\)
\(618\) 0 0
\(619\) 34.1737i 1.37356i 0.726867 + 0.686779i \(0.240976\pi\)
−0.726867 + 0.686779i \(0.759024\pi\)
\(620\) 0 0
\(621\) 11.4394 19.5779i 0.459047 0.785634i
\(622\) 0 0
\(623\) 3.02712 14.1502i 0.121279 0.566915i
\(624\) 0 0
\(625\) −24.8254 −0.993017
\(626\) 0 0
\(627\) 12.4219 14.7518i 0.496082 0.589131i
\(628\) 0 0
\(629\) 16.8751 0.672855
\(630\) 0 0
\(631\) 8.55990 0.340764 0.170382 0.985378i \(-0.445500\pi\)
0.170382 + 0.985378i \(0.445500\pi\)
\(632\) 0 0
\(633\) −0.258588 0.714313i −0.0102779 0.0283914i
\(634\) 0 0
\(635\) −13.3233 −0.528719
\(636\) 0 0
\(637\) −16.8768 + 37.6398i −0.668683 + 1.49134i
\(638\) 0 0
\(639\) 10.3919 28.2465i 0.411096 1.11741i
\(640\) 0 0
\(641\) 40.4996i 1.59964i −0.600242 0.799818i \(-0.704929\pi\)
0.600242 0.799818i \(-0.295071\pi\)
\(642\) 0 0
\(643\) −31.8435 + 18.3849i −1.25579 + 0.725028i −0.972252 0.233935i \(-0.924840\pi\)
−0.283533 + 0.958963i \(0.591507\pi\)
\(644\) 0 0
\(645\) −6.21105 + 7.37604i −0.244560 + 0.290431i
\(646\) 0 0
\(647\) −23.5492 40.7884i −0.925815 1.60356i −0.790246 0.612790i \(-0.790047\pi\)
−0.135569 0.990768i \(-0.543286\pi\)
\(648\) 0 0
\(649\) 24.2391 + 13.9944i 0.951467 + 0.549330i
\(650\) 0 0
\(651\) 32.3035 + 13.1660i 1.26608 + 0.516017i
\(652\) 0 0
\(653\) 2.50279i 0.0979416i 0.998800 + 0.0489708i \(0.0155941\pi\)
−0.998800 + 0.0489708i \(0.984406\pi\)
\(654\) 0 0
\(655\) −46.7018 −1.82479
\(656\) 0 0
\(657\) −43.2190 + 7.46635i −1.68613 + 0.291290i
\(658\) 0 0
\(659\) 36.2490 + 20.9284i 1.41206 + 0.815254i 0.995582 0.0938917i \(-0.0299307\pi\)
0.416479 + 0.909146i \(0.363264\pi\)
\(660\) 0 0
\(661\) 7.35519 + 4.24652i 0.286084 + 0.165170i 0.636174 0.771545i \(-0.280516\pi\)
−0.350091 + 0.936716i \(0.613849\pi\)
\(662\) 0 0
\(663\) 36.5421 + 30.7705i 1.41918 + 1.19503i
\(664\) 0 0
\(665\) −30.2592 6.47329i −1.17340 0.251023i
\(666\) 0 0
\(667\) −5.67333 + 9.82649i −0.219672 + 0.380483i
\(668\) 0 0
\(669\) −26.9892 22.7265i −1.04346 0.878656i
\(670\) 0 0
\(671\) −8.65447 14.9900i −0.334102 0.578682i
\(672\) 0 0
\(673\) −16.9974 + 29.4403i −0.655201 + 1.13484i 0.326642 + 0.945148i \(0.394083\pi\)
−0.981843 + 0.189694i \(0.939251\pi\)
\(674\) 0 0
\(675\) −0.155566 0.0908975i −0.00598774 0.00349865i
\(676\) 0 0
\(677\) −19.5176 33.8054i −0.750121 1.29925i −0.947764 0.318973i \(-0.896662\pi\)
0.197643 0.980274i \(-0.436671\pi\)
\(678\) 0 0
\(679\) −38.6247 8.26291i −1.48228 0.317101i
\(680\) 0 0
\(681\) 2.57465 + 0.458581i 0.0986609 + 0.0175729i
\(682\) 0 0
\(683\) 1.91400 1.10505i 0.0732373 0.0422836i −0.462934 0.886393i \(-0.653203\pi\)
0.536171 + 0.844109i \(0.319870\pi\)
\(684\) 0 0
\(685\) 7.72069i 0.294992i
\(686\) 0 0
\(687\) −6.44948 + 36.2099i −0.246063 + 1.38149i
\(688\) 0 0
\(689\) 13.8817 24.0438i 0.528851 0.915997i
\(690\) 0 0
\(691\) 2.96039 1.70918i 0.112619 0.0650203i −0.442633 0.896703i \(-0.645955\pi\)
0.555251 + 0.831683i \(0.312622\pi\)
\(692\) 0 0
\(693\) −0.668008 + 16.8244i −0.0253755 + 0.639108i
\(694\) 0 0
\(695\) −0.845879 + 0.488369i −0.0320860 + 0.0185249i
\(696\) 0 0
\(697\) 0.184894 0.320247i 0.00700338 0.0121302i
\(698\) 0 0
\(699\) 15.0835 + 12.7011i 0.570509 + 0.480401i
\(700\) 0 0
\(701\) 37.5732i 1.41912i −0.704645 0.709560i \(-0.748894\pi\)
0.704645 0.709560i \(-0.251106\pi\)
\(702\) 0 0
\(703\) 16.3887 9.46203i 0.618112 0.356867i
\(704\) 0 0
\(705\) 4.98797 + 13.7786i 0.187858 + 0.518930i
\(706\) 0 0
\(707\) −8.22170 + 2.65947i −0.309209 + 0.100020i
\(708\) 0 0
\(709\) 13.4390 + 23.2770i 0.504712 + 0.874187i 0.999985 + 0.00544993i \(0.00173477\pi\)
−0.495273 + 0.868738i \(0.664932\pi\)
\(710\) 0 0
\(711\) 7.42987 + 43.0078i 0.278642 + 1.61292i
\(712\) 0 0
\(713\) 16.6091 28.7678i 0.622015 1.07736i
\(714\) 0 0
\(715\) −13.9279 24.1238i −0.520872 0.902177i
\(716\) 0 0
\(717\) 26.5914 9.62635i 0.993075 0.359503i
\(718\) 0 0
\(719\) −1.41278 + 2.44701i −0.0526879 + 0.0912580i −0.891166 0.453676i \(-0.850112\pi\)
0.838479 + 0.544935i \(0.183446\pi\)
\(720\) 0 0
\(721\) 3.88272 + 12.0033i 0.144600 + 0.447028i
\(722\) 0 0
\(723\) 7.28042 40.8750i 0.270762 1.52016i
\(724\) 0 0
\(725\) 0.0780813 + 0.0450803i 0.00289987 + 0.00167424i
\(726\) 0 0
\(727\) 0.622076 + 0.359156i 0.0230715 + 0.0133203i 0.511491 0.859288i \(-0.329093\pi\)
−0.488420 + 0.872609i \(0.662427\pi\)
\(728\) 0 0
\(729\) 13.2562 + 23.5218i 0.490970 + 0.871176i
\(730\) 0 0
\(731\) 11.6937 0.432506
\(732\) 0 0
\(733\) 38.6236i 1.42659i 0.700862 + 0.713297i \(0.252799\pi\)
−0.700862 + 0.713297i \(0.747201\pi\)
\(734\) 0 0
\(735\) 24.3338 11.7374i 0.897567 0.432942i
\(736\) 0 0
\(737\) 8.73062 + 5.04063i 0.321596 + 0.185674i
\(738\) 0 0
\(739\) 11.9491 + 20.6965i 0.439556 + 0.761334i 0.997655 0.0684405i \(-0.0218023\pi\)
−0.558099 + 0.829775i \(0.688469\pi\)
\(740\) 0 0
\(741\) 52.7421 + 9.39411i 1.93753 + 0.345101i
\(742\) 0 0
\(743\) 20.5325 11.8544i 0.753264 0.434897i −0.0736078 0.997287i \(-0.523451\pi\)
0.826872 + 0.562390i \(0.190118\pi\)
\(744\) 0 0
\(745\) 38.9966i 1.42872i
\(746\) 0 0
\(747\) 29.5611 24.6307i 1.08158 0.901189i
\(748\) 0 0
\(749\) 19.1094 + 4.08804i 0.698242 + 0.149374i
\(750\) 0 0
\(751\) 13.7869 0.503090 0.251545 0.967846i \(-0.419061\pi\)
0.251545 + 0.967846i \(0.419061\pi\)
\(752\) 0 0
\(753\) 44.3062 + 7.89155i 1.61461 + 0.287584i
\(754\) 0 0
\(755\) −0.835255 −0.0303981
\(756\) 0 0
\(757\) −19.6447 −0.714000 −0.357000 0.934104i \(-0.616200\pi\)
−0.357000 + 0.934104i \(0.616200\pi\)
\(758\) 0 0
\(759\) 15.7854 + 2.81160i 0.572974 + 0.102055i
\(760\) 0 0
\(761\) 52.9464 1.91931 0.959653 0.281187i \(-0.0907280\pi\)
0.959653 + 0.281187i \(0.0907280\pi\)
\(762\) 0 0
\(763\) −4.60912 4.16103i −0.166861 0.150639i
\(764\) 0 0
\(765\) −5.32631 30.8314i −0.192573 1.11471i
\(766\) 0 0
\(767\) 77.7501i 2.80739i
\(768\) 0 0
\(769\) 17.6774 10.2060i 0.637462 0.368039i −0.146174 0.989259i \(-0.546696\pi\)
0.783636 + 0.621220i \(0.213363\pi\)
\(770\) 0 0
\(771\) −3.34149 0.595165i −0.120341 0.0214344i
\(772\) 0 0
\(773\) 1.07789 + 1.86697i 0.0387692 + 0.0671501i 0.884759 0.466049i \(-0.154323\pi\)
−0.845990 + 0.533199i \(0.820990\pi\)
\(774\) 0 0
\(775\) −0.228589 0.131976i −0.00821116 0.00474072i
\(776\) 0 0
\(777\) −6.23601 + 15.3004i −0.223716 + 0.548898i
\(778\) 0 0
\(779\) 0.414688i 0.0148577i
\(780\) 0 0
\(781\) 21.2824 0.761544
\(782\) 0 0
\(783\) −6.69455 11.7358i −0.239244 0.419402i
\(784\) 0 0
\(785\) 39.2802 + 22.6784i 1.40197 + 0.809428i
\(786\) 0 0
\(787\) 18.0946 + 10.4469i 0.645004 + 0.372393i 0.786539 0.617540i \(-0.211871\pi\)
−0.141536 + 0.989933i \(0.545204\pi\)
\(788\) 0 0
\(789\) 1.09323 6.13783i 0.0389202 0.218513i
\(790\) 0 0
\(791\) 24.3538 26.9764i 0.865922 0.959170i
\(792\) 0 0
\(793\) 24.0412 41.6405i 0.853727 1.47870i
\(794\) 0 0
\(795\) −17.0977 + 6.18954i −0.606394 + 0.219520i
\(796\) 0 0
\(797\) 13.9964 + 24.2424i 0.495777 + 0.858710i 0.999988 0.00486976i \(-0.00155010\pi\)
−0.504211 + 0.863580i \(0.668217\pi\)
\(798\) 0 0
\(799\) 8.88513 15.3895i 0.314333 0.544441i
\(800\) 0 0
\(801\) 12.6056 10.5031i 0.445397 0.371110i
\(802\) 0 0
\(803\) −15.5068 26.8585i −0.547222 0.947817i
\(804\) 0 0
\(805\) −7.91794 24.4782i −0.279071 0.862742i
\(806\) 0 0
\(807\) −4.79876 13.2559i −0.168924 0.466630i
\(808\) 0 0
\(809\) −37.1345 + 21.4396i −1.30558 + 0.753777i −0.981355 0.192203i \(-0.938437\pi\)
−0.324225 + 0.945980i \(0.605103\pi\)
\(810\) 0 0
\(811\) 23.7421i 0.833699i −0.908976 0.416849i \(-0.863134\pi\)
0.908976 0.416849i \(-0.136866\pi\)
\(812\) 0 0
\(813\) 24.9946 + 21.0468i 0.876598 + 0.738145i
\(814\) 0 0
\(815\) −16.1641 + 27.9970i −0.566204 + 0.980693i
\(816\) 0 0
\(817\) 11.3566 6.55675i 0.397318 0.229392i
\(818\) 0 0
\(819\) −41.4028 + 21.7612i −1.44673 + 0.760398i
\(820\) 0 0
\(821\) 1.37437 0.793495i 0.0479660 0.0276932i −0.475825 0.879540i \(-0.657851\pi\)
0.523791 + 0.851847i \(0.324517\pi\)
\(822\) 0 0
\(823\) −1.54101 + 2.66911i −0.0537164 + 0.0930395i −0.891633 0.452758i \(-0.850440\pi\)
0.837917 + 0.545798i \(0.183773\pi\)
\(824\) 0 0
\(825\) 0.0223410 0.125431i 0.000777815 0.00436695i
\(826\) 0 0
\(827\) 20.7448i 0.721369i −0.932688 0.360685i \(-0.882543\pi\)
0.932688 0.360685i \(-0.117457\pi\)
\(828\) 0 0
\(829\) −0.917576 + 0.529763i −0.0318687 + 0.0183994i −0.515850 0.856679i \(-0.672524\pi\)
0.483981 + 0.875079i \(0.339190\pi\)
\(830\) 0 0
\(831\) 36.9485 + 6.58104i 1.28173 + 0.228294i
\(832\) 0 0
\(833\) −29.8953 13.4043i −1.03581 0.464433i
\(834\) 0 0
\(835\) 16.9910 + 29.4293i 0.587999 + 1.01844i
\(836\) 0 0
\(837\) 19.5988 + 34.3573i 0.677434 + 1.18756i
\(838\) 0 0
\(839\) −19.2137 + 33.2792i −0.663332 + 1.14892i 0.316403 + 0.948625i \(0.397525\pi\)
−0.979735 + 0.200299i \(0.935809\pi\)
\(840\) 0 0
\(841\) −11.1195 19.2596i −0.383432 0.664124i
\(842\) 0 0
\(843\) 17.8766 + 15.0531i 0.615703 + 0.518457i
\(844\) 0 0
\(845\) 24.2061 41.9262i 0.832716 1.44231i
\(846\) 0 0
\(847\) 16.3623 5.29271i 0.562216 0.181860i
\(848\) 0 0
\(849\) −2.69293 2.26760i −0.0924211 0.0778237i
\(850\) 0 0
\(851\) 13.6257 + 7.86680i 0.467083 + 0.269670i
\(852\) 0 0
\(853\) −12.0659 6.96626i −0.413129 0.238520i 0.279004 0.960290i \(-0.409996\pi\)
−0.692133 + 0.721770i \(0.743329\pi\)
\(854\) 0 0
\(855\) −22.4602 26.9562i −0.768123 0.921882i
\(856\) 0 0
\(857\) −26.9264 −0.919788 −0.459894 0.887974i \(-0.652113\pi\)
−0.459894 + 0.887974i \(0.652113\pi\)
\(858\) 0 0
\(859\) 20.2001i 0.689217i −0.938746 0.344609i \(-0.888012\pi\)
0.938746 0.344609i \(-0.111988\pi\)
\(860\) 0 0
\(861\) 0.222036 + 0.285984i 0.00756698 + 0.00974631i
\(862\) 0 0
\(863\) −38.1427 22.0217i −1.29839 0.749627i −0.318266 0.948001i \(-0.603101\pi\)
−0.980126 + 0.198374i \(0.936434\pi\)
\(864\) 0 0
\(865\) 2.09612 + 3.63058i 0.0712701 + 0.123443i
\(866\) 0 0
\(867\) −5.47355 + 6.50022i −0.185891 + 0.220759i
\(868\) 0 0
\(869\) −26.7273 + 15.4310i −0.906662 + 0.523461i
\(870\) 0 0
\(871\) 28.0046i 0.948900i
\(872\) 0 0
\(873\) −28.6696 34.4086i −0.970319 1.16455i
\(874\) 0 0
\(875\) −28.2413 + 9.13522i −0.954732 + 0.308827i
\(876\) 0 0
\(877\) −54.0872 −1.82640 −0.913198 0.407517i \(-0.866395\pi\)
−0.913198 + 0.407517i \(0.866395\pi\)
\(878\) 0 0
\(879\) −18.7085 51.6797i −0.631024 1.74311i
\(880\) 0 0
\(881\) 6.82593 0.229972 0.114986 0.993367i \(-0.463318\pi\)
0.114986 + 0.993367i \(0.463318\pi\)
\(882\) 0 0
\(883\) −9.87685 −0.332382 −0.166191 0.986094i \(-0.553147\pi\)
−0.166191 + 0.986094i \(0.553147\pi\)
\(884\) 0 0
\(885\) 32.7997 38.9519i 1.10255 1.30935i
\(886\) 0 0
\(887\) 35.0825 1.17795 0.588977 0.808150i \(-0.299531\pi\)
0.588977 + 0.808150i \(0.299531\pi\)
\(888\) 0 0
\(889\) −15.0514 + 4.86869i −0.504809 + 0.163291i
\(890\) 0 0
\(891\) −12.3733 + 14.5400i −0.414520 + 0.487110i
\(892\) 0 0
\(893\) 19.9279i 0.666861i
\(894\) 0 0
\(895\) −19.2539 + 11.1163i −0.643588 + 0.371576i
\(896\) 0 0
\(897\) 15.1611 + 41.8805i 0.506216 + 1.39835i
\(898\) 0 0
\(899\) −9.89655 17.1413i −0.330069 0.571695i
\(900\) 0 0
\(901\) 19.0967 + 11.0255i 0.636204 + 0.367313i
\(902\) 0 0
\(903\) −4.32127 + 10.6025i −0.143803 + 0.352828i
\(904\) 0 0
\(905\) 25.1414i 0.835728i
\(906\) 0 0
\(907\) 34.4463 1.14377 0.571885 0.820334i \(-0.306213\pi\)
0.571885 + 0.820334i \(0.306213\pi\)
\(908\) 0 0
\(909\) −9.19555 3.38304i −0.304997 0.112208i
\(910\) 0 0
\(911\) −45.9046 26.5030i −1.52089 0.878084i −0.999696 0.0246430i \(-0.992155\pi\)
−0.521190 0.853441i \(-0.674512\pi\)
\(912\) 0 0
\(913\) 23.5630 + 13.6041i 0.779821 + 0.450230i
\(914\) 0 0
\(915\) −29.6109 + 10.7194i −0.978906 + 0.354373i
\(916\) 0 0
\(917\) −52.7594 + 17.0661i −1.74227 + 0.563571i
\(918\) 0 0
\(919\) 5.73193 9.92799i 0.189079 0.327494i −0.755865 0.654728i \(-0.772783\pi\)
0.944943 + 0.327234i \(0.106116\pi\)
\(920\) 0 0
\(921\) −0.0808038 + 0.453664i −0.00266258 + 0.0149487i
\(922\) 0 0
\(923\) 29.5601 + 51.1996i 0.972983 + 1.68526i
\(924\) 0 0
\(925\) 0.0625096 0.108270i 0.00205530 0.00355989i
\(926\) 0 0
\(927\) −4.93910 + 13.4251i −0.162221 + 0.440939i
\(928\) 0 0
\(929\) 17.3933 + 30.1261i 0.570656 + 0.988405i 0.996499 + 0.0836078i \(0.0266443\pi\)
−0.425843 + 0.904797i \(0.640022\pi\)
\(930\) 0 0
\(931\) −36.5495 + 3.74457i −1.19786 + 0.122723i
\(932\) 0 0
\(933\) 4.86692 5.77980i 0.159336 0.189222i
\(934\) 0 0
\(935\) 19.1602 11.0622i 0.626606 0.361771i
\(936\) 0 0
\(937\) 18.5180i 0.604956i −0.953156 0.302478i \(-0.902186\pi\)
0.953156 0.302478i \(-0.0978139\pi\)
\(938\) 0 0
\(939\) −25.1436 + 9.10221i −0.820529 + 0.297039i
\(940\) 0 0
\(941\) −4.89224 + 8.47360i −0.159482 + 0.276232i −0.934682 0.355485i \(-0.884316\pi\)
0.775200 + 0.631716i \(0.217649\pi\)
\(942\) 0 0
\(943\) 0.298583 0.172387i 0.00972321 0.00561370i
\(944\) 0 0
\(945\) 29.9225 + 6.56411i 0.973381 + 0.213530i
\(946\) 0 0
\(947\) 29.0554 16.7752i 0.944174 0.545119i 0.0529077 0.998599i \(-0.483151\pi\)
0.891266 + 0.453480i \(0.149818\pi\)
\(948\) 0 0
\(949\) 43.0762 74.6101i 1.39831 2.42195i
\(950\) 0 0
\(951\) 35.3815 12.8084i 1.14732 0.415342i
\(952\) 0 0
\(953\) 10.8871i 0.352668i −0.984330 0.176334i \(-0.943576\pi\)
0.984330 0.176334i \(-0.0564239\pi\)
\(954\) 0 0
\(955\) −24.8272 + 14.3340i −0.803389 + 0.463837i
\(956\) 0 0
\(957\) 6.15374 7.30798i 0.198922 0.236234i
\(958\) 0 0
\(959\) −2.82134 8.72212i −0.0911059 0.281652i
\(960\) 0 0
\(961\) 13.4729 + 23.3358i 0.434610 + 0.752766i
\(962\) 0 0
\(963\) 14.1842 + 17.0235i 0.457079 + 0.548575i
\(964\) 0 0
\(965\) 13.4113 23.2290i 0.431724 0.747768i
\(966\) 0 0
\(967\) 26.3931 + 45.7142i 0.848746 + 1.47007i 0.882328 + 0.470635i \(0.155975\pi\)
−0.0335826 + 0.999436i \(0.510692\pi\)
\(968\) 0 0
\(969\) −7.46125 + 41.8903i −0.239690 + 1.34571i
\(970\) 0 0
\(971\) −15.7931 + 27.3544i −0.506824 + 0.877844i 0.493145 + 0.869947i \(0.335847\pi\)
−0.999969 + 0.00789735i \(0.997486\pi\)
\(972\) 0 0
\(973\) −0.777134 + 0.860821i −0.0249138 + 0.0275966i
\(974\) 0 0
\(975\) 0.332783 0.120471i 0.0106576 0.00385815i
\(976\) 0 0
\(977\) −34.0048 19.6327i −1.08791 0.628106i −0.154891 0.987932i \(-0.549503\pi\)
−0.933019 + 0.359826i \(0.882836\pi\)
\(978\) 0 0
\(979\) 10.0479 + 5.80113i 0.321131 + 0.185405i
\(980\) 0 0
\(981\) −1.19861 6.93816i −0.0382687 0.221519i
\(982\) 0 0
\(983\) −39.8341 −1.27051 −0.635255 0.772302i \(-0.719105\pi\)
−0.635255 + 0.772302i \(0.719105\pi\)
\(984\) 0 0
\(985\) 61.7822i 1.96855i
\(986\) 0 0
\(987\) 10.6700 + 13.7430i 0.339630 + 0.437445i
\(988\) 0 0
\(989\) 9.44198 + 5.45133i 0.300237 + 0.173342i
\(990\) 0 0
\(991\) −19.9472 34.5496i −0.633645 1.09750i −0.986801 0.161940i \(-0.948225\pi\)
0.353156 0.935565i \(-0.385109\pi\)
\(992\) 0 0
\(993\) 8.92983 + 24.6674i 0.283380 + 0.782796i
\(994\) 0 0
\(995\) 0.853132 0.492556i 0.0270461 0.0156151i
\(996\) 0 0
\(997\) 29.5700i 0.936492i −0.883598 0.468246i \(-0.844886\pi\)
0.883598 0.468246i \(-0.155114\pi\)
\(998\) 0 0
\(999\) −16.2731 + 9.28286i −0.514859 + 0.293697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.cx.a.425.22 yes 48
3.2 odd 2 1512.2.cx.a.89.6 48
4.3 odd 2 1008.2.df.e.929.3 48
7.3 odd 6 504.2.bs.a.353.14 yes 48
9.4 even 3 1512.2.bs.a.1097.6 48
9.5 odd 6 504.2.bs.a.257.14 48
12.11 even 2 3024.2.df.e.1601.6 48
21.17 even 6 1512.2.bs.a.521.6 48
28.3 even 6 1008.2.ca.e.353.11 48
36.23 even 6 1008.2.ca.e.257.11 48
36.31 odd 6 3024.2.ca.e.2609.6 48
63.31 odd 6 1512.2.cx.a.17.6 48
63.59 even 6 inner 504.2.cx.a.185.22 yes 48
84.59 odd 6 3024.2.ca.e.2033.6 48
252.31 even 6 3024.2.df.e.17.6 48
252.59 odd 6 1008.2.df.e.689.3 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.14 48 9.5 odd 6
504.2.bs.a.353.14 yes 48 7.3 odd 6
504.2.cx.a.185.22 yes 48 63.59 even 6 inner
504.2.cx.a.425.22 yes 48 1.1 even 1 trivial
1008.2.ca.e.257.11 48 36.23 even 6
1008.2.ca.e.353.11 48 28.3 even 6
1008.2.df.e.689.3 48 252.59 odd 6
1008.2.df.e.929.3 48 4.3 odd 2
1512.2.bs.a.521.6 48 21.17 even 6
1512.2.bs.a.1097.6 48 9.4 even 3
1512.2.cx.a.17.6 48 63.31 odd 6
1512.2.cx.a.89.6 48 3.2 odd 2
3024.2.ca.e.2033.6 48 84.59 odd 6
3024.2.ca.e.2609.6 48 36.31 odd 6
3024.2.df.e.17.6 48 252.31 even 6
3024.2.df.e.1601.6 48 12.11 even 2