Properties

Label 504.2.bu
Level 504
Weight 2
Character orbit bu
Rep. character \(\chi_{504}(41,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 48
Newform subspaces 1
Sturm bound 192
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 504.bu (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).

Total New Old
Modular forms 208 48 160
Cusp forms 176 48 128
Eisenstein series 32 0 32

Trace form

\( 48q - 4q^{9} + O(q^{10}) \) \( 48q - 4q^{9} + 8q^{15} - 4q^{21} + 12q^{23} - 24q^{25} - 36q^{29} + 32q^{39} + 12q^{43} + 6q^{49} + 24q^{51} + 28q^{57} - 14q^{63} + 36q^{65} - 60q^{77} - 12q^{79} - 36q^{81} - 12q^{91} + 16q^{93} - 108q^{95} + 44q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
504.2.bu.a \(48\) \(4.024\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(504, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(504, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database