Newspace parameters
| Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 504.bu (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.02446026187\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Relative dimension: | \(24\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 41.1 | 0 | −1.73104 | − | 0.0591464i | 0 | 1.11364 | − | 1.92889i | 0 | −2.58429 | + | 0.566975i | 0 | 2.99300 | + | 0.204770i | 0 | ||||||||||
| 41.2 | 0 | −1.69695 | − | 0.346907i | 0 | −1.79123 | + | 3.10250i | 0 | 1.83349 | − | 1.90743i | 0 | 2.75931 | + | 1.17737i | 0 | ||||||||||
| 41.3 | 0 | −1.53463 | + | 0.803066i | 0 | 0.0977451 | − | 0.169300i | 0 | −2.48762 | − | 0.900962i | 0 | 1.71017 | − | 2.46482i | 0 | ||||||||||
| 41.4 | 0 | −1.50601 | − | 0.855530i | 0 | 0.422480 | − | 0.731757i | 0 | 0.327684 | + | 2.62538i | 0 | 1.53614 | + | 2.57688i | 0 | ||||||||||
| 41.5 | 0 | −1.31185 | − | 1.13095i | 0 | 0.965651 | − | 1.67256i | 0 | 2.53170 | − | 0.768427i | 0 | 0.441899 | + | 2.96728i | 0 | ||||||||||
| 41.6 | 0 | −1.29861 | + | 1.14613i | 0 | 1.79302 | − | 3.10561i | 0 | 2.25543 | − | 1.38312i | 0 | 0.372767 | − | 2.97675i | 0 | ||||||||||
| 41.7 | 0 | −1.27553 | + | 1.17176i | 0 | −0.00869840 | + | 0.0150661i | 0 | 2.50492 | + | 0.851694i | 0 | 0.253935 | − | 2.98923i | 0 | ||||||||||
| 41.8 | 0 | −1.01807 | − | 1.40126i | 0 | −1.60290 | + | 2.77631i | 0 | −1.96276 | − | 1.77414i | 0 | −0.927062 | + | 2.85317i | 0 | ||||||||||
| 41.9 | 0 | −0.703080 | + | 1.58293i | 0 | −1.16173 | + | 2.01217i | 0 | −1.25073 | − | 2.33145i | 0 | −2.01136 | − | 2.22586i | 0 | ||||||||||
| 41.10 | 0 | −0.610344 | + | 1.62095i | 0 | −1.91834 | + | 3.32266i | 0 | −0.283334 | + | 2.63054i | 0 | −2.25496 | − | 1.97867i | 0 | ||||||||||
| 41.11 | 0 | −0.233051 | − | 1.71630i | 0 | −0.0868503 | + | 0.150429i | 0 | −2.60056 | + | 0.486915i | 0 | −2.89137 | + | 0.799970i | 0 | ||||||||||
| 41.12 | 0 | −0.0936255 | − | 1.72952i | 0 | −1.26858 | + | 2.19724i | 0 | 1.98582 | + | 1.74829i | 0 | −2.98247 | + | 0.323854i | 0 | ||||||||||
| 41.13 | 0 | 0.0936255 | + | 1.72952i | 0 | 1.26858 | − | 2.19724i | 0 | 0.521158 | + | 2.59391i | 0 | −2.98247 | + | 0.323854i | 0 | ||||||||||
| 41.14 | 0 | 0.233051 | + | 1.71630i | 0 | 0.0868503 | − | 0.150429i | 0 | 1.72196 | − | 2.00869i | 0 | −2.89137 | + | 0.799970i | 0 | ||||||||||
| 41.15 | 0 | 0.610344 | − | 1.62095i | 0 | 1.91834 | − | 3.32266i | 0 | 2.41978 | + | 1.06989i | 0 | −2.25496 | − | 1.97867i | 0 | ||||||||||
| 41.16 | 0 | 0.703080 | − | 1.58293i | 0 | 1.16173 | − | 2.01217i | 0 | −1.39373 | − | 2.24889i | 0 | −2.01136 | − | 2.22586i | 0 | ||||||||||
| 41.17 | 0 | 1.01807 | + | 1.40126i | 0 | 1.60290 | − | 2.77631i | 0 | −0.555071 | − | 2.58687i | 0 | −0.927062 | + | 2.85317i | 0 | ||||||||||
| 41.18 | 0 | 1.27553 | − | 1.17176i | 0 | 0.00869840 | − | 0.0150661i | 0 | −0.514871 | + | 2.59517i | 0 | 0.253935 | − | 2.98923i | 0 | ||||||||||
| 41.19 | 0 | 1.29861 | − | 1.14613i | 0 | −1.79302 | + | 3.10561i | 0 | −2.32553 | + | 1.26170i | 0 | 0.372767 | − | 2.97675i | 0 | ||||||||||
| 41.20 | 0 | 1.31185 | + | 1.13095i | 0 | −0.965651 | + | 1.67256i | 0 | −1.93133 | + | 1.80831i | 0 | 0.441899 | + | 2.96728i | 0 | ||||||||||
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.b | odd | 2 | 1 | inner |
| 9.d | odd | 6 | 1 | inner |
| 63.o | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 504.2.bu.a | ✓ | 48 |
| 3.b | odd | 2 | 1 | 1512.2.bu.a | 48 | ||
| 4.b | odd | 2 | 1 | 1008.2.cc.d | 48 | ||
| 7.b | odd | 2 | 1 | inner | 504.2.bu.a | ✓ | 48 |
| 9.c | even | 3 | 1 | 1512.2.bu.a | 48 | ||
| 9.c | even | 3 | 1 | 4536.2.k.a | 48 | ||
| 9.d | odd | 6 | 1 | inner | 504.2.bu.a | ✓ | 48 |
| 9.d | odd | 6 | 1 | 4536.2.k.a | 48 | ||
| 12.b | even | 2 | 1 | 3024.2.cc.d | 48 | ||
| 21.c | even | 2 | 1 | 1512.2.bu.a | 48 | ||
| 28.d | even | 2 | 1 | 1008.2.cc.d | 48 | ||
| 36.f | odd | 6 | 1 | 3024.2.cc.d | 48 | ||
| 36.h | even | 6 | 1 | 1008.2.cc.d | 48 | ||
| 63.l | odd | 6 | 1 | 1512.2.bu.a | 48 | ||
| 63.l | odd | 6 | 1 | 4536.2.k.a | 48 | ||
| 63.o | even | 6 | 1 | inner | 504.2.bu.a | ✓ | 48 |
| 63.o | even | 6 | 1 | 4536.2.k.a | 48 | ||
| 84.h | odd | 2 | 1 | 3024.2.cc.d | 48 | ||
| 252.s | odd | 6 | 1 | 1008.2.cc.d | 48 | ||
| 252.bi | even | 6 | 1 | 3024.2.cc.d | 48 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 504.2.bu.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
| 504.2.bu.a | ✓ | 48 | 7.b | odd | 2 | 1 | inner |
| 504.2.bu.a | ✓ | 48 | 9.d | odd | 6 | 1 | inner |
| 504.2.bu.a | ✓ | 48 | 63.o | even | 6 | 1 | inner |
| 1008.2.cc.d | 48 | 4.b | odd | 2 | 1 | ||
| 1008.2.cc.d | 48 | 28.d | even | 2 | 1 | ||
| 1008.2.cc.d | 48 | 36.h | even | 6 | 1 | ||
| 1008.2.cc.d | 48 | 252.s | odd | 6 | 1 | ||
| 1512.2.bu.a | 48 | 3.b | odd | 2 | 1 | ||
| 1512.2.bu.a | 48 | 9.c | even | 3 | 1 | ||
| 1512.2.bu.a | 48 | 21.c | even | 2 | 1 | ||
| 1512.2.bu.a | 48 | 63.l | odd | 6 | 1 | ||
| 3024.2.cc.d | 48 | 12.b | even | 2 | 1 | ||
| 3024.2.cc.d | 48 | 36.f | odd | 6 | 1 | ||
| 3024.2.cc.d | 48 | 84.h | odd | 2 | 1 | ||
| 3024.2.cc.d | 48 | 252.bi | even | 6 | 1 | ||
| 4536.2.k.a | 48 | 9.c | even | 3 | 1 | ||
| 4536.2.k.a | 48 | 9.d | odd | 6 | 1 | ||
| 4536.2.k.a | 48 | 63.l | odd | 6 | 1 | ||
| 4536.2.k.a | 48 | 63.o | even | 6 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(504, [\chi])\).