Properties

Label 3024.2.df.e.17.6
Level $3024$
Weight $2$
Character 3024.17
Analytic conductor $24.147$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(17,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 3024.17
Dual form 3024.2.df.e.1601.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.22830 q^{5} +(-2.51733 - 0.814280i) q^{7} -2.12135i q^{11} +(-5.10339 - 2.94644i) q^{13} +(2.34020 - 4.05335i) q^{17} +(4.54550 - 2.62435i) q^{19} +4.36380i q^{23} -0.0346748 q^{25} +(2.25182 - 1.30009i) q^{29} +(-6.59237 + 3.80611i) q^{31} +(5.60937 + 1.81446i) q^{35} +(-1.80274 - 3.12244i) q^{37} +(-0.0395039 + 0.0684228i) q^{41} +(1.24922 + 2.16371i) q^{43} +(1.89837 - 3.28807i) q^{47} +(5.67390 + 4.09962i) q^{49} +(4.08014 + 2.35567i) q^{53} +4.72701i q^{55} +(6.59695 + 11.4262i) q^{59} +(-7.06624 - 4.07970i) q^{61} +(11.3719 + 6.56556i) q^{65} +(-2.37614 - 4.11559i) q^{67} +10.0325i q^{71} +(-12.6610 - 7.30986i) q^{73} +(-1.72737 + 5.34014i) q^{77} +(-7.27414 + 12.5992i) q^{79} +(6.41294 + 11.1075i) q^{83} +(-5.21468 + 9.03209i) q^{85} +(-2.73464 - 4.73654i) q^{89} +(10.4477 + 11.5728i) q^{91} +(-10.1287 + 5.84783i) q^{95} +(-12.9290 + 7.46454i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} - 18 q^{31} + 6 q^{41} + 6 q^{43} + 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} - 6 q^{79} + 18 q^{89} - 6 q^{91} - 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.22830 −0.996526 −0.498263 0.867026i \(-0.666029\pi\)
−0.498263 + 0.867026i \(0.666029\pi\)
\(6\) 0 0
\(7\) −2.51733 0.814280i −0.951461 0.307769i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.12135i 0.639612i −0.947483 0.319806i \(-0.896382\pi\)
0.947483 0.319806i \(-0.103618\pi\)
\(12\) 0 0
\(13\) −5.10339 2.94644i −1.41542 0.817196i −0.419533 0.907740i \(-0.637806\pi\)
−0.995892 + 0.0905443i \(0.971139\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.34020 4.05335i 0.567583 0.983082i −0.429222 0.903199i \(-0.641212\pi\)
0.996804 0.0798828i \(-0.0254546\pi\)
\(18\) 0 0
\(19\) 4.54550 2.62435i 1.04281 0.602066i 0.122181 0.992508i \(-0.461011\pi\)
0.920628 + 0.390442i \(0.127678\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.36380i 0.909915i 0.890513 + 0.454958i \(0.150346\pi\)
−0.890513 + 0.454958i \(0.849654\pi\)
\(24\) 0 0
\(25\) −0.0346748 −0.00693496
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.25182 1.30009i 0.418152 0.241420i −0.276134 0.961119i \(-0.589053\pi\)
0.694286 + 0.719699i \(0.255720\pi\)
\(30\) 0 0
\(31\) −6.59237 + 3.80611i −1.18402 + 0.683597i −0.956942 0.290278i \(-0.906252\pi\)
−0.227083 + 0.973876i \(0.572919\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.60937 + 1.81446i 0.948156 + 0.306700i
\(36\) 0 0
\(37\) −1.80274 3.12244i −0.296369 0.513326i 0.678934 0.734200i \(-0.262442\pi\)
−0.975302 + 0.220874i \(0.929109\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.0395039 + 0.0684228i −0.00616948 + 0.0106858i −0.869094 0.494648i \(-0.835297\pi\)
0.862924 + 0.505333i \(0.168630\pi\)
\(42\) 0 0
\(43\) 1.24922 + 2.16371i 0.190504 + 0.329962i 0.945417 0.325862i \(-0.105655\pi\)
−0.754914 + 0.655824i \(0.772321\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.89837 3.28807i 0.276905 0.479614i −0.693709 0.720256i \(-0.744024\pi\)
0.970614 + 0.240642i \(0.0773578\pi\)
\(48\) 0 0
\(49\) 5.67390 + 4.09962i 0.810557 + 0.585660i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.08014 + 2.35567i 0.560451 + 0.323576i 0.753326 0.657647i \(-0.228448\pi\)
−0.192876 + 0.981223i \(0.561781\pi\)
\(54\) 0 0
\(55\) 4.72701i 0.637390i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.59695 + 11.4262i 0.858849 + 1.48757i 0.873028 + 0.487671i \(0.162153\pi\)
−0.0141784 + 0.999899i \(0.504513\pi\)
\(60\) 0 0
\(61\) −7.06624 4.07970i −0.904740 0.522352i −0.0260047 0.999662i \(-0.508278\pi\)
−0.878735 + 0.477310i \(0.841612\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 11.3719 + 6.56556i 1.41051 + 0.814357i
\(66\) 0 0
\(67\) −2.37614 4.11559i −0.290292 0.502800i 0.683587 0.729869i \(-0.260419\pi\)
−0.973879 + 0.227069i \(0.927086\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0325i 1.19064i 0.803490 + 0.595318i \(0.202974\pi\)
−0.803490 + 0.595318i \(0.797026\pi\)
\(72\) 0 0
\(73\) −12.6610 7.30986i −1.48186 0.855554i −0.482075 0.876130i \(-0.660117\pi\)
−0.999788 + 0.0205755i \(0.993450\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.72737 + 5.34014i −0.196853 + 0.608566i
\(78\) 0 0
\(79\) −7.27414 + 12.5992i −0.818405 + 1.41752i 0.0884516 + 0.996080i \(0.471808\pi\)
−0.906857 + 0.421439i \(0.861525\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.41294 + 11.1075i 0.703911 + 1.21921i 0.967083 + 0.254461i \(0.0818982\pi\)
−0.263172 + 0.964749i \(0.584769\pi\)
\(84\) 0 0
\(85\) −5.21468 + 9.03209i −0.565611 + 0.979667i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.73464 4.73654i −0.289871 0.502072i 0.683907 0.729569i \(-0.260279\pi\)
−0.973779 + 0.227497i \(0.926946\pi\)
\(90\) 0 0
\(91\) 10.4477 + 11.5728i 1.09521 + 1.21315i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.1287 + 5.84783i −1.03919 + 0.599975i
\(96\) 0 0
\(97\) −12.9290 + 7.46454i −1.31274 + 0.757909i −0.982549 0.186006i \(-0.940446\pi\)
−0.330188 + 0.943915i \(0.607112\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.26604 0.324983 0.162492 0.986710i \(-0.448047\pi\)
0.162492 + 0.986710i \(0.448047\pi\)
\(102\) 0 0
\(103\) 4.76828i 0.469833i 0.972016 + 0.234916i \(0.0754817\pi\)
−0.972016 + 0.234916i \(0.924518\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.39655 3.69305i 0.618378 0.357021i −0.157859 0.987462i \(-0.550459\pi\)
0.776237 + 0.630441i \(0.217126\pi\)
\(108\) 0 0
\(109\) −1.17349 + 2.03254i −0.112400 + 0.194682i −0.916737 0.399490i \(-0.869187\pi\)
0.804338 + 0.594173i \(0.202520\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.8961 6.86824i −1.11909 0.646109i −0.177925 0.984044i \(-0.556938\pi\)
−0.941170 + 0.337935i \(0.890272\pi\)
\(114\) 0 0
\(115\) 9.72386i 0.906754i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.19163 + 8.29804i −0.842595 + 0.760680i
\(120\) 0 0
\(121\) 6.49987 0.590897
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.2188 1.00344
\(126\) 0 0
\(127\) 5.97913 0.530562 0.265281 0.964171i \(-0.414535\pi\)
0.265281 + 0.964171i \(0.414535\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −20.9585 −1.83115 −0.915576 0.402146i \(-0.868264\pi\)
−0.915576 + 0.402146i \(0.868264\pi\)
\(132\) 0 0
\(133\) −13.5795 + 2.90503i −1.17749 + 0.251898i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.46483i 0.296021i −0.988986 0.148010i \(-0.952713\pi\)
0.988986 0.148010i \(-0.0472869\pi\)
\(138\) 0 0
\(139\) 0.379607 + 0.219166i 0.0321979 + 0.0185895i 0.516013 0.856581i \(-0.327416\pi\)
−0.483815 + 0.875170i \(0.660749\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.25044 + 10.8261i −0.522688 + 0.905322i
\(144\) 0 0
\(145\) −5.01773 + 2.89699i −0.416700 + 0.240582i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.5006i 1.43370i 0.697225 + 0.716852i \(0.254418\pi\)
−0.697225 + 0.716852i \(0.745582\pi\)
\(150\) 0 0
\(151\) 0.374840 0.0305040 0.0152520 0.999884i \(-0.495145\pi\)
0.0152520 + 0.999884i \(0.495145\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.6898 8.48115i 1.17991 0.681223i
\(156\) 0 0
\(157\) 17.6279 10.1775i 1.40686 0.812249i 0.411773 0.911286i \(-0.364910\pi\)
0.995084 + 0.0990372i \(0.0315763\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.55336 10.9851i 0.280044 0.865749i
\(162\) 0 0
\(163\) 7.25400 + 12.5643i 0.568177 + 0.984112i 0.996746 + 0.0806027i \(0.0256845\pi\)
−0.428569 + 0.903509i \(0.640982\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.62510 13.2071i 0.590048 1.02199i −0.404177 0.914681i \(-0.632442\pi\)
0.994225 0.107313i \(-0.0342246\pi\)
\(168\) 0 0
\(169\) 10.8630 + 18.8153i 0.835619 + 1.44733i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.940679 + 1.62930i −0.0715185 + 0.123874i −0.899567 0.436783i \(-0.856118\pi\)
0.828048 + 0.560657i \(0.189451\pi\)
\(174\) 0 0
\(175\) 0.0872878 + 0.0282350i 0.00659834 + 0.00213436i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.64064 4.98867i −0.645831 0.372871i 0.141026 0.990006i \(-0.454960\pi\)
−0.786857 + 0.617135i \(0.788293\pi\)
\(180\) 0 0
\(181\) 11.2828i 0.838641i 0.907838 + 0.419320i \(0.137732\pi\)
−0.907838 + 0.419320i \(0.862268\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.01705 + 6.95773i 0.295339 + 0.511543i
\(186\) 0 0
\(187\) −8.59858 4.96439i −0.628791 0.363032i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.1418 6.43270i −0.806189 0.465454i 0.0394414 0.999222i \(-0.487442\pi\)
−0.845631 + 0.533768i \(0.820775\pi\)
\(192\) 0 0
\(193\) 6.01861 + 10.4245i 0.433229 + 0.750374i 0.997149 0.0754547i \(-0.0240408\pi\)
−0.563920 + 0.825829i \(0.690708\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.7262i 1.97541i 0.156339 + 0.987703i \(0.450031\pi\)
−0.156339 + 0.987703i \(0.549969\pi\)
\(198\) 0 0
\(199\) −0.382862 0.221045i −0.0271404 0.0156695i 0.486368 0.873754i \(-0.338321\pi\)
−0.513509 + 0.858084i \(0.671655\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.72721 + 1.43914i −0.472157 + 0.101008i
\(204\) 0 0
\(205\) 0.0880266 0.152467i 0.00614805 0.0106487i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.56716 9.64260i −0.385088 0.666993i
\(210\) 0 0
\(211\) 0.219300 0.379839i 0.0150972 0.0261492i −0.858378 0.513018i \(-0.828528\pi\)
0.873475 + 0.486868i \(0.161861\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.78363 4.82139i −0.189842 0.328816i
\(216\) 0 0
\(217\) 19.6944 4.21319i 1.33694 0.286010i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −23.8859 + 13.7905i −1.60674 + 0.927653i
\(222\) 0 0
\(223\) 17.6417 10.1854i 1.18137 0.682066i 0.225041 0.974349i \(-0.427748\pi\)
0.956332 + 0.292284i \(0.0944151\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.50987 0.100214 0.0501068 0.998744i \(-0.484044\pi\)
0.0501068 + 0.998744i \(0.484044\pi\)
\(228\) 0 0
\(229\) 21.2348i 1.40323i −0.712554 0.701617i \(-0.752462\pi\)
0.712554 0.701617i \(-0.247538\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.85938 + 5.69231i −0.645909 + 0.372916i −0.786887 0.617097i \(-0.788309\pi\)
0.140978 + 0.990013i \(0.454975\pi\)
\(234\) 0 0
\(235\) −4.23013 + 7.32681i −0.275944 + 0.477948i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.1401 + 8.16380i 0.914648 + 0.528072i 0.881924 0.471392i \(-0.156248\pi\)
0.0327241 + 0.999464i \(0.489582\pi\)
\(240\) 0 0
\(241\) 23.9706i 1.54408i 0.635571 + 0.772042i \(0.280765\pi\)
−0.635571 + 0.772042i \(0.719235\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.6431 9.13519i −0.807741 0.583626i
\(246\) 0 0
\(247\) −30.9299 −1.96802
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25.9828 1.64002 0.820009 0.572351i \(-0.193969\pi\)
0.820009 + 0.572351i \(0.193969\pi\)
\(252\) 0 0
\(253\) 9.25715 0.581992
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.95957 0.122235 0.0611173 0.998131i \(-0.480534\pi\)
0.0611173 + 0.998131i \(0.480534\pi\)
\(258\) 0 0
\(259\) 1.99555 + 9.32814i 0.123998 + 0.579623i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.59945i 0.221952i 0.993823 + 0.110976i \(0.0353976\pi\)
−0.993823 + 0.110976i \(0.964602\pi\)
\(264\) 0 0
\(265\) −9.09179 5.24915i −0.558504 0.322453i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.06967 7.04888i 0.248132 0.429778i −0.714875 0.699252i \(-0.753517\pi\)
0.963008 + 0.269474i \(0.0868499\pi\)
\(270\) 0 0
\(271\) −16.3378 + 9.43265i −0.992452 + 0.572992i −0.906006 0.423264i \(-0.860884\pi\)
−0.0864458 + 0.996257i \(0.527551\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.0735574i 0.00443568i
\(276\) 0 0
\(277\) 21.6679 1.30190 0.650950 0.759120i \(-0.274371\pi\)
0.650950 + 0.759120i \(0.274371\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.6851 + 6.74642i −0.697077 + 0.402457i −0.806258 0.591564i \(-0.798511\pi\)
0.109181 + 0.994022i \(0.465177\pi\)
\(282\) 0 0
\(283\) 1.76025 1.01628i 0.104636 0.0604115i −0.446769 0.894649i \(-0.647425\pi\)
0.551405 + 0.834238i \(0.314092\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.155160 0.140075i 0.00915879 0.00826839i
\(288\) 0 0
\(289\) −2.45310 4.24890i −0.144300 0.249935i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.8661 27.4809i 0.926908 1.60545i 0.138446 0.990370i \(-0.455789\pi\)
0.788463 0.615083i \(-0.210877\pi\)
\(294\) 0 0
\(295\) −14.7000 25.4611i −0.855866 1.48240i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.8577 22.2702i 0.743579 1.28792i
\(300\) 0 0
\(301\) −1.38283 6.46397i −0.0797048 0.372577i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.7457 + 9.09079i 0.901597 + 0.520537i
\(306\) 0 0
\(307\) 0.266045i 0.0151840i 0.999971 + 0.00759200i \(0.00241663\pi\)
−0.999971 + 0.00759200i \(0.997583\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.18123 + 3.77799i 0.123686 + 0.214230i 0.921219 0.389046i \(-0.127195\pi\)
−0.797533 + 0.603276i \(0.793862\pi\)
\(312\) 0 0
\(313\) −13.3702 7.71929i −0.755728 0.436320i 0.0720315 0.997402i \(-0.477052\pi\)
−0.827760 + 0.561082i \(0.810385\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.8143 10.8624i −1.05671 0.610094i −0.132192 0.991224i \(-0.542202\pi\)
−0.924521 + 0.381130i \(0.875535\pi\)
\(318\) 0 0
\(319\) −2.75794 4.77690i −0.154415 0.267455i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.5660i 1.36689i
\(324\) 0 0
\(325\) 0.176959 + 0.102167i 0.00981591 + 0.00566722i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.45623 + 6.73135i −0.411075 + 0.371111i
\(330\) 0 0
\(331\) −7.57310 + 13.1170i −0.416255 + 0.720975i −0.995559 0.0941362i \(-0.969991\pi\)
0.579304 + 0.815112i \(0.303324\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.29475 + 9.17078i 0.289283 + 0.501053i
\(336\) 0 0
\(337\) 3.75166 6.49807i 0.204366 0.353973i −0.745564 0.666434i \(-0.767820\pi\)
0.949931 + 0.312461i \(0.101153\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.07409 + 13.9847i 0.437237 + 0.757316i
\(342\) 0 0
\(343\) −10.9448 14.9402i −0.590965 0.806697i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.23981 2.44786i 0.227605 0.131408i −0.381862 0.924219i \(-0.624717\pi\)
0.609467 + 0.792812i \(0.291384\pi\)
\(348\) 0 0
\(349\) −2.64213 + 1.52543i −0.141430 + 0.0816546i −0.569045 0.822306i \(-0.692687\pi\)
0.427615 + 0.903961i \(0.359354\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.0378 0.906830 0.453415 0.891299i \(-0.350205\pi\)
0.453415 + 0.891299i \(0.350205\pi\)
\(354\) 0 0
\(355\) 22.3554i 1.18650i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.27682 + 1.31452i −0.120166 + 0.0693778i −0.558878 0.829250i \(-0.688768\pi\)
0.438712 + 0.898628i \(0.355435\pi\)
\(360\) 0 0
\(361\) 4.27438 7.40344i 0.224967 0.389655i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 28.2126 + 16.2886i 1.47672 + 0.852583i
\(366\) 0 0
\(367\) 18.7565i 0.979080i −0.871981 0.489540i \(-0.837165\pi\)
0.871981 0.489540i \(-0.162835\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.35289 9.25238i −0.433660 0.480360i
\(372\) 0 0
\(373\) 4.85959 0.251620 0.125810 0.992054i \(-0.459847\pi\)
0.125810 + 0.992054i \(0.459847\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.3225 −0.789151
\(378\) 0 0
\(379\) 3.46902 0.178192 0.0890959 0.996023i \(-0.471602\pi\)
0.0890959 + 0.996023i \(0.471602\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.6060 −0.950720 −0.475360 0.879791i \(-0.657682\pi\)
−0.475360 + 0.879791i \(0.657682\pi\)
\(384\) 0 0
\(385\) 3.84911 11.8994i 0.196169 0.606452i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.5437i 0.788098i 0.919090 + 0.394049i \(0.128926\pi\)
−0.919090 + 0.394049i \(0.871074\pi\)
\(390\) 0 0
\(391\) 17.6880 + 10.2122i 0.894521 + 0.516452i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.2090 28.0748i 0.815562 1.41260i
\(396\) 0 0
\(397\) −13.0507 + 7.53483i −0.654996 + 0.378162i −0.790368 0.612633i \(-0.790111\pi\)
0.135371 + 0.990795i \(0.456777\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.78803i 0.388916i 0.980911 + 0.194458i \(0.0622947\pi\)
−0.980911 + 0.194458i \(0.937705\pi\)
\(402\) 0 0
\(403\) 44.8579 2.23453
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.62379 + 3.82425i −0.328329 + 0.189561i
\(408\) 0 0
\(409\) −7.79314 + 4.49937i −0.385346 + 0.222480i −0.680142 0.733081i \(-0.738082\pi\)
0.294796 + 0.955560i \(0.404748\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.30252 34.1354i −0.359334 1.67969i
\(414\) 0 0
\(415\) −14.2900 24.7509i −0.701466 1.21498i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.70022 + 11.6051i −0.327327 + 0.566947i −0.981981 0.188982i \(-0.939481\pi\)
0.654653 + 0.755929i \(0.272815\pi\)
\(420\) 0 0
\(421\) 9.44700 + 16.3627i 0.460419 + 0.797469i 0.998982 0.0451166i \(-0.0143659\pi\)
−0.538563 + 0.842585i \(0.681033\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.0811460 + 0.140549i −0.00393616 + 0.00681763i
\(426\) 0 0
\(427\) 14.4660 + 16.0238i 0.700061 + 0.775448i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.4056 + 14.6679i 1.22375 + 0.706530i 0.965714 0.259607i \(-0.0835931\pi\)
0.258031 + 0.966137i \(0.416926\pi\)
\(432\) 0 0
\(433\) 9.41744i 0.452573i 0.974061 + 0.226287i \(0.0726586\pi\)
−0.974061 + 0.226287i \(0.927341\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.4521 + 19.8356i 0.547829 + 0.948868i
\(438\) 0 0
\(439\) −27.5379 15.8990i −1.31431 0.758819i −0.331505 0.943453i \(-0.607556\pi\)
−0.982807 + 0.184635i \(0.940890\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −32.0685 18.5147i −1.52362 0.879662i −0.999609 0.0279490i \(-0.991102\pi\)
−0.524009 0.851713i \(-0.675564\pi\)
\(444\) 0 0
\(445\) 6.09360 + 10.5544i 0.288864 + 0.500328i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.3840i 0.914789i 0.889264 + 0.457394i \(0.151217\pi\)
−0.889264 + 0.457394i \(0.848783\pi\)
\(450\) 0 0
\(451\) 0.145149 + 0.0838017i 0.00683479 + 0.00394607i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −23.2806 25.7876i −1.09141 1.20894i
\(456\) 0 0
\(457\) −5.26746 + 9.12351i −0.246401 + 0.426780i −0.962525 0.271194i \(-0.912581\pi\)
0.716123 + 0.697974i \(0.245915\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.09138 12.2826i −0.330278 0.572059i 0.652288 0.757971i \(-0.273809\pi\)
−0.982566 + 0.185912i \(0.940476\pi\)
\(462\) 0 0
\(463\) −5.05071 + 8.74808i −0.234726 + 0.406558i −0.959193 0.282752i \(-0.908753\pi\)
0.724467 + 0.689310i \(0.242086\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.1047 + 19.2340i 0.513866 + 0.890042i 0.999871 + 0.0160858i \(0.00512048\pi\)
−0.486005 + 0.873956i \(0.661546\pi\)
\(468\) 0 0
\(469\) 2.63028 + 12.2951i 0.121455 + 0.567737i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.58998 2.65003i 0.211048 0.121848i
\(474\) 0 0
\(475\) −0.157614 + 0.0909986i −0.00723184 + 0.00417530i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.42550 −0.430662 −0.215331 0.976541i \(-0.569083\pi\)
−0.215331 + 0.976541i \(0.569083\pi\)
\(480\) 0 0
\(481\) 21.2467i 0.968765i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.8096 16.6332i 1.30818 0.755276i
\(486\) 0 0
\(487\) −14.6113 + 25.3076i −0.662103 + 1.14680i 0.317959 + 0.948104i \(0.397003\pi\)
−0.980062 + 0.198692i \(0.936331\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.31308 + 3.64486i 0.284905 + 0.164490i 0.635642 0.771984i \(-0.280735\pi\)
−0.350737 + 0.936474i \(0.614069\pi\)
\(492\) 0 0
\(493\) 12.1699i 0.548104i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.16925 25.2550i 0.366441 1.13284i
\(498\) 0 0
\(499\) −15.6199 −0.699243 −0.349622 0.936891i \(-0.613690\pi\)
−0.349622 + 0.936891i \(0.613690\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.09425 −0.271729 −0.135865 0.990727i \(-0.543381\pi\)
−0.135865 + 0.990727i \(0.543381\pi\)
\(504\) 0 0
\(505\) −7.27772 −0.323854
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −28.3599 −1.25703 −0.628515 0.777798i \(-0.716337\pi\)
−0.628515 + 0.777798i \(0.716337\pi\)
\(510\) 0 0
\(511\) 25.9198 + 28.7110i 1.14662 + 1.27010i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.6252i 0.468201i
\(516\) 0 0
\(517\) −6.97515 4.02710i −0.306767 0.177112i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19.2896 + 33.4105i −0.845091 + 1.46374i 0.0404517 + 0.999181i \(0.487120\pi\)
−0.885542 + 0.464559i \(0.846213\pi\)
\(522\) 0 0
\(523\) 24.1399 13.9372i 1.05556 0.609429i 0.131361 0.991335i \(-0.458065\pi\)
0.924201 + 0.381905i \(0.124732\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 35.6283i 1.55199i
\(528\) 0 0
\(529\) 3.95726 0.172055
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.403208 0.232792i 0.0174649 0.0100833i
\(534\) 0 0
\(535\) −14.2534 + 8.22923i −0.616230 + 0.355781i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8.69674 12.0363i 0.374595 0.518441i
\(540\) 0 0
\(541\) −10.9182 18.9109i −0.469410 0.813041i 0.529979 0.848011i \(-0.322200\pi\)
−0.999388 + 0.0349697i \(0.988867\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.61489 4.52912i 0.112009 0.194006i
\(546\) 0 0
\(547\) −12.5173 21.6806i −0.535201 0.926995i −0.999154 0.0411350i \(-0.986903\pi\)
0.463953 0.885860i \(-0.346431\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.82376 11.8191i 0.290702 0.503511i
\(552\) 0 0
\(553\) 28.5707 25.7931i 1.21495 1.09683i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.1937 + 6.46267i 0.474291 + 0.273832i 0.718034 0.696008i \(-0.245042\pi\)
−0.243743 + 0.969840i \(0.578375\pi\)
\(558\) 0 0
\(559\) 14.7230i 0.622715i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.81056 13.5283i −0.329176 0.570150i 0.653173 0.757209i \(-0.273438\pi\)
−0.982349 + 0.187060i \(0.940104\pi\)
\(564\) 0 0
\(565\) 26.5082 + 15.3045i 1.11521 + 0.643865i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 36.8986 + 21.3034i 1.54687 + 0.893087i 0.998378 + 0.0569323i \(0.0181319\pi\)
0.548494 + 0.836155i \(0.315201\pi\)
\(570\) 0 0
\(571\) −9.89848 17.1447i −0.414239 0.717482i 0.581110 0.813825i \(-0.302619\pi\)
−0.995348 + 0.0963431i \(0.969285\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.151314i 0.00631022i
\(576\) 0 0
\(577\) −40.6443 23.4660i −1.69204 0.976902i −0.952866 0.303391i \(-0.901881\pi\)
−0.739178 0.673511i \(-0.764786\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.09883 33.1833i −0.294509 1.37667i
\(582\) 0 0
\(583\) 4.99721 8.65542i 0.206963 0.358471i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.18063 + 3.77696i 0.0900041 + 0.155892i 0.907513 0.420025i \(-0.137979\pi\)
−0.817509 + 0.575917i \(0.804645\pi\)
\(588\) 0 0
\(589\) −19.9771 + 34.6013i −0.823141 + 1.42572i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.31077 + 4.00236i 0.0948918 + 0.164357i 0.909563 0.415565i \(-0.136416\pi\)
−0.814672 + 0.579922i \(0.803083\pi\)
\(594\) 0 0
\(595\) 20.4817 18.4905i 0.839668 0.758038i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22.0986 12.7586i 0.902924 0.521304i 0.0247764 0.999693i \(-0.492113\pi\)
0.878148 + 0.478389i \(0.158779\pi\)
\(600\) 0 0
\(601\) 22.6824 13.0957i 0.925235 0.534185i 0.0399336 0.999202i \(-0.487285\pi\)
0.885301 + 0.465018i \(0.153952\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.4837 −0.588845
\(606\) 0 0
\(607\) 5.87462i 0.238443i −0.992868 0.119222i \(-0.961960\pi\)
0.992868 0.119222i \(-0.0380399\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −19.3762 + 11.1869i −0.783878 + 0.452572i
\(612\) 0 0
\(613\) 12.4511 21.5660i 0.502896 0.871041i −0.497099 0.867694i \(-0.665601\pi\)
0.999994 0.00334675i \(-0.00106531\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.1105 15.0749i −1.05117 0.606894i −0.128194 0.991749i \(-0.540918\pi\)
−0.922977 + 0.384855i \(0.874251\pi\)
\(618\) 0 0
\(619\) 34.1737i 1.37356i 0.726867 + 0.686779i \(0.240976\pi\)
−0.726867 + 0.686779i \(0.759024\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.02712 + 14.1502i 0.121279 + 0.566915i
\(624\) 0 0
\(625\) −24.8254 −0.993017
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −16.8751 −0.672855
\(630\) 0 0
\(631\) −8.55990 −0.340764 −0.170382 0.985378i \(-0.554500\pi\)
−0.170382 + 0.985378i \(0.554500\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −13.3233 −0.528719
\(636\) 0 0
\(637\) −16.8768 37.6398i −0.668683 1.49134i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 40.4996i 1.59964i −0.600242 0.799818i \(-0.704929\pi\)
0.600242 0.799818i \(-0.295071\pi\)
\(642\) 0 0
\(643\) 31.8435 + 18.3849i 1.25579 + 0.725028i 0.972252 0.233935i \(-0.0751602\pi\)
0.283533 + 0.958963i \(0.408493\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.5492 + 40.7884i −0.925815 + 1.60356i −0.135569 + 0.990768i \(0.543286\pi\)
−0.790246 + 0.612790i \(0.790047\pi\)
\(648\) 0 0
\(649\) 24.2391 13.9944i 0.951467 0.549330i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.50279i 0.0979416i 0.998800 + 0.0489708i \(0.0155941\pi\)
−0.998800 + 0.0489708i \(0.984406\pi\)
\(654\) 0 0
\(655\) 46.7018 1.82479
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 36.2490 20.9284i 1.41206 0.815254i 0.416479 0.909146i \(-0.363264\pi\)
0.995582 + 0.0938917i \(0.0299307\pi\)
\(660\) 0 0
\(661\) 7.35519 4.24652i 0.286084 0.165170i −0.350091 0.936716i \(-0.613849\pi\)
0.636174 + 0.771545i \(0.280516\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 30.2592 6.47329i 1.17340 0.251023i
\(666\) 0 0
\(667\) 5.67333 + 9.82649i 0.219672 + 0.380483i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.65447 + 14.9900i −0.334102 + 0.578682i
\(672\) 0 0
\(673\) −16.9974 29.4403i −0.655201 1.13484i −0.981843 0.189694i \(-0.939251\pi\)
0.326642 0.945148i \(-0.394083\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.5176 33.8054i 0.750121 1.29925i −0.197643 0.980274i \(-0.563329\pi\)
0.947764 0.318973i \(-0.103338\pi\)
\(678\) 0 0
\(679\) 38.6247 8.26291i 1.48228 0.317101i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.91400 + 1.10505i 0.0732373 + 0.0422836i 0.536171 0.844109i \(-0.319870\pi\)
−0.462934 + 0.886393i \(0.653203\pi\)
\(684\) 0 0
\(685\) 7.72069i 0.294992i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −13.8817 24.0438i −0.528851 0.915997i
\(690\) 0 0
\(691\) −2.96039 1.70918i −0.112619 0.0650203i 0.442633 0.896703i \(-0.354045\pi\)
−0.555251 + 0.831683i \(0.687378\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.845879 0.488369i −0.0320860 0.0185249i
\(696\) 0 0
\(697\) 0.184894 + 0.320247i 0.00700338 + 0.0121302i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 37.5732i 1.41912i −0.704645 0.709560i \(-0.748894\pi\)
0.704645 0.709560i \(-0.251106\pi\)
\(702\) 0 0
\(703\) −16.3887 9.46203i −0.618112 0.356867i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.22170 2.65947i −0.309209 0.100020i
\(708\) 0 0
\(709\) 13.4390 23.2770i 0.504712 0.874187i −0.495273 0.868738i \(-0.664932\pi\)
0.999985 0.00544993i \(-0.00173477\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.6091 28.7678i −0.622015 1.07736i
\(714\) 0 0
\(715\) 13.9279 24.1238i 0.520872 0.902177i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.41278 2.44701i −0.0526879 0.0912580i 0.838479 0.544935i \(-0.183446\pi\)
−0.891166 + 0.453676i \(0.850112\pi\)
\(720\) 0 0
\(721\) 3.88272 12.0033i 0.144600 0.447028i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.0780813 + 0.0450803i −0.00289987 + 0.00167424i
\(726\) 0 0
\(727\) −0.622076 + 0.359156i −0.0230715 + 0.0133203i −0.511491 0.859288i \(-0.670907\pi\)
0.488420 + 0.872609i \(0.337573\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.6937 0.432506
\(732\) 0 0
\(733\) 38.6236i 1.42659i −0.700862 0.713297i \(-0.747201\pi\)
0.700862 0.713297i \(-0.252799\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.73062 + 5.04063i −0.321596 + 0.185674i
\(738\) 0 0
\(739\) −11.9491 + 20.6965i −0.439556 + 0.761334i −0.997655 0.0684405i \(-0.978198\pi\)
0.558099 + 0.829775i \(0.311531\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.5325 + 11.8544i 0.753264 + 0.434897i 0.826872 0.562390i \(-0.190118\pi\)
−0.0736078 + 0.997287i \(0.523451\pi\)
\(744\) 0 0
\(745\) 38.9966i 1.42872i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19.1094 + 4.08804i −0.698242 + 0.149374i
\(750\) 0 0
\(751\) −13.7869 −0.503090 −0.251545 0.967846i \(-0.580939\pi\)
−0.251545 + 0.967846i \(0.580939\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.835255 −0.0303981
\(756\) 0 0
\(757\) −19.6447 −0.714000 −0.357000 0.934104i \(-0.616200\pi\)
−0.357000 + 0.934104i \(0.616200\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −52.9464 −1.91931 −0.959653 0.281187i \(-0.909272\pi\)
−0.959653 + 0.281187i \(0.909272\pi\)
\(762\) 0 0
\(763\) 4.60912 4.16103i 0.166861 0.150639i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 77.7501i 2.80739i
\(768\) 0 0
\(769\) 17.6774 + 10.2060i 0.637462 + 0.368039i 0.783636 0.621220i \(-0.213363\pi\)
−0.146174 + 0.989259i \(0.546696\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.07789 + 1.86697i −0.0387692 + 0.0671501i −0.884759 0.466049i \(-0.845677\pi\)
0.845990 + 0.533199i \(0.179010\pi\)
\(774\) 0 0
\(775\) 0.228589 0.131976i 0.00821116 0.00474072i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.414688i 0.0148577i
\(780\) 0 0
\(781\) 21.2824 0.761544
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −39.2802 + 22.6784i −1.40197 + 0.809428i
\(786\) 0 0
\(787\) −18.0946 + 10.4469i −0.645004 + 0.372393i −0.786539 0.617540i \(-0.788129\pi\)
0.141536 + 0.989933i \(0.454796\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.3538 + 26.9764i 0.865922 + 0.959170i
\(792\) 0 0
\(793\) 24.0412 + 41.6405i 0.853727 + 1.47870i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.9964 + 24.2424i −0.495777 + 0.858710i −0.999988 0.00486976i \(-0.998450\pi\)
0.504211 + 0.863580i \(0.331783\pi\)
\(798\) 0 0
\(799\) −8.88513 15.3895i −0.314333 0.544441i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −15.5068 + 26.8585i −0.547222 + 0.947817i
\(804\) 0 0
\(805\) −7.91794 + 24.4782i −0.279071 + 0.862742i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 37.1345 + 21.4396i 1.30558 + 0.753777i 0.981355 0.192203i \(-0.0615633\pi\)
0.324225 + 0.945980i \(0.394897\pi\)
\(810\) 0 0
\(811\) 23.7421i 0.833699i −0.908976 0.416849i \(-0.863134\pi\)
0.908976 0.416849i \(-0.136866\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16.1641 27.9970i −0.566204 0.980693i
\(816\) 0 0
\(817\) 11.3566 + 6.55675i 0.397318 + 0.229392i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.37437 0.793495i −0.0479660 0.0276932i 0.475825 0.879540i \(-0.342149\pi\)
−0.523791 + 0.851847i \(0.675483\pi\)
\(822\) 0 0
\(823\) 1.54101 + 2.66911i 0.0537164 + 0.0930395i 0.891633 0.452758i \(-0.149560\pi\)
−0.837917 + 0.545798i \(0.816227\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.7448i 0.721369i 0.932688 + 0.360685i \(0.117457\pi\)
−0.932688 + 0.360685i \(0.882543\pi\)
\(828\) 0 0
\(829\) −0.917576 0.529763i −0.0318687 0.0183994i 0.483981 0.875079i \(-0.339190\pi\)
−0.515850 + 0.856679i \(0.672524\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 29.8953 13.4043i 1.03581 0.464433i
\(834\) 0 0
\(835\) −16.9910 + 29.4293i −0.587999 + 1.01844i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.2137 33.2792i −0.663332 1.14892i −0.979735 0.200299i \(-0.935809\pi\)
0.316403 0.948625i \(-0.397525\pi\)
\(840\) 0 0
\(841\) −11.1195 + 19.2596i −0.383432 + 0.664124i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −24.2061 41.9262i −0.832716 1.44231i
\(846\) 0 0
\(847\) −16.3623 5.29271i −0.562216 0.181860i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13.6257 7.86680i 0.467083 0.269670i
\(852\) 0 0
\(853\) −12.0659 + 6.96626i −0.413129 + 0.238520i −0.692133 0.721770i \(-0.743329\pi\)
0.279004 + 0.960290i \(0.409996\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 26.9264 0.919788 0.459894 0.887974i \(-0.347887\pi\)
0.459894 + 0.887974i \(0.347887\pi\)
\(858\) 0 0
\(859\) 20.2001i 0.689217i −0.938746 0.344609i \(-0.888012\pi\)
0.938746 0.344609i \(-0.111988\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −38.1427 + 22.0217i −1.29839 + 0.749627i −0.980126 0.198374i \(-0.936434\pi\)
−0.318266 + 0.948001i \(0.603101\pi\)
\(864\) 0 0
\(865\) 2.09612 3.63058i 0.0712701 0.123443i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 26.7273 + 15.4310i 0.906662 + 0.523461i
\(870\) 0 0
\(871\) 28.0046i 0.948900i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −28.2413 9.13522i −0.954732 0.308827i
\(876\) 0 0
\(877\) −54.0872 −1.82640 −0.913198 0.407517i \(-0.866395\pi\)
−0.913198 + 0.407517i \(0.866395\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6.82593 −0.229972 −0.114986 0.993367i \(-0.536682\pi\)
−0.114986 + 0.993367i \(0.536682\pi\)
\(882\) 0 0
\(883\) 9.87685 0.332382 0.166191 0.986094i \(-0.446853\pi\)
0.166191 + 0.986094i \(0.446853\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35.0825 1.17795 0.588977 0.808150i \(-0.299531\pi\)
0.588977 + 0.808150i \(0.299531\pi\)
\(888\) 0 0
\(889\) −15.0514 4.86869i −0.504809 0.163291i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 19.9279i 0.666861i
\(894\) 0 0
\(895\) 19.2539 + 11.1163i 0.643588 + 0.371576i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.89655 + 17.1413i −0.330069 + 0.571695i
\(900\) 0 0
\(901\) 19.0967 11.0255i 0.636204 0.367313i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 25.1414i 0.835728i
\(906\) 0 0
\(907\) −34.4463 −1.14377 −0.571885 0.820334i \(-0.693787\pi\)
−0.571885 + 0.820334i \(0.693787\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −45.9046 + 26.5030i −1.52089 + 0.878084i −0.521190 + 0.853441i \(0.674512\pi\)
−0.999696 + 0.0246430i \(0.992155\pi\)
\(912\) 0 0
\(913\) 23.5630 13.6041i 0.779821 0.450230i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 52.7594 + 17.0661i 1.74227 + 0.563571i
\(918\) 0 0
\(919\) −5.73193 9.92799i −0.189079 0.327494i 0.755865 0.654728i \(-0.227217\pi\)
−0.944943 + 0.327234i \(0.893884\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 29.5601 51.1996i 0.972983 1.68526i
\(924\) 0 0
\(925\) 0.0625096 + 0.108270i 0.00205530 + 0.00355989i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.3933 + 30.1261i −0.570656 + 0.988405i 0.425843 + 0.904797i \(0.359978\pi\)
−0.996499 + 0.0836078i \(0.973356\pi\)
\(930\) 0 0
\(931\) 36.5495 + 3.74457i 1.19786 + 0.122723i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 19.1602 + 11.0622i 0.626606 + 0.361771i
\(936\) 0 0
\(937\) 18.5180i 0.604956i 0.953156 + 0.302478i \(0.0978139\pi\)
−0.953156 + 0.302478i \(0.902186\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.89224 + 8.47360i 0.159482 + 0.276232i 0.934682 0.355485i \(-0.115684\pi\)
−0.775200 + 0.631716i \(0.782351\pi\)
\(942\) 0 0
\(943\) −0.298583 0.172387i −0.00972321 0.00561370i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 29.0554 + 16.7752i 0.944174 + 0.545119i 0.891266 0.453480i \(-0.149818\pi\)
0.0529077 + 0.998599i \(0.483151\pi\)
\(948\) 0 0
\(949\) 43.0762 + 74.6101i 1.39831 + 2.42195i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.8871i 0.352668i −0.984330 0.176334i \(-0.943576\pi\)
0.984330 0.176334i \(-0.0564239\pi\)
\(954\) 0 0
\(955\) 24.8272 + 14.3340i 0.803389 + 0.463837i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.82134 + 8.72212i −0.0911059 + 0.281652i
\(960\) 0 0
\(961\) 13.4729 23.3358i 0.434610 0.752766i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.4113 23.2290i −0.431724 0.747768i
\(966\) 0 0
\(967\) −26.3931 + 45.7142i −0.848746 + 1.47007i 0.0335826 + 0.999436i \(0.489308\pi\)
−0.882328 + 0.470635i \(0.844025\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.7931 27.3544i −0.506824 0.877844i −0.999969 0.00789735i \(-0.997486\pi\)
0.493145 0.869947i \(-0.335847\pi\)
\(972\) 0 0
\(973\) −0.777134 0.860821i −0.0249138 0.0275966i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 34.0048 19.6327i 1.08791 0.628106i 0.154891 0.987932i \(-0.450497\pi\)
0.933019 + 0.359826i \(0.117164\pi\)
\(978\) 0 0
\(979\) −10.0479 + 5.80113i −0.321131 + 0.185405i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −39.8341 −1.27051 −0.635255 0.772302i \(-0.719105\pi\)
−0.635255 + 0.772302i \(0.719105\pi\)
\(984\) 0 0
\(985\) 61.7822i 1.96855i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.44198 + 5.45133i −0.300237 + 0.173342i
\(990\) 0 0
\(991\) 19.9472 34.5496i 0.633645 1.09750i −0.353156 0.935565i \(-0.614891\pi\)
0.986801 0.161940i \(-0.0517752\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.853132 + 0.492556i 0.0270461 + 0.0156151i
\(996\) 0 0
\(997\) 29.5700i 0.936492i 0.883598 + 0.468246i \(0.155114\pi\)
−0.883598 + 0.468246i \(0.844886\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.df.e.17.6 48
3.2 odd 2 1008.2.df.e.689.3 48
4.3 odd 2 1512.2.cx.a.17.6 48
7.5 odd 6 3024.2.ca.e.2609.6 48
9.2 odd 6 3024.2.ca.e.2033.6 48
9.7 even 3 1008.2.ca.e.353.11 48
12.11 even 2 504.2.cx.a.185.22 yes 48
21.5 even 6 1008.2.ca.e.257.11 48
28.19 even 6 1512.2.bs.a.1097.6 48
36.7 odd 6 504.2.bs.a.353.14 yes 48
36.11 even 6 1512.2.bs.a.521.6 48
63.47 even 6 inner 3024.2.df.e.1601.6 48
63.61 odd 6 1008.2.df.e.929.3 48
84.47 odd 6 504.2.bs.a.257.14 48
252.47 odd 6 1512.2.cx.a.89.6 48
252.187 even 6 504.2.cx.a.425.22 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.14 48 84.47 odd 6
504.2.bs.a.353.14 yes 48 36.7 odd 6
504.2.cx.a.185.22 yes 48 12.11 even 2
504.2.cx.a.425.22 yes 48 252.187 even 6
1008.2.ca.e.257.11 48 21.5 even 6
1008.2.ca.e.353.11 48 9.7 even 3
1008.2.df.e.689.3 48 3.2 odd 2
1008.2.df.e.929.3 48 63.61 odd 6
1512.2.bs.a.521.6 48 36.11 even 6
1512.2.bs.a.1097.6 48 28.19 even 6
1512.2.cx.a.17.6 48 4.3 odd 2
1512.2.cx.a.89.6 48 252.47 odd 6
3024.2.ca.e.2033.6 48 9.2 odd 6
3024.2.ca.e.2609.6 48 7.5 odd 6
3024.2.df.e.17.6 48 1.1 even 1 trivial
3024.2.df.e.1601.6 48 63.47 even 6 inner