Properties

Label 1512.2.bs.a.521.6
Level $1512$
Weight $2$
Character 1512.521
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(521,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.6
Character \(\chi\) \(=\) 1512.521
Dual form 1512.2.bs.a.1097.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11415 + 1.92977i) q^{5} +(-0.553477 - 2.58721i) q^{7} +(-1.83714 + 1.06068i) q^{11} +(5.10339 - 2.94644i) q^{13} +(-2.34020 + 4.05335i) q^{17} +(-4.54550 + 2.62435i) q^{19} +(-3.77916 - 2.18190i) q^{23} +(0.0173374 + 0.0300292i) q^{25} +(2.25182 + 1.30009i) q^{29} +7.61221i q^{31} +(5.60937 + 1.81446i) q^{35} +(-1.80274 - 3.12244i) q^{37} +(0.0395039 + 0.0684228i) q^{41} +(-1.24922 + 2.16371i) q^{43} -3.79674 q^{47} +(-6.38733 + 2.86393i) q^{49} +(-4.08014 - 2.35567i) q^{53} -4.72701i q^{55} -13.1939 q^{59} +8.15939i q^{61} +13.1311i q^{65} -4.75228 q^{67} +10.0325i q^{71} +(-12.6610 - 7.30986i) q^{73} +(3.76101 + 4.16602i) q^{77} -14.5483 q^{79} +(6.41294 - 11.1075i) q^{83} +(-5.21468 - 9.03209i) q^{85} +(2.73464 + 4.73654i) q^{89} +(-10.4477 - 11.5728i) q^{91} -11.6957i q^{95} +(12.9290 + 7.46454i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{23} - 24 q^{25} - 18 q^{29} - 6 q^{41} - 6 q^{43} - 36 q^{47} + 6 q^{49} - 12 q^{53} + 36 q^{77} - 12 q^{79} - 18 q^{89} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.11415 + 1.92977i −0.498263 + 0.863017i −0.999998 0.00200427i \(-0.999362\pi\)
0.501735 + 0.865022i \(0.332695\pi\)
\(6\) 0 0
\(7\) −0.553477 2.58721i −0.209195 0.977874i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.83714 + 1.06068i −0.553920 + 0.319806i −0.750701 0.660642i \(-0.770284\pi\)
0.196782 + 0.980447i \(0.436951\pi\)
\(12\) 0 0
\(13\) 5.10339 2.94644i 1.41542 0.817196i 0.419533 0.907740i \(-0.362194\pi\)
0.995892 + 0.0905443i \(0.0288607\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.34020 + 4.05335i −0.567583 + 0.983082i 0.429222 + 0.903199i \(0.358788\pi\)
−0.996804 + 0.0798828i \(0.974545\pi\)
\(18\) 0 0
\(19\) −4.54550 + 2.62435i −1.04281 + 0.602066i −0.920628 0.390442i \(-0.872322\pi\)
−0.122181 + 0.992508i \(0.538989\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.77916 2.18190i −0.788010 0.454958i 0.0512518 0.998686i \(-0.483679\pi\)
−0.839261 + 0.543728i \(0.817012\pi\)
\(24\) 0 0
\(25\) 0.0173374 + 0.0300292i 0.00346748 + 0.00600585i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.25182 + 1.30009i 0.418152 + 0.241420i 0.694286 0.719699i \(-0.255720\pi\)
−0.276134 + 0.961119i \(0.589053\pi\)
\(30\) 0 0
\(31\) 7.61221i 1.36719i 0.729860 + 0.683597i \(0.239585\pi\)
−0.729860 + 0.683597i \(0.760415\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.60937 + 1.81446i 0.948156 + 0.306700i
\(36\) 0 0
\(37\) −1.80274 3.12244i −0.296369 0.513326i 0.678934 0.734200i \(-0.262442\pi\)
−0.975302 + 0.220874i \(0.929109\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.0395039 + 0.0684228i 0.00616948 + 0.0106858i 0.869094 0.494648i \(-0.164703\pi\)
−0.862924 + 0.505333i \(0.831370\pi\)
\(42\) 0 0
\(43\) −1.24922 + 2.16371i −0.190504 + 0.329962i −0.945417 0.325862i \(-0.894345\pi\)
0.754914 + 0.655824i \(0.227679\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.79674 −0.553811 −0.276905 0.960897i \(-0.589309\pi\)
−0.276905 + 0.960897i \(0.589309\pi\)
\(48\) 0 0
\(49\) −6.38733 + 2.86393i −0.912475 + 0.409132i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.08014 2.35567i −0.560451 0.323576i 0.192876 0.981223i \(-0.438219\pi\)
−0.753326 + 0.657647i \(0.771552\pi\)
\(54\) 0 0
\(55\) 4.72701i 0.637390i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.1939 −1.71770 −0.858849 0.512229i \(-0.828820\pi\)
−0.858849 + 0.512229i \(0.828820\pi\)
\(60\) 0 0
\(61\) 8.15939i 1.04470i 0.852730 + 0.522352i \(0.174945\pi\)
−0.852730 + 0.522352i \(0.825055\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.1311i 1.62871i
\(66\) 0 0
\(67\) −4.75228 −0.580583 −0.290292 0.956938i \(-0.593752\pi\)
−0.290292 + 0.956938i \(0.593752\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0325i 1.19064i 0.803490 + 0.595318i \(0.202974\pi\)
−0.803490 + 0.595318i \(0.797026\pi\)
\(72\) 0 0
\(73\) −12.6610 7.30986i −1.48186 0.855554i −0.482075 0.876130i \(-0.660117\pi\)
−0.999788 + 0.0205755i \(0.993450\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.76101 + 4.16602i 0.428607 + 0.474762i
\(78\) 0 0
\(79\) −14.5483 −1.63681 −0.818405 0.574642i \(-0.805141\pi\)
−0.818405 + 0.574642i \(0.805141\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.41294 11.1075i 0.703911 1.21921i −0.263172 0.964749i \(-0.584769\pi\)
0.967083 0.254461i \(-0.0818982\pi\)
\(84\) 0 0
\(85\) −5.21468 9.03209i −0.565611 0.979667i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.73464 + 4.73654i 0.289871 + 0.502072i 0.973779 0.227497i \(-0.0730541\pi\)
−0.683907 + 0.729569i \(0.739721\pi\)
\(90\) 0 0
\(91\) −10.4477 11.5728i −1.09521 1.21315i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.6957i 1.19995i
\(96\) 0 0
\(97\) 12.9290 + 7.46454i 1.31274 + 0.757909i 0.982549 0.186006i \(-0.0595544\pi\)
0.330188 + 0.943915i \(0.392888\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.63302 + 2.82847i 0.162492 + 0.281444i 0.935762 0.352633i \(-0.114714\pi\)
−0.773270 + 0.634077i \(0.781380\pi\)
\(102\) 0 0
\(103\) 4.12945 + 2.38414i 0.406887 + 0.234916i 0.689451 0.724332i \(-0.257852\pi\)
−0.282564 + 0.959248i \(0.591185\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.39655 3.69305i 0.618378 0.357021i −0.157859 0.987462i \(-0.550459\pi\)
0.776237 + 0.630441i \(0.217126\pi\)
\(108\) 0 0
\(109\) −1.17349 + 2.03254i −0.112400 + 0.194682i −0.916737 0.399490i \(-0.869187\pi\)
0.804338 + 0.594173i \(0.202520\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.8961 + 6.86824i −1.11909 + 0.646109i −0.941170 0.337935i \(-0.890272\pi\)
−0.177925 + 0.984044i \(0.556938\pi\)
\(114\) 0 0
\(115\) 8.42111 4.86193i 0.785272 0.453377i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.7821 + 3.81116i 1.08007 + 0.349369i
\(120\) 0 0
\(121\) −3.24993 + 5.62905i −0.295449 + 0.511732i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.2188 −1.00344
\(126\) 0 0
\(127\) −5.97913 −0.530562 −0.265281 0.964171i \(-0.585465\pi\)
−0.265281 + 0.964171i \(0.585465\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.4792 18.1506i 0.915576 1.58582i 0.109519 0.993985i \(-0.465069\pi\)
0.806056 0.591839i \(-0.201598\pi\)
\(132\) 0 0
\(133\) 9.30557 + 10.3077i 0.806895 + 0.893787i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00063 1.73242i 0.256361 0.148010i −0.366312 0.930492i \(-0.619380\pi\)
0.622674 + 0.782482i \(0.286046\pi\)
\(138\) 0 0
\(139\) 0.379607 0.219166i 0.0321979 0.0185895i −0.483815 0.875170i \(-0.660749\pi\)
0.516013 + 0.856581i \(0.327416\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.25044 + 10.8261i −0.522688 + 0.905322i
\(144\) 0 0
\(145\) −5.01773 + 2.89699i −0.416700 + 0.240582i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.1560 + 8.75030i 1.24162 + 0.716852i 0.969425 0.245388i \(-0.0789154\pi\)
0.272200 + 0.962241i \(0.412249\pi\)
\(150\) 0 0
\(151\) 0.187420 + 0.324621i 0.0152520 + 0.0264172i 0.873551 0.486733i \(-0.161812\pi\)
−0.858299 + 0.513150i \(0.828478\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −14.6898 8.48115i −1.17991 0.681223i
\(156\) 0 0
\(157\) 20.3549i 1.62450i 0.583311 + 0.812249i \(0.301757\pi\)
−0.583311 + 0.812249i \(0.698243\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.55336 + 10.9851i −0.280044 + 0.865749i
\(162\) 0 0
\(163\) −7.25400 12.5643i −0.568177 0.984112i −0.996746 0.0806027i \(-0.974316\pi\)
0.428569 0.903509i \(-0.359018\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.62510 + 13.2071i 0.590048 + 1.02199i 0.994225 + 0.107313i \(0.0342246\pi\)
−0.404177 + 0.914681i \(0.632442\pi\)
\(168\) 0 0
\(169\) 10.8630 18.8153i 0.835619 1.44733i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.88136 −0.143037 −0.0715185 0.997439i \(-0.522785\pi\)
−0.0715185 + 0.997439i \(0.522785\pi\)
\(174\) 0 0
\(175\) 0.0680961 0.0614760i 0.00514758 0.00464715i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.64064 4.98867i −0.645831 0.372871i 0.141026 0.990006i \(-0.454960\pi\)
−0.786857 + 0.617135i \(0.788293\pi\)
\(180\) 0 0
\(181\) 11.2828i 0.838641i 0.907838 + 0.419320i \(0.137732\pi\)
−0.907838 + 0.419320i \(0.862268\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.03410 0.590679
\(186\) 0 0
\(187\) 9.92879i 0.726065i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.8654i 0.930907i 0.885072 + 0.465454i \(0.154109\pi\)
−0.885072 + 0.465454i \(0.845891\pi\)
\(192\) 0 0
\(193\) −12.0372 −0.866458 −0.433229 0.901284i \(-0.642626\pi\)
−0.433229 + 0.901284i \(0.642626\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.7262i 1.97541i −0.156339 0.987703i \(-0.549969\pi\)
0.156339 0.987703i \(-0.450031\pi\)
\(198\) 0 0
\(199\) 0.382862 + 0.221045i 0.0271404 + 0.0156695i 0.513509 0.858084i \(-0.328345\pi\)
−0.486368 + 0.873754i \(0.661679\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.11727 6.54550i 0.148603 0.459404i
\(204\) 0 0
\(205\) −0.176053 −0.0122961
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.56716 9.64260i 0.385088 0.666993i
\(210\) 0 0
\(211\) −0.219300 0.379839i −0.0150972 0.0261492i 0.858378 0.513018i \(-0.171472\pi\)
−0.873475 + 0.486868i \(0.838139\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.78363 4.82139i −0.189842 0.328816i
\(216\) 0 0
\(217\) 19.6944 4.21319i 1.33694 0.286010i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 27.5811i 1.85531i
\(222\) 0 0
\(223\) 17.6417 + 10.1854i 1.18137 + 0.682066i 0.956332 0.292284i \(-0.0944151\pi\)
0.225041 + 0.974349i \(0.427748\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.754935 1.30759i −0.0501068 0.0867875i 0.839884 0.542766i \(-0.182623\pi\)
−0.889991 + 0.455978i \(0.849290\pi\)
\(228\) 0 0
\(229\) 18.3899 + 10.6174i 1.21524 + 0.701617i 0.963895 0.266281i \(-0.0857950\pi\)
0.251341 + 0.967899i \(0.419128\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.85938 5.69231i 0.645909 0.372916i −0.140978 0.990013i \(-0.545025\pi\)
0.786887 + 0.617097i \(0.211691\pi\)
\(234\) 0 0
\(235\) 4.23013 7.32681i 0.275944 0.477948i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.1401 + 8.16380i −0.914648 + 0.528072i −0.881924 0.471392i \(-0.843752\pi\)
−0.0327241 + 0.999464i \(0.510418\pi\)
\(240\) 0 0
\(241\) 20.7592 11.9853i 1.33722 0.772042i 0.350822 0.936442i \(-0.385902\pi\)
0.986394 + 0.164400i \(0.0525688\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.58974 15.5169i 0.101564 0.991337i
\(246\) 0 0
\(247\) −15.4650 + 26.7861i −0.984012 + 1.70436i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25.9828 1.64002 0.820009 0.572351i \(-0.193969\pi\)
0.820009 + 0.572351i \(0.193969\pi\)
\(252\) 0 0
\(253\) 9.25715 0.581992
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.979785 1.69704i 0.0611173 0.105858i −0.833848 0.551994i \(-0.813867\pi\)
0.894965 + 0.446136i \(0.147200\pi\)
\(258\) 0 0
\(259\) −7.08063 + 6.39227i −0.439969 + 0.397196i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.11722 1.79973i 0.192216 0.110976i −0.400804 0.916164i \(-0.631269\pi\)
0.593019 + 0.805188i \(0.297936\pi\)
\(264\) 0 0
\(265\) 9.09179 5.24915i 0.558504 0.322453i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.06967 + 7.04888i −0.248132 + 0.429778i −0.963008 0.269474i \(-0.913150\pi\)
0.714875 + 0.699252i \(0.246483\pi\)
\(270\) 0 0
\(271\) 16.3378 9.43265i 0.992452 0.572992i 0.0864458 0.996257i \(-0.472449\pi\)
0.906006 + 0.423264i \(0.139116\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.0637026 0.0367787i −0.00384141 0.00221784i
\(276\) 0 0
\(277\) −10.8340 18.7650i −0.650950 1.12748i −0.982893 0.184179i \(-0.941037\pi\)
0.331943 0.943300i \(-0.392296\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.6851 6.74642i −0.697077 0.402457i 0.109181 0.994022i \(-0.465177\pi\)
−0.806258 + 0.591564i \(0.798511\pi\)
\(282\) 0 0
\(283\) 2.03256i 0.120823i −0.998174 0.0604115i \(-0.980759\pi\)
0.998174 0.0604115i \(-0.0192413\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.155160 0.140075i 0.00915879 0.00826839i
\(288\) 0 0
\(289\) −2.45310 4.24890i −0.144300 0.249935i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.8661 27.4809i −0.926908 1.60545i −0.788463 0.615083i \(-0.789123\pi\)
−0.138446 0.990370i \(-0.544211\pi\)
\(294\) 0 0
\(295\) 14.7000 25.4611i 0.855866 1.48240i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −25.7154 −1.48716
\(300\) 0 0
\(301\) 6.28938 + 2.03442i 0.362514 + 0.117262i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −15.7457 9.09079i −0.901597 0.520537i
\(306\) 0 0
\(307\) 0.266045i 0.0151840i −0.999971 0.00759200i \(-0.997583\pi\)
0.999971 0.00759200i \(-0.00241663\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.36245 −0.247372 −0.123686 0.992321i \(-0.539472\pi\)
−0.123686 + 0.992321i \(0.539472\pi\)
\(312\) 0 0
\(313\) 15.4386i 0.872640i 0.899792 + 0.436320i \(0.143718\pi\)
−0.899792 + 0.436320i \(0.856282\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.7248i 1.22019i −0.792329 0.610094i \(-0.791132\pi\)
0.792329 0.610094i \(-0.208868\pi\)
\(318\) 0 0
\(319\) −5.51589 −0.308831
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.5660i 1.36689i
\(324\) 0 0
\(325\) 0.176959 + 0.102167i 0.00981591 + 0.00566722i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.10141 + 9.82296i 0.115854 + 0.541557i
\(330\) 0 0
\(331\) −15.1462 −0.832511 −0.416255 0.909248i \(-0.636658\pi\)
−0.416255 + 0.909248i \(0.636658\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.29475 9.17078i 0.289283 0.501053i
\(336\) 0 0
\(337\) 3.75166 + 6.49807i 0.204366 + 0.353973i 0.949931 0.312461i \(-0.101153\pi\)
−0.745564 + 0.666434i \(0.767820\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8.07409 13.9847i −0.437237 0.757316i
\(342\) 0 0
\(343\) 10.9448 + 14.9402i 0.590965 + 0.806697i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.89571i 0.262816i 0.991328 + 0.131408i \(0.0419497\pi\)
−0.991328 + 0.131408i \(0.958050\pi\)
\(348\) 0 0
\(349\) 2.64213 + 1.52543i 0.141430 + 0.0816546i 0.569045 0.822306i \(-0.307313\pi\)
−0.427615 + 0.903961i \(0.640646\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.51890 + 14.7552i 0.453415 + 0.785338i 0.998596 0.0529806i \(-0.0168722\pi\)
−0.545180 + 0.838319i \(0.683539\pi\)
\(354\) 0 0
\(355\) −19.3603 11.1777i −1.02754 0.593250i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.27682 + 1.31452i −0.120166 + 0.0693778i −0.558878 0.829250i \(-0.688768\pi\)
0.438712 + 0.898628i \(0.355435\pi\)
\(360\) 0 0
\(361\) 4.27438 7.40344i 0.224967 0.389655i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 28.2126 16.2886i 1.47672 0.852583i
\(366\) 0 0
\(367\) 16.2436 9.37824i 0.847908 0.489540i −0.0120362 0.999928i \(-0.503831\pi\)
0.859945 + 0.510387i \(0.170498\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.83635 + 11.8600i −0.199174 + 0.615741i
\(372\) 0 0
\(373\) −2.42980 + 4.20853i −0.125810 + 0.217910i −0.922049 0.387072i \(-0.873486\pi\)
0.796239 + 0.604982i \(0.206820\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.3225 0.789151
\(378\) 0 0
\(379\) −3.46902 −0.178192 −0.0890959 0.996023i \(-0.528398\pi\)
−0.0890959 + 0.996023i \(0.528398\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.30298 16.1132i 0.475360 0.823348i −0.524241 0.851570i \(-0.675651\pi\)
0.999602 + 0.0282216i \(0.00898441\pi\)
\(384\) 0 0
\(385\) −12.2298 + 2.61629i −0.623287 + 0.133339i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.4613 + 7.77186i −0.682513 + 0.394049i −0.800801 0.598930i \(-0.795593\pi\)
0.118288 + 0.992979i \(0.462259\pi\)
\(390\) 0 0
\(391\) 17.6880 10.2122i 0.894521 0.516452i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.2090 28.0748i 0.815562 1.41260i
\(396\) 0 0
\(397\) −13.0507 + 7.53483i −0.654996 + 0.378162i −0.790368 0.612633i \(-0.790111\pi\)
0.135371 + 0.990795i \(0.456777\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.74463 + 3.89401i 0.336811 + 0.194458i 0.658861 0.752265i \(-0.271039\pi\)
−0.322050 + 0.946723i \(0.604372\pi\)
\(402\) 0 0
\(403\) 22.4289 + 38.8481i 1.11727 + 1.93516i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.62379 + 3.82425i 0.328329 + 0.189561i
\(408\) 0 0
\(409\) 8.99874i 0.444959i −0.974937 0.222480i \(-0.928585\pi\)
0.974937 0.222480i \(-0.0714151\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.30252 + 34.1354i 0.359334 + 1.67969i
\(414\) 0 0
\(415\) 14.2900 + 24.7509i 0.701466 + 1.21498i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.70022 11.6051i −0.327327 0.566947i 0.654653 0.755929i \(-0.272815\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(420\) 0 0
\(421\) 9.44700 16.3627i 0.460419 0.797469i −0.538563 0.842585i \(-0.681033\pi\)
0.998982 + 0.0451166i \(0.0143659\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.162292 −0.00787232
\(426\) 0 0
\(427\) 21.1101 4.51604i 1.02159 0.218547i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.4056 + 14.6679i 1.22375 + 0.706530i 0.965714 0.259607i \(-0.0835931\pi\)
0.258031 + 0.966137i \(0.416926\pi\)
\(432\) 0 0
\(433\) 9.41744i 0.452573i 0.974061 + 0.226287i \(0.0726586\pi\)
−0.974061 + 0.226287i \(0.927341\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 22.9042 1.09566
\(438\) 0 0
\(439\) 31.7980i 1.51764i −0.651302 0.758819i \(-0.725777\pi\)
0.651302 0.758819i \(-0.274223\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 37.0295i 1.75932i 0.475600 + 0.879662i \(0.342231\pi\)
−0.475600 + 0.879662i \(0.657769\pi\)
\(444\) 0 0
\(445\) −12.1872 −0.577729
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.3840i 0.914789i −0.889264 0.457394i \(-0.848783\pi\)
0.889264 0.457394i \(-0.151217\pi\)
\(450\) 0 0
\(451\) −0.145149 0.0838017i −0.00683479 0.00394607i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 33.9730 7.26778i 1.59268 0.340719i
\(456\) 0 0
\(457\) 10.5349 0.492803 0.246401 0.969168i \(-0.420752\pi\)
0.246401 + 0.969168i \(0.420752\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.09138 12.2826i 0.330278 0.572059i −0.652288 0.757971i \(-0.726191\pi\)
0.982566 + 0.185912i \(0.0595240\pi\)
\(462\) 0 0
\(463\) 5.05071 + 8.74808i 0.234726 + 0.406558i 0.959193 0.282752i \(-0.0912473\pi\)
−0.724467 + 0.689310i \(0.757914\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.1047 + 19.2340i 0.513866 + 0.890042i 0.999871 + 0.0160858i \(0.00512048\pi\)
−0.486005 + 0.873956i \(0.661546\pi\)
\(468\) 0 0
\(469\) 2.63028 + 12.2951i 0.121455 + 0.567737i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.30005i 0.243697i
\(474\) 0 0
\(475\) −0.157614 0.0909986i −0.00723184 0.00417530i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.71275 + 8.16272i 0.215331 + 0.372964i 0.953375 0.301788i \(-0.0975836\pi\)
−0.738044 + 0.674753i \(0.764250\pi\)
\(480\) 0 0
\(481\) −18.4002 10.6233i −0.838975 0.484383i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −28.8096 + 16.6332i −1.30818 + 0.755276i
\(486\) 0 0
\(487\) 14.6113 25.3076i 0.662103 1.14680i −0.317959 0.948104i \(-0.602997\pi\)
0.980062 0.198692i \(-0.0636692\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.31308 + 3.64486i −0.284905 + 0.164490i −0.635642 0.771984i \(-0.719265\pi\)
0.350737 + 0.936474i \(0.385931\pi\)
\(492\) 0 0
\(493\) −10.5394 + 6.08494i −0.474672 + 0.274052i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 25.9561 5.55275i 1.16429 0.249075i
\(498\) 0 0
\(499\) −7.80996 + 13.5272i −0.349622 + 0.605563i −0.986182 0.165664i \(-0.947023\pi\)
0.636561 + 0.771227i \(0.280357\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.09425 −0.271729 −0.135865 0.990727i \(-0.543381\pi\)
−0.135865 + 0.990727i \(0.543381\pi\)
\(504\) 0 0
\(505\) −7.27772 −0.323854
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.1799 + 24.5604i −0.628515 + 1.08862i 0.359335 + 0.933208i \(0.383003\pi\)
−0.987850 + 0.155411i \(0.950330\pi\)
\(510\) 0 0
\(511\) −11.9045 + 36.8026i −0.526626 + 1.62805i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.20167 + 5.31258i −0.405474 + 0.234100i
\(516\) 0 0
\(517\) 6.97515 4.02710i 0.306767 0.177112i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19.2896 33.4105i 0.845091 1.46374i −0.0404517 0.999181i \(-0.512880\pi\)
0.885542 0.464559i \(-0.153787\pi\)
\(522\) 0 0
\(523\) −24.1399 + 13.9372i −1.05556 + 0.609429i −0.924201 0.381905i \(-0.875268\pi\)
−0.131361 + 0.991335i \(0.541935\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −30.8550 17.8141i −1.34406 0.775996i
\(528\) 0 0
\(529\) −1.97863 3.42708i −0.0860273 0.149004i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.403208 + 0.232792i 0.0174649 + 0.0100833i
\(534\) 0 0
\(535\) 16.4585i 0.711561i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8.69674 12.0363i 0.374595 0.518441i
\(540\) 0 0
\(541\) −10.9182 18.9109i −0.469410 0.813041i 0.529979 0.848011i \(-0.322200\pi\)
−0.999388 + 0.0349697i \(0.988867\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.61489 4.52912i −0.112009 0.194006i
\(546\) 0 0
\(547\) 12.5173 21.6806i 0.535201 0.926995i −0.463953 0.885860i \(-0.653569\pi\)
0.999154 0.0411350i \(-0.0130974\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −13.6475 −0.581404
\(552\) 0 0
\(553\) 8.05215 + 37.6395i 0.342412 + 1.60059i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.1937 6.46267i −0.474291 0.273832i 0.243743 0.969840i \(-0.421625\pi\)
−0.718034 + 0.696008i \(0.754958\pi\)
\(558\) 0 0
\(559\) 14.7230i 0.622715i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15.6211 0.658352 0.329176 0.944269i \(-0.393229\pi\)
0.329176 + 0.944269i \(0.393229\pi\)
\(564\) 0 0
\(565\) 30.6090i 1.28773i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.6069i 1.78617i 0.449884 + 0.893087i \(0.351465\pi\)
−0.449884 + 0.893087i \(0.648535\pi\)
\(570\) 0 0
\(571\) −19.7970 −0.828477 −0.414239 0.910168i \(-0.635952\pi\)
−0.414239 + 0.910168i \(0.635952\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.151314i 0.00631022i
\(576\) 0 0
\(577\) −40.6443 23.4660i −1.69204 0.976902i −0.952866 0.303391i \(-0.901881\pi\)
−0.739178 0.673511i \(-0.764786\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −32.2870 10.4439i −1.33949 0.433284i
\(582\) 0 0
\(583\) 9.99442 0.413927
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.18063 3.77696i 0.0900041 0.155892i −0.817509 0.575917i \(-0.804645\pi\)
0.907513 + 0.420025i \(0.137979\pi\)
\(588\) 0 0
\(589\) −19.9771 34.6013i −0.823141 1.42572i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.31077 4.00236i −0.0948918 0.164357i 0.814672 0.579922i \(-0.196917\pi\)
−0.909563 + 0.415565i \(0.863584\pi\)
\(594\) 0 0
\(595\) −20.4817 + 18.4905i −0.839668 + 0.758038i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.5173i 1.04261i 0.853371 + 0.521304i \(0.174554\pi\)
−0.853371 + 0.521304i \(0.825446\pi\)
\(600\) 0 0
\(601\) −22.6824 13.0957i −0.925235 0.534185i −0.0399336 0.999202i \(-0.512715\pi\)
−0.885301 + 0.465018i \(0.846048\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.24183 12.5432i −0.294422 0.509954i
\(606\) 0 0
\(607\) −5.08757 2.93731i −0.206498 0.119222i 0.393185 0.919459i \(-0.371373\pi\)
−0.599683 + 0.800238i \(0.704707\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −19.3762 + 11.1869i −0.783878 + 0.452572i
\(612\) 0 0
\(613\) 12.4511 21.5660i 0.502896 0.871041i −0.497099 0.867694i \(-0.665601\pi\)
0.999994 0.00334675i \(-0.00106531\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.1105 + 15.0749i −1.05117 + 0.606894i −0.922977 0.384855i \(-0.874251\pi\)
−0.128194 + 0.991749i \(0.540918\pi\)
\(618\) 0 0
\(619\) −29.5953 + 17.0869i −1.18954 + 0.686779i −0.958201 0.286096i \(-0.907642\pi\)
−0.231334 + 0.972874i \(0.574309\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.7409 9.69666i 0.430323 0.388489i
\(624\) 0 0
\(625\) 12.4127 21.4994i 0.496508 0.859978i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.8751 0.672855
\(630\) 0 0
\(631\) 8.55990 0.340764 0.170382 0.985378i \(-0.445500\pi\)
0.170382 + 0.985378i \(0.445500\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.66165 11.5383i 0.264360 0.457884i
\(636\) 0 0
\(637\) −24.1586 + 33.4356i −0.957199 + 1.32477i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 35.0737 20.2498i 1.38533 0.799818i 0.392542 0.919734i \(-0.371596\pi\)
0.992784 + 0.119916i \(0.0382624\pi\)
\(642\) 0 0
\(643\) 31.8435 18.3849i 1.25579 0.725028i 0.283533 0.958963i \(-0.408493\pi\)
0.972252 + 0.233935i \(0.0751602\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.5492 + 40.7884i −0.925815 + 1.60356i −0.135569 + 0.990768i \(0.543286\pi\)
−0.790246 + 0.612790i \(0.790047\pi\)
\(648\) 0 0
\(649\) 24.2391 13.9944i 0.951467 0.549330i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.16748 + 1.25139i 0.0848199 + 0.0489708i 0.541810 0.840501i \(-0.317739\pi\)
−0.456990 + 0.889472i \(0.651073\pi\)
\(654\) 0 0
\(655\) 23.3509 + 40.4450i 0.912395 + 1.58032i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −36.2490 20.9284i −1.41206 0.815254i −0.416479 0.909146i \(-0.636736\pi\)
−0.995582 + 0.0938917i \(0.970069\pi\)
\(660\) 0 0
\(661\) 8.49304i 0.330341i 0.986265 + 0.165170i \(0.0528174\pi\)
−0.986265 + 0.165170i \(0.947183\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −30.2592 + 6.47329i −1.17340 + 0.251023i
\(666\) 0 0
\(667\) −5.67333 9.82649i −0.219672 0.380483i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.65447 14.9900i −0.334102 0.578682i
\(672\) 0 0
\(673\) −16.9974 + 29.4403i −0.655201 + 1.13484i 0.326642 + 0.945148i \(0.394083\pi\)
−0.981843 + 0.189694i \(0.939251\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 39.0351 1.50024 0.750121 0.661301i \(-0.229995\pi\)
0.750121 + 0.661301i \(0.229995\pi\)
\(678\) 0 0
\(679\) 12.1564 37.5814i 0.466522 1.44224i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.91400 + 1.10505i 0.0732373 + 0.0422836i 0.536171 0.844109i \(-0.319870\pi\)
−0.462934 + 0.886393i \(0.653203\pi\)
\(684\) 0 0
\(685\) 7.72069i 0.294992i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −27.7634 −1.05770
\(690\) 0 0
\(691\) 3.41836i 0.130041i −0.997884 0.0650203i \(-0.979289\pi\)
0.997884 0.0650203i \(-0.0207112\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.976737i 0.0370498i
\(696\) 0 0
\(697\) −0.369789 −0.0140068
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 37.5732i 1.41912i 0.704645 + 0.709560i \(0.251106\pi\)
−0.704645 + 0.709560i \(0.748894\pi\)
\(702\) 0 0
\(703\) 16.3887 + 9.46203i 0.618112 + 0.356867i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.41402 5.79046i 0.241224 0.217773i
\(708\) 0 0
\(709\) −26.8780 −1.00942 −0.504712 0.863288i \(-0.668401\pi\)
−0.504712 + 0.863288i \(0.668401\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.6091 28.7678i 0.622015 1.07736i
\(714\) 0 0
\(715\) −13.9279 24.1238i −0.520872 0.902177i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.41278 2.44701i −0.0526879 0.0912580i 0.838479 0.544935i \(-0.183446\pi\)
−0.891166 + 0.453676i \(0.850112\pi\)
\(720\) 0 0
\(721\) 3.88272 12.0033i 0.144600 0.447028i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.0901606i 0.00334848i
\(726\) 0 0
\(727\) −0.622076 0.359156i −0.0230715 0.0133203i 0.488420 0.872609i \(-0.337573\pi\)
−0.511491 + 0.859288i \(0.670907\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.84684 10.1270i −0.216253 0.374561i
\(732\) 0 0
\(733\) 33.4490 + 19.3118i 1.23547 + 0.713297i 0.968164 0.250315i \(-0.0805343\pi\)
0.267303 + 0.963613i \(0.413868\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.73062 5.04063i 0.321596 0.185674i
\(738\) 0 0
\(739\) 11.9491 20.6965i 0.439556 0.761334i −0.558099 0.829775i \(-0.688469\pi\)
0.997655 + 0.0684405i \(0.0218023\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −20.5325 + 11.8544i −0.753264 + 0.434897i −0.826872 0.562390i \(-0.809882\pi\)
0.0736078 + 0.997287i \(0.476549\pi\)
\(744\) 0 0
\(745\) −33.7720 + 19.4983i −1.23731 + 0.714362i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.0950 14.5052i −0.478483 0.530009i
\(750\) 0 0
\(751\) −6.89344 + 11.9398i −0.251545 + 0.435689i −0.963951 0.266078i \(-0.914272\pi\)
0.712406 + 0.701767i \(0.247605\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.835255 −0.0303981
\(756\) 0 0
\(757\) −19.6447 −0.714000 −0.357000 0.934104i \(-0.616200\pi\)
−0.357000 + 0.934104i \(0.616200\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.4732 + 45.8529i −0.959653 + 1.66217i −0.236312 + 0.971677i \(0.575939\pi\)
−0.723341 + 0.690491i \(0.757395\pi\)
\(762\) 0 0
\(763\) 5.90812 + 1.91110i 0.213888 + 0.0691864i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −67.3335 + 38.8750i −2.43127 + 1.40370i
\(768\) 0 0
\(769\) −17.6774 + 10.2060i −0.637462 + 0.368039i −0.783636 0.621220i \(-0.786637\pi\)
0.146174 + 0.989259i \(0.453304\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.07789 1.86697i 0.0387692 0.0671501i −0.845990 0.533199i \(-0.820990\pi\)
0.884759 + 0.466049i \(0.154323\pi\)
\(774\) 0 0
\(775\) −0.228589 + 0.131976i −0.00821116 + 0.00474072i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.359130 0.207344i −0.0128672 0.00742887i
\(780\) 0 0
\(781\) −10.6412 18.4311i −0.380772 0.659517i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −39.2802 22.6784i −1.40197 0.809428i
\(786\) 0 0
\(787\) 20.8939i 0.744786i 0.928075 + 0.372393i \(0.121463\pi\)
−0.928075 + 0.372393i \(0.878537\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.3538 + 26.9764i 0.865922 + 0.959170i
\(792\) 0 0
\(793\) 24.0412 + 41.6405i 0.853727 + 1.47870i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.9964 + 24.2424i 0.495777 + 0.858710i 0.999988 0.00486976i \(-0.00155010\pi\)
−0.504211 + 0.863580i \(0.668217\pi\)
\(798\) 0 0
\(799\) 8.88513 15.3895i 0.314333 0.544441i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 31.0136 1.09444
\(804\) 0 0
\(805\) −17.2397 19.0962i −0.607621 0.673053i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −37.1345 21.4396i −1.30558 0.753777i −0.324225 0.945980i \(-0.605103\pi\)
−0.981355 + 0.192203i \(0.938437\pi\)
\(810\) 0 0
\(811\) 23.7421i 0.833699i 0.908976 + 0.416849i \(0.136866\pi\)
−0.908976 + 0.416849i \(0.863134\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 32.3282 1.13241
\(816\) 0 0
\(817\) 13.1135i 0.458783i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.58699i 0.0553863i −0.999616 0.0276932i \(-0.991184\pi\)
0.999616 0.0276932i \(-0.00881614\pi\)
\(822\) 0 0
\(823\) 3.08203 0.107433 0.0537164 0.998556i \(-0.482893\pi\)
0.0537164 + 0.998556i \(0.482893\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.7448i 0.721369i 0.932688 + 0.360685i \(0.117457\pi\)
−0.932688 + 0.360685i \(0.882543\pi\)
\(828\) 0 0
\(829\) −0.917576 0.529763i −0.0318687 0.0183994i 0.483981 0.875079i \(-0.339190\pi\)
−0.515850 + 0.856679i \(0.672524\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.33914 32.5922i 0.115694 1.12925i
\(834\) 0 0
\(835\) −33.9820 −1.17600
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.2137 + 33.2792i −0.663332 + 1.14892i 0.316403 + 0.948625i \(0.397525\pi\)
−0.979735 + 0.200299i \(0.935809\pi\)
\(840\) 0 0
\(841\) −11.1195 19.2596i −0.383432 0.664124i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 24.2061 + 41.9262i 0.832716 + 1.44231i
\(846\) 0 0
\(847\) 16.3623 + 5.29271i 0.562216 + 0.181860i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15.7336i 0.539341i
\(852\) 0 0
\(853\) 12.0659 + 6.96626i 0.413129 + 0.238520i 0.692133 0.721770i \(-0.256671\pi\)
−0.279004 + 0.960290i \(0.590004\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13.4632 + 23.3189i 0.459894 + 0.796560i 0.998955 0.0457070i \(-0.0145541\pi\)
−0.539061 + 0.842267i \(0.681221\pi\)
\(858\) 0 0
\(859\) −17.4938 10.1000i −0.596880 0.344609i 0.170933 0.985283i \(-0.445322\pi\)
−0.767813 + 0.640674i \(0.778655\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −38.1427 + 22.0217i −1.29839 + 0.749627i −0.980126 0.198374i \(-0.936434\pi\)
−0.318266 + 0.948001i \(0.603101\pi\)
\(864\) 0 0
\(865\) 2.09612 3.63058i 0.0712701 0.123443i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 26.7273 15.4310i 0.906662 0.523461i
\(870\) 0 0
\(871\) −24.2527 + 14.0023i −0.821772 + 0.474450i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.20934 + 29.0253i 0.209914 + 0.981235i
\(876\) 0 0
\(877\) 27.0436 46.8409i 0.913198 1.58170i 0.103678 0.994611i \(-0.466939\pi\)
0.809519 0.587094i \(-0.199728\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.82593 0.229972 0.114986 0.993367i \(-0.463318\pi\)
0.114986 + 0.993367i \(0.463318\pi\)
\(882\) 0 0
\(883\) −9.87685 −0.332382 −0.166191 0.986094i \(-0.553147\pi\)
−0.166191 + 0.986094i \(0.553147\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17.5412 + 30.3823i −0.588977 + 1.02014i 0.405390 + 0.914144i \(0.367136\pi\)
−0.994367 + 0.105994i \(0.966198\pi\)
\(888\) 0 0
\(889\) 3.30931 + 15.4693i 0.110991 + 0.518823i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.2581 9.96395i 0.577519 0.333431i
\(894\) 0 0
\(895\) 19.2539 11.1163i 0.643588 0.371576i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.89655 + 17.1413i −0.330069 + 0.571695i
\(900\) 0 0
\(901\) 19.0967 11.0255i 0.636204 0.367313i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −21.7731 12.5707i −0.723761 0.417864i
\(906\) 0 0
\(907\) −17.2231 29.8313i −0.571885 0.990533i −0.996372 0.0850994i \(-0.972879\pi\)
0.424488 0.905434i \(-0.360454\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 45.9046 + 26.5030i 1.52089 + 0.878084i 0.999696 + 0.0246430i \(0.00784490\pi\)
0.521190 + 0.853441i \(0.325488\pi\)
\(912\) 0 0
\(913\) 27.2082i 0.900460i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −52.7594 17.0661i −1.74227 0.563571i
\(918\) 0 0
\(919\) 5.73193 + 9.92799i 0.189079 + 0.327494i 0.944943 0.327234i \(-0.106116\pi\)
−0.755865 + 0.654728i \(0.772783\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 29.5601 + 51.1996i 0.972983 + 1.68526i
\(924\) 0 0
\(925\) 0.0625096 0.108270i 0.00205530 0.00355989i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −34.7866 −1.14131 −0.570656 0.821189i \(-0.693311\pi\)
−0.570656 + 0.821189i \(0.693311\pi\)
\(930\) 0 0
\(931\) 21.5177 29.7805i 0.705213 0.976017i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 19.1602 + 11.0622i 0.626606 + 0.361771i
\(936\) 0 0
\(937\) 18.5180i 0.604956i 0.953156 + 0.302478i \(0.0978139\pi\)
−0.953156 + 0.302478i \(0.902186\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.78447 0.318965 0.159482 0.987201i \(-0.449017\pi\)
0.159482 + 0.987201i \(0.449017\pi\)
\(942\) 0 0
\(943\) 0.344774i 0.0112274i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.5503i 1.09024i −0.838359 0.545119i \(-0.816484\pi\)
0.838359 0.545119i \(-0.183516\pi\)
\(948\) 0 0
\(949\) −86.1523 −2.79662
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.8871i 0.352668i 0.984330 + 0.176334i \(0.0564239\pi\)
−0.984330 + 0.176334i \(0.943576\pi\)
\(954\) 0 0
\(955\) −24.8272 14.3340i −0.803389 0.463837i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.14291 6.80442i −0.198365 0.219726i
\(960\) 0 0
\(961\) −26.9458 −0.869220
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.4113 23.2290i 0.431724 0.747768i
\(966\) 0 0
\(967\) 26.3931 + 45.7142i 0.848746 + 1.47007i 0.882328 + 0.470635i \(0.155975\pi\)
−0.0335826 + 0.999436i \(0.510692\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.7931 27.3544i −0.506824 0.877844i −0.999969 0.00789735i \(-0.997486\pi\)
0.493145 0.869947i \(-0.335847\pi\)
\(972\) 0 0
\(973\) −0.777134 0.860821i −0.0249138 0.0275966i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 39.2654i 1.25621i −0.778128 0.628106i \(-0.783831\pi\)
0.778128 0.628106i \(-0.216169\pi\)
\(978\) 0 0
\(979\) −10.0479 5.80113i −0.321131 0.185405i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 19.9170 + 34.4973i 0.635255 + 1.10029i 0.986461 + 0.163996i \(0.0524383\pi\)
−0.351206 + 0.936298i \(0.614228\pi\)
\(984\) 0 0
\(985\) 53.5050 + 30.8911i 1.70481 + 0.984273i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.44198 5.45133i 0.300237 0.173342i
\(990\) 0 0
\(991\) −19.9472 + 34.5496i −0.633645 + 1.09750i 0.353156 + 0.935565i \(0.385109\pi\)
−0.986801 + 0.161940i \(0.948225\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.853132 + 0.492556i −0.0270461 + 0.0156151i
\(996\) 0 0
\(997\) 25.6084 14.7850i 0.811026 0.468246i −0.0362863 0.999341i \(-0.511553\pi\)
0.847312 + 0.531096i \(0.178219\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bs.a.521.6 48
3.2 odd 2 504.2.bs.a.353.14 yes 48
4.3 odd 2 3024.2.ca.e.2033.6 48
7.5 odd 6 1512.2.cx.a.89.6 48
9.4 even 3 504.2.cx.a.185.22 yes 48
9.5 odd 6 1512.2.cx.a.17.6 48
12.11 even 2 1008.2.ca.e.353.11 48
21.5 even 6 504.2.cx.a.425.22 yes 48
28.19 even 6 3024.2.df.e.1601.6 48
36.23 even 6 3024.2.df.e.17.6 48
36.31 odd 6 1008.2.df.e.689.3 48
63.5 even 6 inner 1512.2.bs.a.1097.6 48
63.40 odd 6 504.2.bs.a.257.14 48
84.47 odd 6 1008.2.df.e.929.3 48
252.103 even 6 1008.2.ca.e.257.11 48
252.131 odd 6 3024.2.ca.e.2609.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.14 48 63.40 odd 6
504.2.bs.a.353.14 yes 48 3.2 odd 2
504.2.cx.a.185.22 yes 48 9.4 even 3
504.2.cx.a.425.22 yes 48 21.5 even 6
1008.2.ca.e.257.11 48 252.103 even 6
1008.2.ca.e.353.11 48 12.11 even 2
1008.2.df.e.689.3 48 36.31 odd 6
1008.2.df.e.929.3 48 84.47 odd 6
1512.2.bs.a.521.6 48 1.1 even 1 trivial
1512.2.bs.a.1097.6 48 63.5 even 6 inner
1512.2.cx.a.17.6 48 9.5 odd 6
1512.2.cx.a.89.6 48 7.5 odd 6
3024.2.ca.e.2033.6 48 4.3 odd 2
3024.2.ca.e.2609.6 48 252.131 odd 6
3024.2.df.e.17.6 48 36.23 even 6
3024.2.df.e.1601.6 48 28.19 even 6