Properties

Label 504.2.bu.a.41.7
Level $504$
Weight $2$
Character 504.41
Analytic conductor $4.024$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(41,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bu (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 41.7
Character \(\chi\) \(=\) 504.41
Dual form 504.2.bu.a.209.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.27553 + 1.17176i) q^{3} +(-0.00869840 + 0.0150661i) q^{5} +(2.50492 + 0.851694i) q^{7} +(0.253935 - 2.98923i) q^{9} +(4.13424 - 2.38691i) q^{11} +(-1.31594 - 0.759761i) q^{13} +(-0.00655885 - 0.0294097i) q^{15} -1.91072 q^{17} +6.45989i q^{19} +(-4.19307 + 1.84882i) q^{21} +(3.82432 + 2.20797i) q^{23} +(2.49985 + 4.32986i) q^{25} +(3.17878 + 4.11040i) q^{27} +(1.73895 - 1.00399i) q^{29} +(6.51946 + 3.76401i) q^{31} +(-2.47644 + 7.88892i) q^{33} +(-0.0346205 + 0.0303309i) q^{35} -6.10467 q^{37} +(2.56878 - 0.572882i) q^{39} +(4.67759 - 8.10182i) q^{41} +(-1.46638 - 2.53985i) q^{43} +(0.0428272 + 0.0298274i) q^{45} +(-1.45659 - 2.52289i) q^{47} +(5.54924 + 4.26685i) q^{49} +(2.43718 - 2.23892i) q^{51} +8.94416i q^{53} +0.0830491i q^{55} +(-7.56947 - 8.23976i) q^{57} +(-4.08337 + 7.07261i) q^{59} +(-0.484917 + 0.279967i) q^{61} +(3.18200 - 7.27151i) q^{63} +(0.0228932 - 0.0132174i) q^{65} +(-3.69036 + 6.39189i) q^{67} +(-7.46525 + 1.66488i) q^{69} -11.6825i q^{71} -12.8105i q^{73} +(-8.26221 - 2.59362i) q^{75} +(12.3889 - 2.45790i) q^{77} +(4.75827 + 8.24157i) q^{79} +(-8.87103 - 1.51814i) q^{81} +(-6.67701 - 11.5649i) q^{83} +(0.0166202 - 0.0287871i) q^{85} +(-1.04165 + 3.31825i) q^{87} +4.00356 q^{89} +(-2.64925 - 3.02392i) q^{91} +(-12.7263 + 2.83817i) q^{93} +(-0.0973252 - 0.0561907i) q^{95} +(4.09514 - 2.36433i) q^{97} +(-6.08519 - 12.9643i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} + 8 q^{15} - 4 q^{21} + 12 q^{23} - 24 q^{25} - 36 q^{29} + 32 q^{39} + 12 q^{43} + 6 q^{49} + 24 q^{51} + 28 q^{57} - 14 q^{63} + 36 q^{65} - 60 q^{77} - 12 q^{79} - 36 q^{81} - 12 q^{91}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.27553 + 1.17176i −0.736426 + 0.676519i
\(4\) 0 0
\(5\) −0.00869840 + 0.0150661i −0.00389004 + 0.00673776i −0.867964 0.496627i \(-0.834572\pi\)
0.864074 + 0.503365i \(0.167905\pi\)
\(6\) 0 0
\(7\) 2.50492 + 0.851694i 0.946770 + 0.321910i
\(8\) 0 0
\(9\) 0.253935 2.98923i 0.0846451 0.996411i
\(10\) 0 0
\(11\) 4.13424 2.38691i 1.24652 0.719679i 0.276107 0.961127i \(-0.410956\pi\)
0.970414 + 0.241448i \(0.0776222\pi\)
\(12\) 0 0
\(13\) −1.31594 0.759761i −0.364977 0.210720i 0.306285 0.951940i \(-0.400914\pi\)
−0.671262 + 0.741220i \(0.734247\pi\)
\(14\) 0 0
\(15\) −0.00655885 0.0294097i −0.00169349 0.00759354i
\(16\) 0 0
\(17\) −1.91072 −0.463418 −0.231709 0.972785i \(-0.574432\pi\)
−0.231709 + 0.972785i \(0.574432\pi\)
\(18\) 0 0
\(19\) 6.45989i 1.48200i 0.671505 + 0.741000i \(0.265648\pi\)
−0.671505 + 0.741000i \(0.734352\pi\)
\(20\) 0 0
\(21\) −4.19307 + 1.84882i −0.915004 + 0.403445i
\(22\) 0 0
\(23\) 3.82432 + 2.20797i 0.797426 + 0.460394i 0.842570 0.538586i \(-0.181041\pi\)
−0.0451444 + 0.998980i \(0.514375\pi\)
\(24\) 0 0
\(25\) 2.49985 + 4.32986i 0.499970 + 0.865973i
\(26\) 0 0
\(27\) 3.17878 + 4.11040i 0.611756 + 0.791047i
\(28\) 0 0
\(29\) 1.73895 1.00399i 0.322916 0.186435i −0.329776 0.944059i \(-0.606973\pi\)
0.652691 + 0.757624i \(0.273640\pi\)
\(30\) 0 0
\(31\) 6.51946 + 3.76401i 1.17093 + 0.676036i 0.953899 0.300129i \(-0.0970297\pi\)
0.217030 + 0.976165i \(0.430363\pi\)
\(32\) 0 0
\(33\) −2.47644 + 7.88892i −0.431093 + 1.37328i
\(34\) 0 0
\(35\) −0.0346205 + 0.0303309i −0.00585193 + 0.00512686i
\(36\) 0 0
\(37\) −6.10467 −1.00360 −0.501801 0.864983i \(-0.667329\pi\)
−0.501801 + 0.864983i \(0.667329\pi\)
\(38\) 0 0
\(39\) 2.56878 0.572882i 0.411335 0.0917346i
\(40\) 0 0
\(41\) 4.67759 8.10182i 0.730516 1.26529i −0.226146 0.974093i \(-0.572613\pi\)
0.956663 0.291198i \(-0.0940539\pi\)
\(42\) 0 0
\(43\) −1.46638 2.53985i −0.223621 0.387323i 0.732284 0.680999i \(-0.238454\pi\)
−0.955905 + 0.293677i \(0.905121\pi\)
\(44\) 0 0
\(45\) 0.0428272 + 0.0298274i 0.00638430 + 0.00444640i
\(46\) 0 0
\(47\) −1.45659 2.52289i −0.212466 0.368001i 0.740020 0.672585i \(-0.234816\pi\)
−0.952486 + 0.304584i \(0.901483\pi\)
\(48\) 0 0
\(49\) 5.54924 + 4.26685i 0.792748 + 0.609550i
\(50\) 0 0
\(51\) 2.43718 2.23892i 0.341273 0.313511i
\(52\) 0 0
\(53\) 8.94416i 1.22858i 0.789082 + 0.614288i \(0.210557\pi\)
−0.789082 + 0.614288i \(0.789443\pi\)
\(54\) 0 0
\(55\) 0.0830491i 0.0111983i
\(56\) 0 0
\(57\) −7.56947 8.23976i −1.00260 1.09138i
\(58\) 0 0
\(59\) −4.08337 + 7.07261i −0.531610 + 0.920776i 0.467709 + 0.883882i \(0.345079\pi\)
−0.999319 + 0.0368933i \(0.988254\pi\)
\(60\) 0 0
\(61\) −0.484917 + 0.279967i −0.0620873 + 0.0358461i −0.530722 0.847546i \(-0.678079\pi\)
0.468635 + 0.883392i \(0.344746\pi\)
\(62\) 0 0
\(63\) 3.18200 7.27151i 0.400894 0.916124i
\(64\) 0 0
\(65\) 0.0228932 0.0132174i 0.00283956 0.00163942i
\(66\) 0 0
\(67\) −3.69036 + 6.39189i −0.450849 + 0.780893i −0.998439 0.0558536i \(-0.982212\pi\)
0.547590 + 0.836747i \(0.315545\pi\)
\(68\) 0 0
\(69\) −7.46525 + 1.66488i −0.898710 + 0.200428i
\(70\) 0 0
\(71\) 11.6825i 1.38645i −0.720719 0.693227i \(-0.756188\pi\)
0.720719 0.693227i \(-0.243812\pi\)
\(72\) 0 0
\(73\) 12.8105i 1.49936i −0.661801 0.749680i \(-0.730208\pi\)
0.661801 0.749680i \(-0.269792\pi\)
\(74\) 0 0
\(75\) −8.26221 2.59362i −0.954037 0.299486i
\(76\) 0 0
\(77\) 12.3889 2.45790i 1.41184 0.280103i
\(78\) 0 0
\(79\) 4.75827 + 8.24157i 0.535348 + 0.927249i 0.999146 + 0.0413086i \(0.0131527\pi\)
−0.463799 + 0.885940i \(0.653514\pi\)
\(80\) 0 0
\(81\) −8.87103 1.51814i −0.985670 0.168683i
\(82\) 0 0
\(83\) −6.67701 11.5649i −0.732897 1.26942i −0.955640 0.294538i \(-0.904834\pi\)
0.222743 0.974877i \(-0.428499\pi\)
\(84\) 0 0
\(85\) 0.0166202 0.0287871i 0.00180272 0.00312240i
\(86\) 0 0
\(87\) −1.04165 + 3.31825i −0.111676 + 0.355754i
\(88\) 0 0
\(89\) 4.00356 0.424376 0.212188 0.977229i \(-0.431941\pi\)
0.212188 + 0.977229i \(0.431941\pi\)
\(90\) 0 0
\(91\) −2.64925 3.02392i −0.277717 0.316993i
\(92\) 0 0
\(93\) −12.7263 + 2.83817i −1.31965 + 0.294305i
\(94\) 0 0
\(95\) −0.0973252 0.0561907i −0.00998536 0.00576505i
\(96\) 0 0
\(97\) 4.09514 2.36433i 0.415799 0.240062i −0.277479 0.960732i \(-0.589499\pi\)
0.693278 + 0.720670i \(0.256166\pi\)
\(98\) 0 0
\(99\) −6.08519 12.9643i −0.611585 1.30296i
\(100\) 0 0
\(101\) −2.98289 5.16652i −0.296809 0.514088i 0.678595 0.734513i \(-0.262589\pi\)
−0.975404 + 0.220424i \(0.929256\pi\)
\(102\) 0 0
\(103\) 10.0607 + 5.80854i 0.991308 + 0.572332i 0.905665 0.423994i \(-0.139372\pi\)
0.0856432 + 0.996326i \(0.472705\pi\)
\(104\) 0 0
\(105\) 0.00861864 0.0792550i 0.000841093 0.00773449i
\(106\) 0 0
\(107\) 11.8633i 1.14687i −0.819251 0.573434i \(-0.805611\pi\)
0.819251 0.573434i \(-0.194389\pi\)
\(108\) 0 0
\(109\) −3.23313 −0.309677 −0.154839 0.987940i \(-0.549486\pi\)
−0.154839 + 0.987940i \(0.549486\pi\)
\(110\) 0 0
\(111\) 7.78667 7.15324i 0.739078 0.678955i
\(112\) 0 0
\(113\) −3.33701 1.92662i −0.313919 0.181241i 0.334760 0.942304i \(-0.391345\pi\)
−0.648679 + 0.761062i \(0.724678\pi\)
\(114\) 0 0
\(115\) −0.0665310 + 0.0384117i −0.00620404 + 0.00358191i
\(116\) 0 0
\(117\) −2.60527 + 3.74074i −0.240857 + 0.345831i
\(118\) 0 0
\(119\) −4.78620 1.62735i −0.438751 0.149179i
\(120\) 0 0
\(121\) 5.89464 10.2098i 0.535876 0.928165i
\(122\) 0 0
\(123\) 3.52704 + 15.8151i 0.318022 + 1.42600i
\(124\) 0 0
\(125\) −0.173963 −0.0155597
\(126\) 0 0
\(127\) −21.9600 −1.94864 −0.974318 0.225175i \(-0.927705\pi\)
−0.974318 + 0.225175i \(0.927705\pi\)
\(128\) 0 0
\(129\) 4.84651 + 1.52139i 0.426711 + 0.133951i
\(130\) 0 0
\(131\) 8.11460 14.0549i 0.708976 1.22798i −0.256261 0.966608i \(-0.582491\pi\)
0.965237 0.261375i \(-0.0841760\pi\)
\(132\) 0 0
\(133\) −5.50185 + 16.1815i −0.477071 + 1.40311i
\(134\) 0 0
\(135\) −0.0895779 + 0.0121378i −0.00770964 + 0.00104465i
\(136\) 0 0
\(137\) 5.40456 3.12033i 0.461743 0.266587i −0.251034 0.967978i \(-0.580771\pi\)
0.712777 + 0.701391i \(0.247437\pi\)
\(138\) 0 0
\(139\) 9.14307 + 5.27875i 0.775505 + 0.447738i 0.834835 0.550500i \(-0.185563\pi\)
−0.0593300 + 0.998238i \(0.518896\pi\)
\(140\) 0 0
\(141\) 4.81415 + 1.51123i 0.405425 + 0.127269i
\(142\) 0 0
\(143\) −7.25391 −0.606603
\(144\) 0 0
\(145\) 0.0349323i 0.00290097i
\(146\) 0 0
\(147\) −12.0779 + 1.05992i −0.996171 + 0.0874208i
\(148\) 0 0
\(149\) −7.13927 4.12186i −0.584872 0.337676i 0.178195 0.983995i \(-0.442974\pi\)
−0.763067 + 0.646319i \(0.776307\pi\)
\(150\) 0 0
\(151\) 6.58096 + 11.3986i 0.535551 + 0.927602i 0.999136 + 0.0415494i \(0.0132294\pi\)
−0.463585 + 0.886052i \(0.653437\pi\)
\(152\) 0 0
\(153\) −0.485200 + 5.71159i −0.0392261 + 0.461755i
\(154\) 0 0
\(155\) −0.113418 + 0.0654818i −0.00910993 + 0.00525962i
\(156\) 0 0
\(157\) −7.30128 4.21540i −0.582705 0.336425i 0.179502 0.983758i \(-0.442551\pi\)
−0.762208 + 0.647332i \(0.775885\pi\)
\(158\) 0 0
\(159\) −10.4805 11.4085i −0.831154 0.904754i
\(160\) 0 0
\(161\) 7.69909 + 8.78794i 0.606774 + 0.692587i
\(162\) 0 0
\(163\) −8.15879 −0.639046 −0.319523 0.947579i \(-0.603523\pi\)
−0.319523 + 0.947579i \(0.603523\pi\)
\(164\) 0 0
\(165\) −0.0973140 0.105931i −0.00757588 0.00824674i
\(166\) 0 0
\(167\) −11.3487 + 19.6566i −0.878191 + 1.52107i −0.0248668 + 0.999691i \(0.507916\pi\)
−0.853324 + 0.521381i \(0.825417\pi\)
\(168\) 0 0
\(169\) −5.34553 9.25872i −0.411194 0.712210i
\(170\) 0 0
\(171\) 19.3101 + 1.64039i 1.47668 + 0.125444i
\(172\) 0 0
\(173\) 2.92866 + 5.07259i 0.222662 + 0.385662i 0.955615 0.294617i \(-0.0951921\pi\)
−0.732953 + 0.680279i \(0.761859\pi\)
\(174\) 0 0
\(175\) 2.57420 + 12.9751i 0.194591 + 0.980823i
\(176\) 0 0
\(177\) −3.07898 13.8061i −0.231431 1.03773i
\(178\) 0 0
\(179\) 13.8391i 1.03438i 0.855869 + 0.517192i \(0.173023\pi\)
−0.855869 + 0.517192i \(0.826977\pi\)
\(180\) 0 0
\(181\) 16.7885i 1.24788i −0.781472 0.623940i \(-0.785531\pi\)
0.781472 0.623940i \(-0.214469\pi\)
\(182\) 0 0
\(183\) 0.290469 0.925314i 0.0214721 0.0684012i
\(184\) 0 0
\(185\) 0.0531009 0.0919735i 0.00390406 0.00676202i
\(186\) 0 0
\(187\) −7.89939 + 4.56071i −0.577660 + 0.333512i
\(188\) 0 0
\(189\) 4.46178 + 13.0036i 0.324546 + 0.945870i
\(190\) 0 0
\(191\) −5.62396 + 3.24700i −0.406935 + 0.234944i −0.689472 0.724312i \(-0.742157\pi\)
0.282537 + 0.959256i \(0.408824\pi\)
\(192\) 0 0
\(193\) 8.37754 14.5103i 0.603028 1.04448i −0.389331 0.921098i \(-0.627294\pi\)
0.992360 0.123378i \(-0.0393728\pi\)
\(194\) 0 0
\(195\) −0.0137132 + 0.0436846i −0.000982025 + 0.00312832i
\(196\) 0 0
\(197\) 5.89156i 0.419756i 0.977728 + 0.209878i \(0.0673067\pi\)
−0.977728 + 0.209878i \(0.932693\pi\)
\(198\) 0 0
\(199\) 18.7851i 1.33164i −0.746113 0.665819i \(-0.768082\pi\)
0.746113 0.665819i \(-0.231918\pi\)
\(200\) 0 0
\(201\) −2.78264 12.4772i −0.196272 0.880077i
\(202\) 0 0
\(203\) 5.21103 1.03385i 0.365742 0.0725617i
\(204\) 0 0
\(205\) 0.0813751 + 0.140946i 0.00568348 + 0.00984408i
\(206\) 0 0
\(207\) 7.57127 10.8711i 0.526240 0.755594i
\(208\) 0 0
\(209\) 15.4191 + 26.7067i 1.06656 + 1.84734i
\(210\) 0 0
\(211\) 10.9508 18.9674i 0.753886 1.30577i −0.192040 0.981387i \(-0.561510\pi\)
0.945926 0.324382i \(-0.105156\pi\)
\(212\) 0 0
\(213\) 13.6891 + 14.9013i 0.937962 + 1.02102i
\(214\) 0 0
\(215\) 0.0510207 0.00347958
\(216\) 0 0
\(217\) 13.1249 + 14.9811i 0.890978 + 1.01698i
\(218\) 0 0
\(219\) 15.0109 + 16.3402i 1.01434 + 1.10417i
\(220\) 0 0
\(221\) 2.51440 + 1.45169i 0.169137 + 0.0976514i
\(222\) 0 0
\(223\) −11.2455 + 6.49259i −0.753054 + 0.434776i −0.826796 0.562501i \(-0.809839\pi\)
0.0737421 + 0.997277i \(0.476506\pi\)
\(224\) 0 0
\(225\) 13.5778 6.37313i 0.905185 0.424875i
\(226\) 0 0
\(227\) 4.31567 + 7.47496i 0.286441 + 0.496131i 0.972958 0.230984i \(-0.0741944\pi\)
−0.686516 + 0.727114i \(0.740861\pi\)
\(228\) 0 0
\(229\) 7.37873 + 4.26011i 0.487600 + 0.281516i 0.723578 0.690242i \(-0.242496\pi\)
−0.235978 + 0.971758i \(0.575829\pi\)
\(230\) 0 0
\(231\) −12.9222 + 17.6519i −0.850221 + 1.16141i
\(232\) 0 0
\(233\) 0.246911i 0.0161757i −0.999967 0.00808783i \(-0.997426\pi\)
0.999967 0.00808783i \(-0.00257447\pi\)
\(234\) 0 0
\(235\) 0.0506801 0.00330600
\(236\) 0 0
\(237\) −15.7265 4.93676i −1.02154 0.320677i
\(238\) 0 0
\(239\) −23.5814 13.6147i −1.52535 0.880664i −0.999548 0.0300592i \(-0.990430\pi\)
−0.525806 0.850604i \(-0.676236\pi\)
\(240\) 0 0
\(241\) −5.71926 + 3.30201i −0.368410 + 0.212701i −0.672763 0.739858i \(-0.734893\pi\)
0.304354 + 0.952559i \(0.401559\pi\)
\(242\) 0 0
\(243\) 13.0941 8.45833i 0.839990 0.542602i
\(244\) 0 0
\(245\) −0.112554 + 0.0464904i −0.00719082 + 0.00297017i
\(246\) 0 0
\(247\) 4.90797 8.50086i 0.312287 0.540897i
\(248\) 0 0
\(249\) 22.0681 + 6.92748i 1.39851 + 0.439011i
\(250\) 0 0
\(251\) −11.1930 −0.706496 −0.353248 0.935530i \(-0.614923\pi\)
−0.353248 + 0.935530i \(0.614923\pi\)
\(252\) 0 0
\(253\) 21.0809 1.32534
\(254\) 0 0
\(255\) 0.0125321 + 0.0561937i 0.000784793 + 0.00351899i
\(256\) 0 0
\(257\) 4.85692 8.41243i 0.302966 0.524753i −0.673840 0.738877i \(-0.735356\pi\)
0.976806 + 0.214124i \(0.0686898\pi\)
\(258\) 0 0
\(259\) −15.2917 5.19931i −0.950180 0.323069i
\(260\) 0 0
\(261\) −2.55956 5.45309i −0.158433 0.337538i
\(262\) 0 0
\(263\) −5.18772 + 2.99513i −0.319888 + 0.184688i −0.651343 0.758784i \(-0.725794\pi\)
0.331454 + 0.943471i \(0.392461\pi\)
\(264\) 0 0
\(265\) −0.134753 0.0777999i −0.00827784 0.00477921i
\(266\) 0 0
\(267\) −5.10665 + 4.69123i −0.312522 + 0.287099i
\(268\) 0 0
\(269\) −22.7332 −1.38607 −0.693034 0.720905i \(-0.743727\pi\)
−0.693034 + 0.720905i \(0.743727\pi\)
\(270\) 0 0
\(271\) 1.03859i 0.0630896i −0.999502 0.0315448i \(-0.989957\pi\)
0.999502 0.0315448i \(-0.0100427\pi\)
\(272\) 0 0
\(273\) 6.92251 + 0.752794i 0.418970 + 0.0455611i
\(274\) 0 0
\(275\) 20.6700 + 11.9338i 1.24645 + 0.719636i
\(276\) 0 0
\(277\) 7.59222 + 13.1501i 0.456172 + 0.790113i 0.998755 0.0498891i \(-0.0158868\pi\)
−0.542583 + 0.840002i \(0.682553\pi\)
\(278\) 0 0
\(279\) 12.9070 18.5324i 0.772723 1.10950i
\(280\) 0 0
\(281\) 12.8641 7.42710i 0.767408 0.443063i −0.0645409 0.997915i \(-0.520558\pi\)
0.831949 + 0.554852i \(0.187225\pi\)
\(282\) 0 0
\(283\) −28.6064 16.5159i −1.70048 0.981770i −0.945274 0.326277i \(-0.894206\pi\)
−0.755202 0.655493i \(-0.772461\pi\)
\(284\) 0 0
\(285\) 0.189983 0.0423695i 0.0112536 0.00250975i
\(286\) 0 0
\(287\) 18.6172 16.3105i 1.09894 0.962780i
\(288\) 0 0
\(289\) −13.3491 −0.785244
\(290\) 0 0
\(291\) −2.45302 + 7.81432i −0.143799 + 0.458083i
\(292\) 0 0
\(293\) −12.7859 + 22.1459i −0.746963 + 1.29378i 0.202309 + 0.979322i \(0.435155\pi\)
−0.949272 + 0.314456i \(0.898178\pi\)
\(294\) 0 0
\(295\) −0.0710377 0.123041i −0.00413597 0.00716372i
\(296\) 0 0
\(297\) 22.9530 + 9.40594i 1.33187 + 0.545788i
\(298\) 0 0
\(299\) −3.35506 5.81114i −0.194028 0.336067i
\(300\) 0 0
\(301\) −1.50999 7.61101i −0.0870345 0.438692i
\(302\) 0 0
\(303\) 9.85871 + 3.09479i 0.566368 + 0.177791i
\(304\) 0 0
\(305\) 0.00974107i 0.000557772i
\(306\) 0 0
\(307\) 6.04267i 0.344873i 0.985021 + 0.172437i \(0.0551640\pi\)
−0.985021 + 0.172437i \(0.944836\pi\)
\(308\) 0 0
\(309\) −19.6389 + 4.37981i −1.11722 + 0.249159i
\(310\) 0 0
\(311\) −17.0708 + 29.5674i −0.967994 + 1.67661i −0.266648 + 0.963794i \(0.585916\pi\)
−0.701346 + 0.712821i \(0.747417\pi\)
\(312\) 0 0
\(313\) −10.9506 + 6.32235i −0.618966 + 0.357360i −0.776466 0.630159i \(-0.782990\pi\)
0.157500 + 0.987519i \(0.449657\pi\)
\(314\) 0 0
\(315\) 0.0818749 + 0.111191i 0.00461313 + 0.00626489i
\(316\) 0 0
\(317\) −4.95447 + 2.86047i −0.278271 + 0.160660i −0.632640 0.774446i \(-0.718029\pi\)
0.354369 + 0.935105i \(0.384696\pi\)
\(318\) 0 0
\(319\) 4.79284 8.30144i 0.268347 0.464791i
\(320\) 0 0
\(321\) 13.9010 + 15.1320i 0.775878 + 0.844583i
\(322\) 0 0
\(323\) 12.3431i 0.686786i
\(324\) 0 0
\(325\) 7.59715i 0.421414i
\(326\) 0 0
\(327\) 4.12394 3.78846i 0.228054 0.209502i
\(328\) 0 0
\(329\) −1.49991 7.56021i −0.0826929 0.416808i
\(330\) 0 0
\(331\) 7.18521 + 12.4452i 0.394935 + 0.684047i 0.993093 0.117331i \(-0.0374338\pi\)
−0.598158 + 0.801378i \(0.704100\pi\)
\(332\) 0 0
\(333\) −1.55019 + 18.2483i −0.0849500 + 1.00000i
\(334\) 0 0
\(335\) −0.0642004 0.111198i −0.00350764 0.00607542i
\(336\) 0 0
\(337\) 2.20813 3.82460i 0.120285 0.208339i −0.799595 0.600539i \(-0.794953\pi\)
0.919880 + 0.392200i \(0.128286\pi\)
\(338\) 0 0
\(339\) 6.51399 1.45273i 0.353791 0.0789015i
\(340\) 0 0
\(341\) 35.9373 1.94612
\(342\) 0 0
\(343\) 10.2663 + 15.4144i 0.554330 + 0.832297i
\(344\) 0 0
\(345\) 0.0398526 0.126954i 0.00214559 0.00683496i
\(346\) 0 0
\(347\) 0.305641 + 0.176462i 0.0164077 + 0.00947298i 0.508181 0.861250i \(-0.330318\pi\)
−0.491774 + 0.870723i \(0.663651\pi\)
\(348\) 0 0
\(349\) −1.16292 + 0.671412i −0.0622497 + 0.0359399i −0.530802 0.847496i \(-0.678109\pi\)
0.468552 + 0.883436i \(0.344776\pi\)
\(350\) 0 0
\(351\) −1.06017 7.82417i −0.0565879 0.417623i
\(352\) 0 0
\(353\) 8.09184 + 14.0155i 0.430685 + 0.745968i 0.996932 0.0782669i \(-0.0249386\pi\)
−0.566247 + 0.824235i \(0.691605\pi\)
\(354\) 0 0
\(355\) 0.176009 + 0.101619i 0.00934159 + 0.00539337i
\(356\) 0 0
\(357\) 8.01180 3.53258i 0.424029 0.186964i
\(358\) 0 0
\(359\) 13.1262i 0.692777i 0.938091 + 0.346388i \(0.112592\pi\)
−0.938091 + 0.346388i \(0.887408\pi\)
\(360\) 0 0
\(361\) −22.7302 −1.19632
\(362\) 0 0
\(363\) 4.44473 + 19.9300i 0.233288 + 1.04605i
\(364\) 0 0
\(365\) 0.193004 + 0.111431i 0.0101023 + 0.00583257i
\(366\) 0 0
\(367\) 27.4478 15.8470i 1.43276 0.827206i 0.435432 0.900222i \(-0.356596\pi\)
0.997331 + 0.0730154i \(0.0232622\pi\)
\(368\) 0 0
\(369\) −23.0304 16.0397i −1.19892 0.834995i
\(370\) 0 0
\(371\) −7.61769 + 22.4044i −0.395491 + 1.16318i
\(372\) 0 0
\(373\) 8.85016 15.3289i 0.458244 0.793702i −0.540624 0.841264i \(-0.681812\pi\)
0.998868 + 0.0475622i \(0.0151452\pi\)
\(374\) 0 0
\(375\) 0.221894 0.203843i 0.0114586 0.0105264i
\(376\) 0 0
\(377\) −3.05116 −0.157142
\(378\) 0 0
\(379\) 5.09384 0.261653 0.130827 0.991405i \(-0.458237\pi\)
0.130827 + 0.991405i \(0.458237\pi\)
\(380\) 0 0
\(381\) 28.0106 25.7320i 1.43503 1.31829i
\(382\) 0 0
\(383\) −6.84567 + 11.8571i −0.349798 + 0.605867i −0.986213 0.165479i \(-0.947083\pi\)
0.636416 + 0.771346i \(0.280416\pi\)
\(384\) 0 0
\(385\) −0.0707324 + 0.208031i −0.00360486 + 0.0106023i
\(386\) 0 0
\(387\) −7.96456 + 3.73840i −0.404861 + 0.190033i
\(388\) 0 0
\(389\) −15.9566 + 9.21256i −0.809033 + 0.467095i −0.846620 0.532198i \(-0.821366\pi\)
0.0375873 + 0.999293i \(0.488033\pi\)
\(390\) 0 0
\(391\) −7.30721 4.21882i −0.369542 0.213355i
\(392\) 0 0
\(393\) 6.11865 + 27.4358i 0.308645 + 1.38395i
\(394\) 0 0
\(395\) −0.165558 −0.00833010
\(396\) 0 0
\(397\) 7.04050i 0.353352i 0.984269 + 0.176676i \(0.0565345\pi\)
−0.984269 + 0.176676i \(0.943465\pi\)
\(398\) 0 0
\(399\) −11.9432 27.0868i −0.597906 1.35604i
\(400\) 0 0
\(401\) −31.0404 17.9212i −1.55008 0.894940i −0.998134 0.0610617i \(-0.980551\pi\)
−0.551948 0.833879i \(-0.686115\pi\)
\(402\) 0 0
\(403\) −5.71949 9.90646i −0.284908 0.493476i
\(404\) 0 0
\(405\) 0.100036 0.120446i 0.00497084 0.00598502i
\(406\) 0 0
\(407\) −25.2382 + 14.5713i −1.25101 + 0.722271i
\(408\) 0 0
\(409\) −11.5808 6.68621i −0.572636 0.330612i 0.185565 0.982632i \(-0.440588\pi\)
−0.758202 + 0.652020i \(0.773922\pi\)
\(410\) 0 0
\(411\) −3.23738 + 10.3129i −0.159688 + 0.508699i
\(412\) 0 0
\(413\) −16.2522 + 14.2385i −0.799720 + 0.700632i
\(414\) 0 0
\(415\) 0.232317 0.0114040
\(416\) 0 0
\(417\) −17.8477 + 3.98034i −0.874005 + 0.194918i
\(418\) 0 0
\(419\) 20.1508 34.9023i 0.984433 1.70509i 0.340001 0.940425i \(-0.389572\pi\)
0.644431 0.764662i \(-0.277094\pi\)
\(420\) 0 0
\(421\) −6.04485 10.4700i −0.294608 0.510276i 0.680286 0.732947i \(-0.261856\pi\)
−0.974894 + 0.222671i \(0.928522\pi\)
\(422\) 0 0
\(423\) −7.91139 + 3.71344i −0.384665 + 0.180554i
\(424\) 0 0
\(425\) −4.77652 8.27317i −0.231695 0.401308i
\(426\) 0 0
\(427\) −1.45312 + 0.288294i −0.0703216 + 0.0139515i
\(428\) 0 0
\(429\) 9.25256 8.49988i 0.446718 0.410378i
\(430\) 0 0
\(431\) 20.2652i 0.976140i −0.872805 0.488070i \(-0.837701\pi\)
0.872805 0.488070i \(-0.162299\pi\)
\(432\) 0 0
\(433\) 33.6180i 1.61558i −0.589472 0.807789i \(-0.700664\pi\)
0.589472 0.807789i \(-0.299336\pi\)
\(434\) 0 0
\(435\) −0.0409324 0.0445570i −0.00196256 0.00213635i
\(436\) 0 0
\(437\) −14.2633 + 24.7047i −0.682304 + 1.18179i
\(438\) 0 0
\(439\) −10.2274 + 5.90480i −0.488128 + 0.281821i −0.723797 0.690013i \(-0.757605\pi\)
0.235670 + 0.971833i \(0.424272\pi\)
\(440\) 0 0
\(441\) 14.1638 15.5045i 0.674464 0.738307i
\(442\) 0 0
\(443\) 0.0807550 0.0466239i 0.00383678 0.00221517i −0.498080 0.867131i \(-0.665962\pi\)
0.501917 + 0.864916i \(0.332628\pi\)
\(444\) 0 0
\(445\) −0.0348246 + 0.0603179i −0.00165084 + 0.00285934i
\(446\) 0 0
\(447\) 13.9362 3.10800i 0.659158 0.147003i
\(448\) 0 0
\(449\) 14.9759i 0.706755i 0.935481 + 0.353378i \(0.114967\pi\)
−0.935481 + 0.353378i \(0.885033\pi\)
\(450\) 0 0
\(451\) 44.6598i 2.10295i
\(452\) 0 0
\(453\) −21.7506 6.82783i −1.02193 0.320799i
\(454\) 0 0
\(455\) 0.0686029 0.0136105i 0.00321615 0.000638071i
\(456\) 0 0
\(457\) −3.63391 6.29411i −0.169987 0.294426i 0.768428 0.639936i \(-0.221039\pi\)
−0.938415 + 0.345510i \(0.887706\pi\)
\(458\) 0 0
\(459\) −6.07376 7.85383i −0.283499 0.366585i
\(460\) 0 0
\(461\) −3.63421 6.29464i −0.169262 0.293170i 0.768899 0.639371i \(-0.220805\pi\)
−0.938161 + 0.346200i \(0.887472\pi\)
\(462\) 0 0
\(463\) −15.5092 + 26.8627i −0.720774 + 1.24842i 0.239916 + 0.970794i \(0.422880\pi\)
−0.960690 + 0.277624i \(0.910453\pi\)
\(464\) 0 0
\(465\) 0.0679381 0.216423i 0.00315055 0.0100364i
\(466\) 0 0
\(467\) 22.6887 1.04991 0.524954 0.851130i \(-0.324082\pi\)
0.524954 + 0.851130i \(0.324082\pi\)
\(468\) 0 0
\(469\) −14.6880 + 12.8681i −0.678228 + 0.594194i
\(470\) 0 0
\(471\) 14.2524 3.17853i 0.656717 0.146459i
\(472\) 0 0
\(473\) −12.1247 7.00022i −0.557496 0.321871i
\(474\) 0 0
\(475\) −27.9704 + 16.1487i −1.28337 + 0.740955i
\(476\) 0 0
\(477\) 26.7362 + 2.27124i 1.22417 + 0.103993i
\(478\) 0 0
\(479\) 0.547354 + 0.948045i 0.0250092 + 0.0433173i 0.878259 0.478185i \(-0.158705\pi\)
−0.853250 + 0.521502i \(0.825372\pi\)
\(480\) 0 0
\(481\) 8.03341 + 4.63809i 0.366292 + 0.211479i
\(482\) 0 0
\(483\) −20.1178 2.18772i −0.915391 0.0995449i
\(484\) 0 0
\(485\) 0.0822637i 0.00373540i
\(486\) 0 0
\(487\) 12.3778 0.560892 0.280446 0.959870i \(-0.409518\pi\)
0.280446 + 0.959870i \(0.409518\pi\)
\(488\) 0 0
\(489\) 10.4067 9.56018i 0.470609 0.432326i
\(490\) 0 0
\(491\) 27.1411 + 15.6700i 1.22486 + 0.707175i 0.965951 0.258726i \(-0.0833026\pi\)
0.258912 + 0.965901i \(0.416636\pi\)
\(492\) 0 0
\(493\) −3.32266 + 1.91834i −0.149645 + 0.0863975i
\(494\) 0 0
\(495\) 0.248253 + 0.0210891i 0.0111581 + 0.000947884i
\(496\) 0 0
\(497\) 9.94989 29.2636i 0.446314 1.31265i
\(498\) 0 0
\(499\) 16.9940 29.4345i 0.760756 1.31767i −0.181706 0.983353i \(-0.558162\pi\)
0.942462 0.334315i \(-0.108505\pi\)
\(500\) 0 0
\(501\) −8.55728 38.3705i −0.382311 1.71427i
\(502\) 0 0
\(503\) −1.16212 −0.0518163 −0.0259082 0.999664i \(-0.508248\pi\)
−0.0259082 + 0.999664i \(0.508248\pi\)
\(504\) 0 0
\(505\) 0.103786 0.00461840
\(506\) 0 0
\(507\) 17.6674 + 5.54605i 0.784637 + 0.246309i
\(508\) 0 0
\(509\) 18.3129 31.7189i 0.811705 1.40591i −0.0999657 0.994991i \(-0.531873\pi\)
0.911670 0.410923i \(-0.134793\pi\)
\(510\) 0 0
\(511\) 10.9107 32.0893i 0.482659 1.41955i
\(512\) 0 0
\(513\) −26.5527 + 20.5345i −1.17233 + 0.906622i
\(514\) 0 0
\(515\) −0.175024 + 0.101050i −0.00771247 + 0.00445280i
\(516\) 0 0
\(517\) −12.0438 6.95349i −0.529686 0.305814i
\(518\) 0 0
\(519\) −9.67946 3.03852i −0.424881 0.133376i
\(520\) 0 0
\(521\) −42.9713 −1.88261 −0.941303 0.337563i \(-0.890397\pi\)
−0.941303 + 0.337563i \(0.890397\pi\)
\(522\) 0 0
\(523\) 21.1229i 0.923639i 0.886974 + 0.461820i \(0.152803\pi\)
−0.886974 + 0.461820i \(0.847197\pi\)
\(524\) 0 0
\(525\) −18.4872 13.5337i −0.806847 0.590658i
\(526\) 0 0
\(527\) −12.4569 7.19197i −0.542630 0.313287i
\(528\) 0 0
\(529\) −1.74972 3.03060i −0.0760746 0.131765i
\(530\) 0 0
\(531\) 20.1048 + 14.0021i 0.872473 + 0.607641i
\(532\) 0 0
\(533\) −12.3109 + 7.10770i −0.533244 + 0.307868i
\(534\) 0 0
\(535\) 0.178733 + 0.103192i 0.00772732 + 0.00446137i
\(536\) 0 0
\(537\) −16.2162 17.6522i −0.699780 0.761747i
\(538\) 0 0
\(539\) 33.1264 + 4.39468i 1.42686 + 0.189292i
\(540\) 0 0
\(541\) −32.2695 −1.38737 −0.693687 0.720277i \(-0.744015\pi\)
−0.693687 + 0.720277i \(0.744015\pi\)
\(542\) 0 0
\(543\) 19.6722 + 21.4142i 0.844214 + 0.918971i
\(544\) 0 0
\(545\) 0.0281230 0.0487105i 0.00120466 0.00208653i
\(546\) 0 0
\(547\) −11.9637 20.7218i −0.511532 0.886000i −0.999911 0.0133677i \(-0.995745\pi\)
0.488379 0.872632i \(-0.337589\pi\)
\(548\) 0 0
\(549\) 0.713749 + 1.52062i 0.0304621 + 0.0648987i
\(550\) 0 0
\(551\) 6.48563 + 11.2334i 0.276297 + 0.478561i
\(552\) 0 0
\(553\) 4.89979 + 24.6971i 0.208360 + 1.05023i
\(554\) 0 0
\(555\) 0.0400396 + 0.179536i 0.00169959 + 0.00762089i
\(556\) 0 0
\(557\) 34.1881i 1.44860i −0.689486 0.724299i \(-0.742164\pi\)
0.689486 0.724299i \(-0.257836\pi\)
\(558\) 0 0
\(559\) 4.45639i 0.188485i
\(560\) 0 0
\(561\) 4.73179 15.0735i 0.199777 0.636405i
\(562\) 0 0
\(563\) −9.79724 + 16.9693i −0.412904 + 0.715171i −0.995206 0.0978016i \(-0.968819\pi\)
0.582302 + 0.812973i \(0.302152\pi\)
\(564\) 0 0
\(565\) 0.0580533 0.0335171i 0.00244232 0.00141007i
\(566\) 0 0
\(567\) −20.9282 11.3582i −0.878903 0.477001i
\(568\) 0 0
\(569\) 21.5347 12.4330i 0.902780 0.521220i 0.0246790 0.999695i \(-0.492144\pi\)
0.878101 + 0.478475i \(0.158810\pi\)
\(570\) 0 0
\(571\) 7.82182 13.5478i 0.327333 0.566957i −0.654649 0.755933i \(-0.727183\pi\)
0.981982 + 0.188976i \(0.0605168\pi\)
\(572\) 0 0
\(573\) 3.36880 10.7316i 0.140733 0.448318i
\(574\) 0 0
\(575\) 22.0784i 0.920732i
\(576\) 0 0
\(577\) 0.540475i 0.0225003i −0.999937 0.0112501i \(-0.996419\pi\)
0.999937 0.0112501i \(-0.00358110\pi\)
\(578\) 0 0
\(579\) 6.31691 + 28.3248i 0.262522 + 1.17714i
\(580\) 0 0
\(581\) −6.87560 34.6560i −0.285248 1.43777i
\(582\) 0 0
\(583\) 21.3489 + 36.9773i 0.884180 + 1.53144i
\(584\) 0 0
\(585\) −0.0336965 0.0717896i −0.00139318 0.00296813i
\(586\) 0 0
\(587\) −18.2822 31.6656i −0.754586 1.30698i −0.945580 0.325390i \(-0.894504\pi\)
0.190994 0.981591i \(-0.438829\pi\)
\(588\) 0 0
\(589\) −24.3151 + 42.1150i −1.00189 + 1.73532i
\(590\) 0 0
\(591\) −6.90352 7.51484i −0.283973 0.309119i
\(592\) 0 0
\(593\) −42.9714 −1.76462 −0.882312 0.470665i \(-0.844014\pi\)
−0.882312 + 0.470665i \(0.844014\pi\)
\(594\) 0 0
\(595\) 0.0661501 0.0579540i 0.00271189 0.00237588i
\(596\) 0 0
\(597\) 22.0117 + 23.9608i 0.900878 + 0.980652i
\(598\) 0 0
\(599\) 22.7897 + 13.1576i 0.931161 + 0.537606i 0.887178 0.461426i \(-0.152662\pi\)
0.0439823 + 0.999032i \(0.485995\pi\)
\(600\) 0 0
\(601\) 27.3703 15.8022i 1.11646 0.644587i 0.175963 0.984397i \(-0.443696\pi\)
0.940494 + 0.339810i \(0.110363\pi\)
\(602\) 0 0
\(603\) 18.1697 + 12.6545i 0.739929 + 0.515330i
\(604\) 0 0
\(605\) 0.102548 + 0.177618i 0.00416917 + 0.00722121i
\(606\) 0 0
\(607\) 7.85286 + 4.53385i 0.318738 + 0.184023i 0.650830 0.759224i \(-0.274421\pi\)
−0.332092 + 0.943247i \(0.607754\pi\)
\(608\) 0 0
\(609\) −5.43538 + 7.42479i −0.220253 + 0.300868i
\(610\) 0 0
\(611\) 4.42665i 0.179083i
\(612\) 0 0
\(613\) 15.2630 0.616465 0.308233 0.951311i \(-0.400262\pi\)
0.308233 + 0.951311i \(0.400262\pi\)
\(614\) 0 0
\(615\) −0.268951 0.0844276i −0.0108452 0.00340445i
\(616\) 0 0
\(617\) 12.1768 + 7.03028i 0.490219 + 0.283028i 0.724665 0.689101i \(-0.241994\pi\)
−0.234446 + 0.972129i \(0.575328\pi\)
\(618\) 0 0
\(619\) 4.52202 2.61079i 0.181755 0.104936i −0.406362 0.913712i \(-0.633203\pi\)
0.588117 + 0.808776i \(0.299869\pi\)
\(620\) 0 0
\(621\) 3.08101 + 22.7381i 0.123637 + 0.912450i
\(622\) 0 0
\(623\) 10.0286 + 3.40981i 0.401787 + 0.136611i
\(624\) 0 0
\(625\) −12.4977 + 21.6467i −0.499909 + 0.865868i
\(626\) 0 0
\(627\) −50.9616 15.9976i −2.03521 0.638881i
\(628\) 0 0
\(629\) 11.6643 0.465087
\(630\) 0 0
\(631\) 34.8593 1.38773 0.693863 0.720107i \(-0.255907\pi\)
0.693863 + 0.720107i \(0.255907\pi\)
\(632\) 0 0
\(633\) 8.25725 + 37.0252i 0.328196 + 1.47162i
\(634\) 0 0
\(635\) 0.191017 0.330851i 0.00758028 0.0131294i
\(636\) 0 0
\(637\) −4.06070 9.83103i −0.160891 0.389519i
\(638\) 0 0
\(639\) −34.9216 2.96659i −1.38148 0.117357i
\(640\) 0 0
\(641\) −5.33065 + 3.07765i −0.210548 + 0.121560i −0.601566 0.798823i \(-0.705456\pi\)
0.391018 + 0.920383i \(0.372123\pi\)
\(642\) 0 0
\(643\) −9.75081 5.62963i −0.384534 0.222011i 0.295255 0.955419i \(-0.404595\pi\)
−0.679789 + 0.733407i \(0.737929\pi\)
\(644\) 0 0
\(645\) −0.0650782 + 0.0597842i −0.00256245 + 0.00235400i
\(646\) 0 0
\(647\) 7.33809 0.288490 0.144245 0.989542i \(-0.453925\pi\)
0.144245 + 0.989542i \(0.453925\pi\)
\(648\) 0 0
\(649\) 38.9865i 1.53035i
\(650\) 0 0
\(651\) −34.2955 3.72949i −1.34415 0.146170i
\(652\) 0 0
\(653\) 1.18110 + 0.681911i 0.0462202 + 0.0266852i 0.522932 0.852374i \(-0.324838\pi\)
−0.476712 + 0.879060i \(0.658171\pi\)
\(654\) 0 0
\(655\) 0.141168 + 0.244511i 0.00551590 + 0.00955382i
\(656\) 0 0
\(657\) −38.2937 3.25305i −1.49398 0.126913i
\(658\) 0 0
\(659\) 35.8162 20.6785i 1.39520 0.805519i 0.401314 0.915940i \(-0.368553\pi\)
0.993885 + 0.110422i \(0.0352202\pi\)
\(660\) 0 0
\(661\) 36.0595 + 20.8190i 1.40255 + 0.809763i 0.994654 0.103264i \(-0.0329288\pi\)
0.407897 + 0.913028i \(0.366262\pi\)
\(662\) 0 0
\(663\) −4.90823 + 1.09462i −0.190620 + 0.0425115i
\(664\) 0 0
\(665\) −0.195934 0.223644i −0.00759801 0.00867256i
\(666\) 0 0
\(667\) 8.86709 0.343335
\(668\) 0 0
\(669\) 6.73614 21.4586i 0.260434 0.829636i
\(670\) 0 0
\(671\) −1.33651 + 2.31490i −0.0515954 + 0.0893658i
\(672\) 0 0
\(673\) 25.4080 + 44.0079i 0.979406 + 1.69638i 0.664555 + 0.747239i \(0.268621\pi\)
0.314851 + 0.949141i \(0.398046\pi\)
\(674\) 0 0
\(675\) −9.85101 + 24.0390i −0.379166 + 0.925263i
\(676\) 0 0
\(677\) 10.7278 + 18.5810i 0.412302 + 0.714128i 0.995141 0.0984599i \(-0.0313916\pi\)
−0.582839 + 0.812587i \(0.698058\pi\)
\(678\) 0 0
\(679\) 12.2717 2.43465i 0.470944 0.0934334i
\(680\) 0 0
\(681\) −14.2637 4.47756i −0.546584 0.171581i
\(682\) 0 0
\(683\) 5.66012i 0.216578i 0.994119 + 0.108289i \(0.0345373\pi\)
−0.994119 + 0.108289i \(0.965463\pi\)
\(684\) 0 0
\(685\) 0.108567i 0.00414815i
\(686\) 0 0
\(687\) −14.4036 + 3.21225i −0.549532 + 0.122555i
\(688\) 0 0
\(689\) 6.79543 11.7700i 0.258885 0.448402i
\(690\) 0 0
\(691\) −15.6444 + 9.03228i −0.595140 + 0.343604i −0.767127 0.641495i \(-0.778314\pi\)
0.171988 + 0.985099i \(0.444981\pi\)
\(692\) 0 0
\(693\) −4.20126 37.6573i −0.159593 1.43048i
\(694\) 0 0
\(695\) −0.159060 + 0.0918335i −0.00603350 + 0.00348344i
\(696\) 0 0
\(697\) −8.93757 + 15.4803i −0.338535 + 0.586359i
\(698\) 0 0
\(699\) 0.289321 + 0.314941i 0.0109431 + 0.0119122i
\(700\) 0 0
\(701\) 28.7091i 1.08433i −0.840273 0.542163i \(-0.817605\pi\)
0.840273 0.542163i \(-0.182395\pi\)
\(702\) 0 0
\(703\) 39.4355i 1.48734i
\(704\) 0 0
\(705\) −0.0646438 + 0.0593851i −0.00243463 + 0.00223657i
\(706\) 0 0
\(707\) −3.07161 15.4822i −0.115520 0.582269i
\(708\) 0 0
\(709\) 13.3468 + 23.1174i 0.501251 + 0.868193i 0.999999 + 0.00144551i \(0.000460119\pi\)
−0.498748 + 0.866747i \(0.666207\pi\)
\(710\) 0 0
\(711\) 25.8443 12.1308i 0.969236 0.454939i
\(712\) 0 0
\(713\) 16.6217 + 28.7896i 0.622486 + 1.07818i
\(714\) 0 0
\(715\) 0.0630975 0.109288i 0.00235971 0.00408714i
\(716\) 0 0
\(717\) 46.0320 10.2659i 1.71910 0.383387i
\(718\) 0 0
\(719\) 25.2381 0.941224 0.470612 0.882340i \(-0.344033\pi\)
0.470612 + 0.882340i \(0.344033\pi\)
\(720\) 0 0
\(721\) 20.2541 + 23.1185i 0.754302 + 0.860979i
\(722\) 0 0
\(723\) 3.42588 10.9134i 0.127410 0.405875i
\(724\) 0 0
\(725\) 8.69424 + 5.01962i 0.322896 + 0.186424i
\(726\) 0 0
\(727\) 24.5712 14.1862i 0.911294 0.526136i 0.0304464 0.999536i \(-0.490307\pi\)
0.880847 + 0.473401i \(0.156974\pi\)
\(728\) 0 0
\(729\) −6.79075 + 26.1321i −0.251509 + 0.967855i
\(730\) 0 0
\(731\) 2.80185 + 4.85294i 0.103630 + 0.179492i
\(732\) 0 0
\(733\) 16.2190 + 9.36404i 0.599062 + 0.345869i 0.768673 0.639642i \(-0.220918\pi\)
−0.169610 + 0.985511i \(0.554251\pi\)
\(734\) 0 0
\(735\) 0.0890899 0.191187i 0.00328613 0.00705203i
\(736\) 0 0
\(737\) 35.2341i 1.29787i
\(738\) 0 0
\(739\) −31.3341 −1.15265 −0.576323 0.817222i \(-0.695513\pi\)
−0.576323 + 0.817222i \(0.695513\pi\)
\(740\) 0 0
\(741\) 3.70076 + 16.5941i 0.135951 + 0.609598i
\(742\) 0 0
\(743\) 16.2784 + 9.39834i 0.597197 + 0.344792i 0.767938 0.640524i \(-0.221283\pi\)
−0.170741 + 0.985316i \(0.554616\pi\)
\(744\) 0 0
\(745\) 0.124200 0.0717072i 0.00455035 0.00262715i
\(746\) 0 0
\(747\) −36.2658 + 17.0224i −1.32690 + 0.622817i
\(748\) 0 0
\(749\) 10.1039 29.7166i 0.369189 1.08582i
\(750\) 0 0
\(751\) −7.34792 + 12.7270i −0.268129 + 0.464414i −0.968379 0.249485i \(-0.919739\pi\)
0.700249 + 0.713898i \(0.253072\pi\)
\(752\) 0 0
\(753\) 14.2770 13.1156i 0.520282 0.477958i
\(754\) 0 0
\(755\) −0.228975 −0.00833327
\(756\) 0 0
\(757\) 15.4439 0.561318 0.280659 0.959808i \(-0.409447\pi\)
0.280659 + 0.959808i \(0.409447\pi\)
\(758\) 0 0
\(759\) −26.8892 + 24.7018i −0.976017 + 0.896620i
\(760\) 0 0
\(761\) 0.201785 0.349502i 0.00731470 0.0126694i −0.862345 0.506321i \(-0.831005\pi\)
0.869660 + 0.493652i \(0.164338\pi\)
\(762\) 0 0
\(763\) −8.09872 2.75363i −0.293193 0.0996882i
\(764\) 0 0
\(765\) −0.0818309 0.0569918i −0.00295860 0.00206054i
\(766\) 0 0
\(767\) 10.7470 6.20478i 0.388051 0.224042i
\(768\) 0 0
\(769\) 10.4462 + 6.03109i 0.376698 + 0.217487i 0.676381 0.736552i \(-0.263547\pi\)
−0.299682 + 0.954039i \(0.596881\pi\)
\(770\) 0 0
\(771\) 3.66226 + 16.4214i 0.131893 + 0.591404i
\(772\) 0 0
\(773\) −35.6215 −1.28122 −0.640608 0.767868i \(-0.721318\pi\)
−0.640608 + 0.767868i \(0.721318\pi\)
\(774\) 0 0
\(775\) 37.6378i 1.35199i
\(776\) 0 0
\(777\) 25.5973 11.2864i 0.918300 0.404898i
\(778\) 0 0
\(779\) 52.3369 + 30.2167i 1.87516 + 1.08263i
\(780\) 0 0
\(781\) −27.8850 48.2982i −0.997802 1.72824i
\(782\) 0 0
\(783\) 9.65452 + 3.95635i 0.345025 + 0.141388i
\(784\) 0 0
\(785\) 0.127019 0.0733344i 0.00453350 0.00261742i
\(786\) 0 0
\(787\) −16.7626 9.67792i −0.597524 0.344981i 0.170543 0.985350i \(-0.445448\pi\)
−0.768067 + 0.640370i \(0.778781\pi\)
\(788\) 0 0
\(789\) 3.10748 9.89915i 0.110629 0.352419i
\(790\) 0 0
\(791\) −6.71804 7.66814i −0.238866 0.272648i
\(792\) 0 0
\(793\) 0.850832 0.0302139
\(794\) 0 0
\(795\) 0.263045 0.0586634i 0.00932924 0.00208058i
\(796\) 0 0
\(797\) −9.71888 + 16.8336i −0.344261 + 0.596277i −0.985219 0.171299i \(-0.945204\pi\)
0.640959 + 0.767575i \(0.278537\pi\)
\(798\) 0 0
\(799\) 2.78314 + 4.82054i 0.0984605 + 0.170539i
\(800\) 0 0
\(801\) 1.01664 11.9676i 0.0359214 0.422853i
\(802\) 0 0
\(803\) −30.5775 52.9618i −1.07906 1.86898i
\(804\) 0 0
\(805\) −0.199370 + 0.0395541i −0.00702686 + 0.00139410i
\(806\) 0 0
\(807\) 28.9968 26.6380i 1.02074 0.937701i
\(808\) 0 0
\(809\) 4.83109i 0.169852i −0.996387 0.0849261i \(-0.972935\pi\)
0.996387 0.0849261i \(-0.0270654\pi\)
\(810\) 0 0
\(811\) 36.9933i 1.29901i 0.760358 + 0.649505i \(0.225024\pi\)
−0.760358 + 0.649505i \(0.774976\pi\)
\(812\) 0 0
\(813\) 1.21698 + 1.32474i 0.0426813 + 0.0464608i
\(814\) 0 0
\(815\) 0.0709684 0.122921i 0.00248592 0.00430573i
\(816\) 0 0
\(817\) 16.4071 9.47266i 0.574012 0.331406i
\(818\) 0 0
\(819\) −9.71195 + 7.15135i −0.339363 + 0.249888i
\(820\) 0 0
\(821\) 32.3478 18.6760i 1.12895 0.651798i 0.185277 0.982686i \(-0.440682\pi\)
0.943670 + 0.330888i \(0.107348\pi\)
\(822\) 0 0
\(823\) −8.13705 + 14.0938i −0.283640 + 0.491279i −0.972278 0.233826i \(-0.924875\pi\)
0.688639 + 0.725105i \(0.258209\pi\)
\(824\) 0 0
\(825\) −40.3487 + 8.99844i −1.40476 + 0.313286i
\(826\) 0 0
\(827\) 19.0164i 0.661265i 0.943760 + 0.330633i \(0.107262\pi\)
−0.943760 + 0.330633i \(0.892738\pi\)
\(828\) 0 0
\(829\) 54.5471i 1.89450i 0.320497 + 0.947250i \(0.396150\pi\)
−0.320497 + 0.947250i \(0.603850\pi\)
\(830\) 0 0
\(831\) −25.0929 7.87702i −0.870463 0.273251i
\(832\) 0 0
\(833\) −10.6030 8.15276i −0.367374 0.282476i
\(834\) 0 0
\(835\) −0.197432 0.341962i −0.00683240 0.0118341i
\(836\) 0 0
\(837\) 5.25232 + 38.7625i 0.181547 + 1.33983i
\(838\) 0 0
\(839\) −11.7950 20.4295i −0.407208 0.705305i 0.587368 0.809320i \(-0.300164\pi\)
−0.994576 + 0.104015i \(0.966831\pi\)
\(840\) 0 0
\(841\) −12.4840 + 21.6230i −0.430484 + 0.745620i
\(842\) 0 0
\(843\) −7.70570 + 24.5472i −0.265398 + 0.845449i
\(844\) 0 0
\(845\) 0.185990 0.00639826
\(846\) 0 0
\(847\) 23.4612 20.5543i 0.806137 0.706255i
\(848\) 0 0
\(849\) 55.8410 12.4535i 1.91646 0.427403i
\(850\) 0 0
\(851\) −23.3462 13.4789i −0.800298 0.462052i
\(852\) 0 0
\(853\) 44.4097 25.6400i 1.52056 0.877895i 0.520853 0.853646i \(-0.325614\pi\)
0.999706 0.0242489i \(-0.00771943\pi\)
\(854\) 0 0
\(855\) −0.192682 + 0.276659i −0.00658957 + 0.00946154i
\(856\) 0 0
\(857\) −25.4437 44.0698i −0.869141 1.50540i −0.862875 0.505417i \(-0.831339\pi\)
−0.00626618 0.999980i \(-0.501995\pi\)
\(858\) 0 0
\(859\) 3.87842 + 2.23921i 0.132330 + 0.0764007i 0.564704 0.825294i \(-0.308991\pi\)
−0.432374 + 0.901695i \(0.642324\pi\)
\(860\) 0 0
\(861\) −4.63469 + 42.6195i −0.157950 + 1.45247i
\(862\) 0 0
\(863\) 19.5957i 0.667046i −0.942742 0.333523i \(-0.891763\pi\)
0.942742 0.333523i \(-0.108237\pi\)
\(864\) 0 0
\(865\) −0.101899 −0.00346466
\(866\) 0 0
\(867\) 17.0272 15.6421i 0.578273 0.531232i
\(868\) 0 0
\(869\) 39.3437 + 22.7151i 1.33464 + 0.770557i
\(870\) 0 0
\(871\) 9.71261 5.60758i 0.329099 0.190006i
\(872\) 0 0
\(873\) −6.02764 12.8417i −0.204005 0.434627i
\(874\) 0 0
\(875\) −0.435763 0.148163i −0.0147315 0.00500883i
\(876\) 0 0
\(877\) 10.7024 18.5371i 0.361395 0.625954i −0.626796 0.779183i \(-0.715634\pi\)
0.988191 + 0.153230i \(0.0489674\pi\)
\(878\) 0 0
\(879\) −9.64098 43.2298i −0.325182 1.45811i
\(880\) 0 0
\(881\) −9.43135 −0.317750 −0.158875 0.987299i \(-0.550787\pi\)
−0.158875 + 0.987299i \(0.550787\pi\)
\(882\) 0 0
\(883\) 39.5587 1.33126 0.665628 0.746284i \(-0.268164\pi\)
0.665628 + 0.746284i \(0.268164\pi\)
\(884\) 0 0
\(885\) 0.234785 + 0.0737025i 0.00789223 + 0.00247748i
\(886\) 0 0
\(887\) 20.1249 34.8573i 0.675727 1.17039i −0.300529 0.953773i \(-0.597163\pi\)
0.976256 0.216620i \(-0.0695034\pi\)
\(888\) 0 0
\(889\) −55.0081 18.7032i −1.84491 0.627286i
\(890\) 0 0
\(891\) −40.2987 + 14.8979i −1.35006 + 0.499100i
\(892\) 0 0
\(893\) 16.2976 9.40942i 0.545378 0.314874i
\(894\) 0 0
\(895\) −0.208501 0.120378i −0.00696943 0.00402380i
\(896\) 0 0
\(897\) 11.0888 + 3.48092i 0.370243 + 0.116224i
\(898\) 0 0
\(899\) 15.1160 0.504148
\(900\) 0 0
\(901\) 17.0898i 0.569344i
\(902\) 0 0
\(903\) 10.8444 + 7.93869i 0.360877 + 0.264183i
\(904\) 0 0
\(905\) 0.252937 + 0.146033i 0.00840791 + 0.00485431i
\(906\) 0 0
\(907\) −2.84241 4.92321i −0.0943808 0.163472i 0.814969 0.579504i \(-0.196754\pi\)
−0.909350 + 0.416032i \(0.863420\pi\)
\(908\) 0 0
\(909\) −16.2014 + 7.60460i −0.537367 + 0.252229i
\(910\) 0 0
\(911\) −40.0431 + 23.1189i −1.32669 + 0.765963i −0.984786 0.173773i \(-0.944404\pi\)
−0.341901 + 0.939736i \(0.611071\pi\)
\(912\) 0 0
\(913\) −55.2088 31.8748i −1.82714 1.05490i
\(914\) 0 0
\(915\) 0.0114142 + 0.0124250i 0.000377343 + 0.000410757i
\(916\) 0 0
\(917\) 32.2969 28.2952i 1.06654 0.934391i
\(918\) 0 0
\(919\) −50.9663 −1.68122 −0.840612 0.541637i \(-0.817805\pi\)
−0.840612 + 0.541637i \(0.817805\pi\)
\(920\) 0 0
\(921\) −7.08058 7.70758i −0.233313 0.253973i
\(922\) 0 0
\(923\) −8.87589 + 15.3735i −0.292153 + 0.506024i
\(924\) 0 0
\(925\) −15.2608 26.4324i −0.501770 0.869092i
\(926\) 0 0
\(927\) 19.9178 28.5987i 0.654188 0.939306i
\(928\) 0 0
\(929\) 14.4161 + 24.9694i 0.472977 + 0.819221i 0.999522 0.0309269i \(-0.00984590\pi\)
−0.526544 + 0.850148i \(0.676513\pi\)
\(930\) 0 0
\(931\) −27.5634 + 35.8474i −0.903353 + 1.17485i
\(932\) 0 0
\(933\) −12.8719 57.7169i −0.421406 1.88957i
\(934\) 0 0
\(935\) 0.158684i 0.00518951i
\(936\) 0 0
\(937\) 21.8146i 0.712652i 0.934362 + 0.356326i \(0.115971\pi\)
−0.934362 + 0.356326i \(0.884029\pi\)
\(938\) 0 0
\(939\) 6.55951 20.8959i 0.214062 0.681911i
\(940\) 0 0
\(941\) −5.21225 + 9.02789i −0.169915 + 0.294301i −0.938390 0.345579i \(-0.887683\pi\)
0.768475 + 0.639880i \(0.221016\pi\)
\(942\) 0 0
\(943\) 35.7772 20.6560i 1.16507 0.672651i
\(944\) 0 0
\(945\) −0.234723 0.0458887i −0.00763554 0.00149276i
\(946\) 0 0
\(947\) −18.8197 + 10.8655i −0.611557 + 0.353083i −0.773575 0.633705i \(-0.781533\pi\)
0.162018 + 0.986788i \(0.448200\pi\)
\(948\) 0 0
\(949\) −9.73294 + 16.8580i −0.315945 + 0.547232i
\(950\) 0 0
\(951\) 2.96777 9.45407i 0.0962364 0.306569i
\(952\) 0 0
\(953\) 22.2100i 0.719453i 0.933058 + 0.359726i \(0.117130\pi\)
−0.933058 + 0.359726i \(0.882870\pi\)
\(954\) 0 0
\(955\) 0.112975i 0.00365578i
\(956\) 0 0
\(957\) 3.61394 + 16.2048i 0.116822 + 0.523826i
\(958\) 0 0
\(959\) 16.1956 3.21313i 0.522982 0.103757i
\(960\) 0 0
\(961\) 12.8355 + 22.2318i 0.414049 + 0.717155i
\(962\) 0 0
\(963\) −35.4622 3.01251i −1.14275 0.0970768i
\(964\) 0 0
\(965\) 0.145742 + 0.252433i 0.00469162 + 0.00812612i
\(966\) 0 0
\(967\) −30.2262 + 52.3534i −0.972010 + 1.68357i −0.282541 + 0.959255i \(0.591177\pi\)
−0.689469 + 0.724315i \(0.742156\pi\)
\(968\) 0 0
\(969\) 14.4632 + 15.7439i 0.464623 + 0.505767i
\(970\) 0 0
\(971\) 24.7707 0.794931 0.397466 0.917617i \(-0.369890\pi\)
0.397466 + 0.917617i \(0.369890\pi\)
\(972\) 0 0
\(973\) 18.4068 + 21.0099i 0.590094 + 0.673548i
\(974\) 0 0
\(975\) 8.90207 + 9.69037i 0.285094 + 0.310340i
\(976\) 0 0
\(977\) 18.1210 + 10.4621i 0.579741 + 0.334714i 0.761030 0.648716i \(-0.224694\pi\)
−0.181290 + 0.983430i \(0.558027\pi\)
\(978\) 0 0
\(979\) 16.5517 9.55612i 0.528994 0.305415i
\(980\) 0 0
\(981\) −0.821005 + 9.66457i −0.0262127 + 0.308566i
\(982\) 0 0
\(983\) 19.1275 + 33.1297i 0.610071 + 1.05667i 0.991228 + 0.132164i \(0.0421924\pi\)
−0.381157 + 0.924510i \(0.624474\pi\)
\(984\) 0 0
\(985\) −0.0887627 0.0512472i −0.00282821 0.00163287i
\(986\) 0 0
\(987\) 10.7720 + 7.88570i 0.342875 + 0.251004i
\(988\) 0 0
\(989\) 12.9509i 0.411815i
\(990\) 0 0
\(991\) 21.5607 0.684898 0.342449 0.939536i \(-0.388744\pi\)
0.342449 + 0.939536i \(0.388744\pi\)
\(992\) 0 0
\(993\) −23.7477 7.45474i −0.753611 0.236569i
\(994\) 0 0
\(995\) 0.283017 + 0.163400i 0.00897225 + 0.00518013i
\(996\) 0 0
\(997\) 23.2029 13.3962i 0.734845 0.424263i −0.0853473 0.996351i \(-0.527200\pi\)
0.820192 + 0.572089i \(0.193867\pi\)
\(998\) 0 0
\(999\) −19.4054 25.0926i −0.613959 0.793896i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bu.a.41.7 48
3.2 odd 2 1512.2.bu.a.881.13 48
4.3 odd 2 1008.2.cc.d.545.18 48
7.6 odd 2 inner 504.2.bu.a.41.18 yes 48
9.2 odd 6 inner 504.2.bu.a.209.18 yes 48
9.4 even 3 4536.2.k.a.3401.25 48
9.5 odd 6 4536.2.k.a.3401.24 48
9.7 even 3 1512.2.bu.a.1385.12 48
12.11 even 2 3024.2.cc.d.881.13 48
21.20 even 2 1512.2.bu.a.881.12 48
28.27 even 2 1008.2.cc.d.545.7 48
36.7 odd 6 3024.2.cc.d.2897.12 48
36.11 even 6 1008.2.cc.d.209.7 48
63.13 odd 6 4536.2.k.a.3401.23 48
63.20 even 6 inner 504.2.bu.a.209.7 yes 48
63.34 odd 6 1512.2.bu.a.1385.13 48
63.41 even 6 4536.2.k.a.3401.26 48
84.83 odd 2 3024.2.cc.d.881.12 48
252.83 odd 6 1008.2.cc.d.209.18 48
252.223 even 6 3024.2.cc.d.2897.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bu.a.41.7 48 1.1 even 1 trivial
504.2.bu.a.41.18 yes 48 7.6 odd 2 inner
504.2.bu.a.209.7 yes 48 63.20 even 6 inner
504.2.bu.a.209.18 yes 48 9.2 odd 6 inner
1008.2.cc.d.209.7 48 36.11 even 6
1008.2.cc.d.209.18 48 252.83 odd 6
1008.2.cc.d.545.7 48 28.27 even 2
1008.2.cc.d.545.18 48 4.3 odd 2
1512.2.bu.a.881.12 48 21.20 even 2
1512.2.bu.a.881.13 48 3.2 odd 2
1512.2.bu.a.1385.12 48 9.7 even 3
1512.2.bu.a.1385.13 48 63.34 odd 6
3024.2.cc.d.881.12 48 84.83 odd 2
3024.2.cc.d.881.13 48 12.11 even 2
3024.2.cc.d.2897.12 48 36.7 odd 6
3024.2.cc.d.2897.13 48 252.223 even 6
4536.2.k.a.3401.23 48 63.13 odd 6
4536.2.k.a.3401.24 48 9.5 odd 6
4536.2.k.a.3401.25 48 9.4 even 3
4536.2.k.a.3401.26 48 63.41 even 6