L(s) = 1 | − 2.22·5-s + (−2.51 − 0.814i)7-s − 2.12i·11-s + (−5.10 − 2.94i)13-s + (2.34 − 4.05i)17-s + (4.54 − 2.62i)19-s + 4.36i·23-s − 0.0346·25-s + (2.25 − 1.30i)29-s + (−6.59 + 3.80i)31-s + (5.60 + 1.81i)35-s + (−1.80 − 3.12i)37-s + (−0.0395 + 0.0684i)41-s + (1.24 + 2.16i)43-s + (1.89 − 3.28i)47-s + ⋯ |
L(s) = 1 | − 0.996·5-s + (−0.951 − 0.307i)7-s − 0.639i·11-s + (−1.41 − 0.817i)13-s + (0.567 − 0.983i)17-s + (1.04 − 0.602i)19-s + 0.909i·23-s − 0.00693·25-s + (0.418 − 0.241i)29-s + (−1.18 + 0.683i)31-s + (0.948 + 0.306i)35-s + (−0.296 − 0.513i)37-s + (−0.00616 + 0.0106i)41-s + (0.190 + 0.329i)43-s + (0.276 − 0.479i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.163 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.163 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2715199004\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2715199004\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.51 + 0.814i)T \) |
good | 5 | \( 1 + 2.22T + 5T^{2} \) |
| 11 | \( 1 + 2.12iT - 11T^{2} \) |
| 13 | \( 1 + (5.10 + 2.94i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.34 + 4.05i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.54 + 2.62i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 4.36iT - 23T^{2} \) |
| 29 | \( 1 + (-2.25 + 1.30i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.59 - 3.80i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.80 + 3.12i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.0395 - 0.0684i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.24 - 2.16i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.89 + 3.28i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.08 - 2.35i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.59 - 11.4i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.06 + 4.07i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.37 + 4.11i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.0iT - 71T^{2} \) |
| 73 | \( 1 + (12.6 + 7.30i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.27 - 12.5i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.41 - 11.1i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.73 + 4.73i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (12.9 - 7.46i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.039398194106763691795592294480, −7.982282929847019954300324417305, −7.27280596088831549268766447602, −7.11082410203033263940346637234, −5.69671233289364290929354817565, −5.20773405793496018408072198298, −4.09702298060933163850407300132, −3.25326827497400137899011795913, −2.74861903160370444163701167437, −0.850640108176246910611149781369,
0.11249319377115268536486142653, 1.83285634181005953246841509279, 2.91848290188704513306452493236, 3.78672594676562125609397000771, 4.47961960581632365238071130514, 5.44163578220922827816709422201, 6.31765939809471642470652390131, 7.22572833625610483427931379652, 7.56234286441002381643376325400, 8.504018429564903711563503065602