Properties

Label 504.2.bu.a.41.5
Level $504$
Weight $2$
Character 504.41
Analytic conductor $4.024$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(41,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bu (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 41.5
Character \(\chi\) \(=\) 504.41
Dual form 504.2.bu.a.209.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.31185 - 1.13095i) q^{3} +(0.965651 - 1.67256i) q^{5} +(2.53170 - 0.768427i) q^{7} +(0.441899 + 2.96728i) q^{9} +(1.10681 - 0.639015i) q^{11} +(2.52802 + 1.45955i) q^{13} +(-3.15837 + 1.10204i) q^{15} -0.475237 q^{17} -6.10647i q^{19} +(-4.19027 - 1.85517i) q^{21} +(-6.51132 - 3.75931i) q^{23} +(0.635036 + 1.09991i) q^{25} +(2.77614 - 4.39239i) q^{27} +(3.76797 - 2.17544i) q^{29} +(-4.21872 - 2.43568i) q^{31} +(-2.17466 - 0.413453i) q^{33} +(1.15950 - 4.97645i) q^{35} +1.76145 q^{37} +(-1.66570 - 4.77378i) q^{39} +(-1.16103 + 2.01097i) q^{41} +(4.63638 + 8.03045i) q^{43} +(5.38966 + 2.12625i) q^{45} +(-4.00447 - 6.93595i) q^{47} +(5.81904 - 3.89086i) q^{49} +(0.623440 + 0.537470i) q^{51} -10.3345i q^{53} -2.46826i q^{55} +(-6.90612 + 8.01077i) q^{57} +(-1.74272 + 3.01848i) q^{59} +(-4.26195 + 2.46064i) q^{61} +(3.39889 + 7.17269i) q^{63} +(4.88237 - 2.81883i) q^{65} +(0.602527 - 1.04361i) q^{67} +(4.29027 + 12.2956i) q^{69} +11.2114i q^{71} -1.84336i q^{73} +(0.410878 - 2.16112i) q^{75} +(2.31107 - 2.46830i) q^{77} +(8.54654 + 14.8030i) q^{79} +(-8.60945 + 2.62247i) q^{81} +(-0.225217 - 0.390088i) q^{83} +(-0.458913 + 0.794861i) q^{85} +(-7.40333 - 1.40754i) q^{87} -11.2580 q^{89} +(7.52175 + 1.75255i) q^{91} +(2.77969 + 7.96642i) q^{93} +(-10.2134 - 5.89672i) q^{95} +(-9.22775 + 5.32764i) q^{97} +(2.38523 + 3.00182i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} + 8 q^{15} - 4 q^{21} + 12 q^{23} - 24 q^{25} - 36 q^{29} + 32 q^{39} + 12 q^{43} + 6 q^{49} + 24 q^{51} + 28 q^{57} - 14 q^{63} + 36 q^{65} - 60 q^{77} - 12 q^{79} - 36 q^{81} - 12 q^{91}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.31185 1.13095i −0.757397 0.652955i
\(4\) 0 0
\(5\) 0.965651 1.67256i 0.431852 0.747990i −0.565181 0.824967i \(-0.691194\pi\)
0.997033 + 0.0769771i \(0.0245268\pi\)
\(6\) 0 0
\(7\) 2.53170 0.768427i 0.956894 0.290438i
\(8\) 0 0
\(9\) 0.441899 + 2.96728i 0.147300 + 0.989092i
\(10\) 0 0
\(11\) 1.10681 0.639015i 0.333715 0.192670i −0.323774 0.946134i \(-0.604952\pi\)
0.657489 + 0.753464i \(0.271619\pi\)
\(12\) 0 0
\(13\) 2.52802 + 1.45955i 0.701146 + 0.404807i 0.807774 0.589492i \(-0.200672\pi\)
−0.106628 + 0.994299i \(0.534005\pi\)
\(14\) 0 0
\(15\) −3.15837 + 1.10204i −0.815487 + 0.284545i
\(16\) 0 0
\(17\) −0.475237 −0.115262 −0.0576310 0.998338i \(-0.518355\pi\)
−0.0576310 + 0.998338i \(0.518355\pi\)
\(18\) 0 0
\(19\) 6.10647i 1.40092i −0.713691 0.700460i \(-0.752978\pi\)
0.713691 0.700460i \(-0.247022\pi\)
\(20\) 0 0
\(21\) −4.19027 1.85517i −0.914391 0.404832i
\(22\) 0 0
\(23\) −6.51132 3.75931i −1.35770 0.783871i −0.368390 0.929671i \(-0.620091\pi\)
−0.989314 + 0.145801i \(0.953424\pi\)
\(24\) 0 0
\(25\) 0.635036 + 1.09991i 0.127007 + 0.219983i
\(26\) 0 0
\(27\) 2.77614 4.39239i 0.534268 0.845315i
\(28\) 0 0
\(29\) 3.76797 2.17544i 0.699695 0.403969i −0.107539 0.994201i \(-0.534297\pi\)
0.807234 + 0.590232i \(0.200964\pi\)
\(30\) 0 0
\(31\) −4.21872 2.43568i −0.757705 0.437461i 0.0707660 0.997493i \(-0.477456\pi\)
−0.828471 + 0.560032i \(0.810789\pi\)
\(32\) 0 0
\(33\) −2.17466 0.413453i −0.378559 0.0719728i
\(34\) 0 0
\(35\) 1.15950 4.97645i 0.195992 0.841173i
\(36\) 0 0
\(37\) 1.76145 0.289580 0.144790 0.989462i \(-0.453749\pi\)
0.144790 + 0.989462i \(0.453749\pi\)
\(38\) 0 0
\(39\) −1.66570 4.77378i −0.266725 0.764416i
\(40\) 0 0
\(41\) −1.16103 + 2.01097i −0.181323 + 0.314060i −0.942331 0.334682i \(-0.891371\pi\)
0.761009 + 0.648742i \(0.224704\pi\)
\(42\) 0 0
\(43\) 4.63638 + 8.03045i 0.707042 + 1.22463i 0.965950 + 0.258730i \(0.0833041\pi\)
−0.258908 + 0.965902i \(0.583363\pi\)
\(44\) 0 0
\(45\) 5.38966 + 2.12625i 0.803443 + 0.316963i
\(46\) 0 0
\(47\) −4.00447 6.93595i −0.584112 1.01171i −0.994985 0.100020i \(-0.968109\pi\)
0.410873 0.911693i \(-0.365224\pi\)
\(48\) 0 0
\(49\) 5.81904 3.89086i 0.831291 0.555837i
\(50\) 0 0
\(51\) 0.623440 + 0.537470i 0.0872990 + 0.0752609i
\(52\) 0 0
\(53\) 10.3345i 1.41955i −0.704428 0.709775i \(-0.748796\pi\)
0.704428 0.709775i \(-0.251204\pi\)
\(54\) 0 0
\(55\) 2.46826i 0.332820i
\(56\) 0 0
\(57\) −6.90612 + 8.01077i −0.914738 + 1.06105i
\(58\) 0 0
\(59\) −1.74272 + 3.01848i −0.226883 + 0.392973i −0.956883 0.290475i \(-0.906187\pi\)
0.730000 + 0.683447i \(0.239520\pi\)
\(60\) 0 0
\(61\) −4.26195 + 2.46064i −0.545686 + 0.315052i −0.747380 0.664396i \(-0.768689\pi\)
0.201694 + 0.979449i \(0.435355\pi\)
\(62\) 0 0
\(63\) 3.39889 + 7.17269i 0.428220 + 0.903674i
\(64\) 0 0
\(65\) 4.88237 2.81883i 0.605583 0.349633i
\(66\) 0 0
\(67\) 0.602527 1.04361i 0.0736104 0.127497i −0.826871 0.562392i \(-0.809881\pi\)
0.900481 + 0.434895i \(0.143215\pi\)
\(68\) 0 0
\(69\) 4.29027 + 12.2956i 0.516488 + 1.48022i
\(70\) 0 0
\(71\) 11.2114i 1.33055i 0.746598 + 0.665275i \(0.231686\pi\)
−0.746598 + 0.665275i \(0.768314\pi\)
\(72\) 0 0
\(73\) 1.84336i 0.215749i −0.994164 0.107875i \(-0.965595\pi\)
0.994164 0.107875i \(-0.0344045\pi\)
\(74\) 0 0
\(75\) 0.410878 2.16112i 0.0474441 0.249544i
\(76\) 0 0
\(77\) 2.31107 2.46830i 0.263371 0.281288i
\(78\) 0 0
\(79\) 8.54654 + 14.8030i 0.961561 + 1.66547i 0.718584 + 0.695440i \(0.244791\pi\)
0.242977 + 0.970032i \(0.421876\pi\)
\(80\) 0 0
\(81\) −8.60945 + 2.62247i −0.956606 + 0.291386i
\(82\) 0 0
\(83\) −0.225217 0.390088i −0.0247208 0.0428177i 0.853400 0.521256i \(-0.174536\pi\)
−0.878121 + 0.478438i \(0.841203\pi\)
\(84\) 0 0
\(85\) −0.458913 + 0.794861i −0.0497761 + 0.0862148i
\(86\) 0 0
\(87\) −7.40333 1.40754i −0.793720 0.150904i
\(88\) 0 0
\(89\) −11.2580 −1.19335 −0.596675 0.802483i \(-0.703512\pi\)
−0.596675 + 0.802483i \(0.703512\pi\)
\(90\) 0 0
\(91\) 7.52175 + 1.75255i 0.788493 + 0.183718i
\(92\) 0 0
\(93\) 2.77969 + 7.96642i 0.288241 + 0.826079i
\(94\) 0 0
\(95\) −10.2134 5.89672i −1.04787 0.604991i
\(96\) 0 0
\(97\) −9.22775 + 5.32764i −0.936936 + 0.540940i −0.888998 0.457910i \(-0.848598\pi\)
−0.0479373 + 0.998850i \(0.515265\pi\)
\(98\) 0 0
\(99\) 2.38523 + 3.00182i 0.239725 + 0.301694i
\(100\) 0 0
\(101\) 6.65330 + 11.5239i 0.662028 + 1.14667i 0.980082 + 0.198594i \(0.0636375\pi\)
−0.318054 + 0.948073i \(0.603029\pi\)
\(102\) 0 0
\(103\) 16.4947 + 9.52323i 1.62527 + 0.938352i 0.985478 + 0.169806i \(0.0543141\pi\)
0.639795 + 0.768546i \(0.279019\pi\)
\(104\) 0 0
\(105\) −7.14922 + 5.21701i −0.697692 + 0.509128i
\(106\) 0 0
\(107\) 16.1392i 1.56024i −0.625630 0.780120i \(-0.715158\pi\)
0.625630 0.780120i \(-0.284842\pi\)
\(108\) 0 0
\(109\) 3.40434 0.326077 0.163038 0.986620i \(-0.447871\pi\)
0.163038 + 0.986620i \(0.447871\pi\)
\(110\) 0 0
\(111\) −2.31075 1.99211i −0.219327 0.189083i
\(112\) 0 0
\(113\) 3.64150 + 2.10242i 0.342563 + 0.197779i 0.661405 0.750029i \(-0.269960\pi\)
−0.318842 + 0.947808i \(0.603294\pi\)
\(114\) 0 0
\(115\) −12.5753 + 7.26037i −1.17265 + 0.677033i
\(116\) 0 0
\(117\) −3.21376 + 8.14630i −0.297113 + 0.753126i
\(118\) 0 0
\(119\) −1.20316 + 0.365185i −0.110293 + 0.0334765i
\(120\) 0 0
\(121\) −4.68332 + 8.11175i −0.425756 + 0.737432i
\(122\) 0 0
\(123\) 3.79740 1.32501i 0.342400 0.119473i
\(124\) 0 0
\(125\) 12.1094 1.08310
\(126\) 0 0
\(127\) 17.1828 1.52473 0.762363 0.647150i \(-0.224039\pi\)
0.762363 + 0.647150i \(0.224039\pi\)
\(128\) 0 0
\(129\) 2.99981 15.7783i 0.264119 1.38920i
\(130\) 0 0
\(131\) −4.00420 + 6.93548i −0.349848 + 0.605955i −0.986222 0.165425i \(-0.947100\pi\)
0.636374 + 0.771381i \(0.280434\pi\)
\(132\) 0 0
\(133\) −4.69238 15.4598i −0.406881 1.34053i
\(134\) 0 0
\(135\) −4.66573 8.88476i −0.401562 0.764679i
\(136\) 0 0
\(137\) 8.44241 4.87423i 0.721284 0.416433i −0.0939411 0.995578i \(-0.529947\pi\)
0.815225 + 0.579144i \(0.196613\pi\)
\(138\) 0 0
\(139\) 6.76047 + 3.90316i 0.573416 + 0.331062i 0.758513 0.651658i \(-0.225926\pi\)
−0.185097 + 0.982720i \(0.559260\pi\)
\(140\) 0 0
\(141\) −2.59096 + 13.6278i −0.218198 + 1.14767i
\(142\) 0 0
\(143\) 3.73070 0.311977
\(144\) 0 0
\(145\) 8.40286i 0.697820i
\(146\) 0 0
\(147\) −12.0341 1.47683i −0.992554 0.121807i
\(148\) 0 0
\(149\) 9.62284 + 5.55575i 0.788333 + 0.455145i 0.839376 0.543552i \(-0.182921\pi\)
−0.0510420 + 0.998697i \(0.516254\pi\)
\(150\) 0 0
\(151\) −1.88730 3.26890i −0.153586 0.266020i 0.778957 0.627077i \(-0.215749\pi\)
−0.932543 + 0.361058i \(0.882416\pi\)
\(152\) 0 0
\(153\) −0.210007 1.41016i −0.0169780 0.114005i
\(154\) 0 0
\(155\) −8.14763 + 4.70404i −0.654433 + 0.377837i
\(156\) 0 0
\(157\) 3.55162 + 2.05053i 0.283450 + 0.163650i 0.634984 0.772525i \(-0.281007\pi\)
−0.351534 + 0.936175i \(0.614340\pi\)
\(158\) 0 0
\(159\) −11.6878 + 13.5573i −0.926903 + 1.07516i
\(160\) 0 0
\(161\) −19.3735 4.51399i −1.52684 0.355752i
\(162\) 0 0
\(163\) −14.3871 −1.12689 −0.563443 0.826155i \(-0.690523\pi\)
−0.563443 + 0.826155i \(0.690523\pi\)
\(164\) 0 0
\(165\) −2.79148 + 3.23799i −0.217317 + 0.252077i
\(166\) 0 0
\(167\) −8.06975 + 13.9772i −0.624456 + 1.08159i 0.364190 + 0.931325i \(0.381346\pi\)
−0.988646 + 0.150265i \(0.951987\pi\)
\(168\) 0 0
\(169\) −2.23942 3.87879i −0.172263 0.298368i
\(170\) 0 0
\(171\) 18.1196 2.69844i 1.38564 0.206355i
\(172\) 0 0
\(173\) −0.695376 1.20443i −0.0528685 0.0915709i 0.838380 0.545086i \(-0.183503\pi\)
−0.891248 + 0.453515i \(0.850170\pi\)
\(174\) 0 0
\(175\) 2.45293 + 2.29668i 0.185424 + 0.173613i
\(176\) 0 0
\(177\) 5.69994 1.98886i 0.428434 0.149492i
\(178\) 0 0
\(179\) 4.60605i 0.344273i −0.985073 0.172136i \(-0.944933\pi\)
0.985073 0.172136i \(-0.0550669\pi\)
\(180\) 0 0
\(181\) 16.3732i 1.21701i −0.793550 0.608505i \(-0.791769\pi\)
0.793550 0.608505i \(-0.208231\pi\)
\(182\) 0 0
\(183\) 8.37389 + 1.59207i 0.619016 + 0.117689i
\(184\) 0 0
\(185\) 1.70094 2.94612i 0.125056 0.216603i
\(186\) 0 0
\(187\) −0.525996 + 0.303684i −0.0384646 + 0.0222075i
\(188\) 0 0
\(189\) 3.65313 13.2535i 0.265726 0.964049i
\(190\) 0 0
\(191\) −12.7953 + 7.38735i −0.925833 + 0.534530i −0.885491 0.464656i \(-0.846178\pi\)
−0.0403419 + 0.999186i \(0.512845\pi\)
\(192\) 0 0
\(193\) 8.91923 15.4486i 0.642020 1.11201i −0.342961 0.939350i \(-0.611430\pi\)
0.984981 0.172662i \(-0.0552369\pi\)
\(194\) 0 0
\(195\) −9.59289 1.82383i −0.686961 0.130607i
\(196\) 0 0
\(197\) 8.00352i 0.570227i 0.958494 + 0.285113i \(0.0920313\pi\)
−0.958494 + 0.285113i \(0.907969\pi\)
\(198\) 0 0
\(199\) 16.3034i 1.15572i −0.816137 0.577858i \(-0.803889\pi\)
0.816137 0.577858i \(-0.196111\pi\)
\(200\) 0 0
\(201\) −1.97070 + 0.687628i −0.139002 + 0.0485015i
\(202\) 0 0
\(203\) 7.86772 8.40298i 0.552205 0.589773i
\(204\) 0 0
\(205\) 2.24230 + 3.88378i 0.156609 + 0.271255i
\(206\) 0 0
\(207\) 8.27757 20.9821i 0.575331 1.45836i
\(208\) 0 0
\(209\) −3.90213 6.75868i −0.269916 0.467508i
\(210\) 0 0
\(211\) −10.1930 + 17.6548i −0.701717 + 1.21541i 0.266147 + 0.963933i \(0.414249\pi\)
−0.967863 + 0.251476i \(0.919084\pi\)
\(212\) 0 0
\(213\) 12.6796 14.7077i 0.868790 1.00775i
\(214\) 0 0
\(215\) 17.9085 1.22135
\(216\) 0 0
\(217\) −12.5522 2.92464i −0.852099 0.198537i
\(218\) 0 0
\(219\) −2.08475 + 2.41822i −0.140875 + 0.163408i
\(220\) 0 0
\(221\) −1.20141 0.693633i −0.0808154 0.0466588i
\(222\) 0 0
\(223\) −1.95301 + 1.12757i −0.130783 + 0.0755078i −0.563964 0.825799i \(-0.690724\pi\)
0.433181 + 0.901307i \(0.357391\pi\)
\(224\) 0 0
\(225\) −2.98313 + 2.37038i −0.198875 + 0.158025i
\(226\) 0 0
\(227\) 10.8916 + 18.8648i 0.722899 + 1.25210i 0.959833 + 0.280572i \(0.0905243\pi\)
−0.236934 + 0.971526i \(0.576142\pi\)
\(228\) 0 0
\(229\) 10.4832 + 6.05247i 0.692748 + 0.399958i 0.804641 0.593762i \(-0.202358\pi\)
−0.111893 + 0.993720i \(0.535691\pi\)
\(230\) 0 0
\(231\) −5.82330 + 0.624328i −0.383145 + 0.0410777i
\(232\) 0 0
\(233\) 21.9876i 1.44046i 0.693736 + 0.720229i \(0.255963\pi\)
−0.693736 + 0.720229i \(0.744037\pi\)
\(234\) 0 0
\(235\) −15.4677 −1.00900
\(236\) 0 0
\(237\) 5.52974 29.0851i 0.359195 1.88928i
\(238\) 0 0
\(239\) 18.7861 + 10.8462i 1.21517 + 0.701581i 0.963882 0.266330i \(-0.0858111\pi\)
0.251292 + 0.967911i \(0.419144\pi\)
\(240\) 0 0
\(241\) −23.1674 + 13.3757i −1.49234 + 0.861604i −0.999961 0.00877651i \(-0.997206\pi\)
−0.492380 + 0.870380i \(0.663873\pi\)
\(242\) 0 0
\(243\) 14.2602 + 6.29658i 0.914792 + 0.403926i
\(244\) 0 0
\(245\) −0.888520 13.4899i −0.0567655 0.861837i
\(246\) 0 0
\(247\) 8.91271 15.4373i 0.567102 0.982250i
\(248\) 0 0
\(249\) −0.145719 + 0.766446i −0.00923456 + 0.0485715i
\(250\) 0 0
\(251\) −1.75601 −0.110839 −0.0554193 0.998463i \(-0.517650\pi\)
−0.0554193 + 0.998463i \(0.517650\pi\)
\(252\) 0 0
\(253\) −9.60903 −0.604114
\(254\) 0 0
\(255\) 1.50097 0.523730i 0.0939947 0.0327972i
\(256\) 0 0
\(257\) 14.9860 25.9565i 0.934800 1.61912i 0.159809 0.987148i \(-0.448912\pi\)
0.774991 0.631972i \(-0.217754\pi\)
\(258\) 0 0
\(259\) 4.45946 1.35354i 0.277097 0.0841050i
\(260\) 0 0
\(261\) 8.12019 + 10.2193i 0.502627 + 0.632558i
\(262\) 0 0
\(263\) −13.4273 + 7.75223i −0.827960 + 0.478023i −0.853154 0.521659i \(-0.825313\pi\)
0.0251934 + 0.999683i \(0.491980\pi\)
\(264\) 0 0
\(265\) −17.2850 9.97951i −1.06181 0.613036i
\(266\) 0 0
\(267\) 14.7689 + 12.7323i 0.903839 + 0.779204i
\(268\) 0 0
\(269\) 0.412404 0.0251447 0.0125724 0.999921i \(-0.495998\pi\)
0.0125724 + 0.999921i \(0.495998\pi\)
\(270\) 0 0
\(271\) 0.360056i 0.0218718i −0.999940 0.0109359i \(-0.996519\pi\)
0.999940 0.0109359i \(-0.00348108\pi\)
\(272\) 0 0
\(273\) −7.88535 10.8058i −0.477243 0.653998i
\(274\) 0 0
\(275\) 1.40572 + 0.811595i 0.0847683 + 0.0489410i
\(276\) 0 0
\(277\) −3.03617 5.25881i −0.182426 0.315971i 0.760280 0.649595i \(-0.225062\pi\)
−0.942706 + 0.333624i \(0.891728\pi\)
\(278\) 0 0
\(279\) 5.36309 13.5944i 0.321080 0.813878i
\(280\) 0 0
\(281\) −8.22494 + 4.74867i −0.490659 + 0.283282i −0.724848 0.688909i \(-0.758090\pi\)
0.234189 + 0.972191i \(0.424757\pi\)
\(282\) 0 0
\(283\) −9.81761 5.66820i −0.583596 0.336939i 0.178965 0.983855i \(-0.442725\pi\)
−0.762561 + 0.646916i \(0.776058\pi\)
\(284\) 0 0
\(285\) 6.72957 + 19.2865i 0.398625 + 1.14243i
\(286\) 0 0
\(287\) −1.39411 + 5.98333i −0.0822915 + 0.353185i
\(288\) 0 0
\(289\) −16.7741 −0.986715
\(290\) 0 0
\(291\) 18.1307 + 3.44707i 1.06284 + 0.202071i
\(292\) 0 0
\(293\) 9.22450 15.9773i 0.538901 0.933404i −0.460062 0.887887i \(-0.652173\pi\)
0.998964 0.0455177i \(-0.0144937\pi\)
\(294\) 0 0
\(295\) 3.36572 + 5.82960i 0.195960 + 0.339412i
\(296\) 0 0
\(297\) 0.265849 6.63552i 0.0154261 0.385032i
\(298\) 0 0
\(299\) −10.9738 19.0072i −0.634632 1.09922i
\(300\) 0 0
\(301\) 17.9088 + 16.7680i 1.03224 + 0.966491i
\(302\) 0 0
\(303\) 4.30479 22.6421i 0.247304 1.30076i
\(304\) 0 0
\(305\) 9.50447i 0.544224i
\(306\) 0 0
\(307\) 11.0961i 0.633285i 0.948545 + 0.316643i \(0.102556\pi\)
−0.948545 + 0.316643i \(0.897444\pi\)
\(308\) 0 0
\(309\) −10.8683 31.1478i −0.618275 1.77193i
\(310\) 0 0
\(311\) 1.06866 1.85097i 0.0605979 0.104959i −0.834135 0.551560i \(-0.814033\pi\)
0.894733 + 0.446602i \(0.147366\pi\)
\(312\) 0 0
\(313\) 22.3161 12.8842i 1.26138 0.728259i 0.288039 0.957619i \(-0.406997\pi\)
0.973342 + 0.229360i \(0.0736634\pi\)
\(314\) 0 0
\(315\) 15.2789 + 1.24148i 0.860867 + 0.0699495i
\(316\) 0 0
\(317\) −5.82524 + 3.36320i −0.327178 + 0.188896i −0.654588 0.755986i \(-0.727158\pi\)
0.327409 + 0.944883i \(0.393824\pi\)
\(318\) 0 0
\(319\) 2.78028 4.81558i 0.155666 0.269621i
\(320\) 0 0
\(321\) −18.2527 + 21.1723i −1.01877 + 1.18172i
\(322\) 0 0
\(323\) 2.90202i 0.161473i
\(324\) 0 0
\(325\) 3.70747i 0.205653i
\(326\) 0 0
\(327\) −4.46599 3.85015i −0.246970 0.212914i
\(328\) 0 0
\(329\) −15.4679 14.4826i −0.852773 0.798453i
\(330\) 0 0
\(331\) −12.0006 20.7857i −0.659615 1.14249i −0.980715 0.195441i \(-0.937386\pi\)
0.321101 0.947045i \(-0.395947\pi\)
\(332\) 0 0
\(333\) 0.778381 + 5.22669i 0.0426550 + 0.286421i
\(334\) 0 0
\(335\) −1.16366 2.01552i −0.0635777 0.110120i
\(336\) 0 0
\(337\) −1.07839 + 1.86783i −0.0587438 + 0.101747i −0.893902 0.448263i \(-0.852043\pi\)
0.835158 + 0.550010i \(0.185376\pi\)
\(338\) 0 0
\(339\) −2.39936 6.87641i −0.130316 0.373476i
\(340\) 0 0
\(341\) −6.22575 −0.337143
\(342\) 0 0
\(343\) 11.7422 14.3220i 0.634021 0.773316i
\(344\) 0 0
\(345\) 24.7081 + 4.69757i 1.33024 + 0.252909i
\(346\) 0 0
\(347\) 7.31897 + 4.22561i 0.392903 + 0.226843i 0.683417 0.730028i \(-0.260493\pi\)
−0.290514 + 0.956871i \(0.593826\pi\)
\(348\) 0 0
\(349\) −11.6656 + 6.73516i −0.624447 + 0.360525i −0.778598 0.627523i \(-0.784069\pi\)
0.154151 + 0.988047i \(0.450736\pi\)
\(350\) 0 0
\(351\) 13.4290 7.05211i 0.716789 0.376414i
\(352\) 0 0
\(353\) 14.8956 + 25.7999i 0.792813 + 1.37319i 0.924219 + 0.381863i \(0.124718\pi\)
−0.131406 + 0.991329i \(0.541949\pi\)
\(354\) 0 0
\(355\) 18.7517 + 10.8263i 0.995239 + 0.574601i
\(356\) 0 0
\(357\) 1.99137 + 0.881646i 0.105395 + 0.0466617i
\(358\) 0 0
\(359\) 8.88758i 0.469068i 0.972108 + 0.234534i \(0.0753565\pi\)
−0.972108 + 0.234534i \(0.924644\pi\)
\(360\) 0 0
\(361\) −18.2890 −0.962579
\(362\) 0 0
\(363\) 15.3178 5.34479i 0.803976 0.280529i
\(364\) 0 0
\(365\) −3.08313 1.78005i −0.161378 0.0931719i
\(366\) 0 0
\(367\) −32.0068 + 18.4792i −1.67074 + 0.964604i −0.703520 + 0.710675i \(0.748390\pi\)
−0.967223 + 0.253929i \(0.918277\pi\)
\(368\) 0 0
\(369\) −6.48015 2.55646i −0.337343 0.133084i
\(370\) 0 0
\(371\) −7.94130 26.1638i −0.412292 1.35836i
\(372\) 0 0
\(373\) 16.8546 29.1931i 0.872700 1.51156i 0.0135064 0.999909i \(-0.495701\pi\)
0.859193 0.511651i \(-0.170966\pi\)
\(374\) 0 0
\(375\) −15.8857 13.6951i −0.820335 0.707214i
\(376\) 0 0
\(377\) 12.7007 0.654117
\(378\) 0 0
\(379\) −29.7512 −1.52821 −0.764107 0.645089i \(-0.776820\pi\)
−0.764107 + 0.645089i \(0.776820\pi\)
\(380\) 0 0
\(381\) −22.5412 19.4329i −1.15482 0.995577i
\(382\) 0 0
\(383\) −7.62871 + 13.2133i −0.389809 + 0.675169i −0.992424 0.122863i \(-0.960792\pi\)
0.602615 + 0.798032i \(0.294126\pi\)
\(384\) 0 0
\(385\) −1.89668 6.24891i −0.0966637 0.318474i
\(386\) 0 0
\(387\) −21.7798 + 17.3061i −1.10713 + 0.879717i
\(388\) 0 0
\(389\) −0.947612 + 0.547104i −0.0480458 + 0.0277393i −0.523831 0.851823i \(-0.675497\pi\)
0.475785 + 0.879562i \(0.342164\pi\)
\(390\) 0 0
\(391\) 3.09442 + 1.78656i 0.156492 + 0.0903504i
\(392\) 0 0
\(393\) 13.0966 4.56975i 0.660636 0.230513i
\(394\) 0 0
\(395\) 33.0119 1.66101
\(396\) 0 0
\(397\) 18.2381i 0.915345i 0.889121 + 0.457672i \(0.151317\pi\)
−0.889121 + 0.457672i \(0.848683\pi\)
\(398\) 0 0
\(399\) −11.3286 + 25.5877i −0.567137 + 1.28099i
\(400\) 0 0
\(401\) 14.3050 + 8.25900i 0.714358 + 0.412435i 0.812673 0.582721i \(-0.198012\pi\)
−0.0983146 + 0.995155i \(0.531345\pi\)
\(402\) 0 0
\(403\) −7.11001 12.3149i −0.354175 0.613448i
\(404\) 0 0
\(405\) −3.92749 + 16.9322i −0.195159 + 0.841367i
\(406\) 0 0
\(407\) 1.94958 1.12559i 0.0966371 0.0557934i
\(408\) 0 0
\(409\) −12.3657 7.13935i −0.611445 0.353018i 0.162086 0.986777i \(-0.448178\pi\)
−0.773531 + 0.633759i \(0.781511\pi\)
\(410\) 0 0
\(411\) −16.5877 3.15370i −0.818210 0.155561i
\(412\) 0 0
\(413\) −2.09257 + 8.98105i −0.102969 + 0.441928i
\(414\) 0 0
\(415\) −0.869925 −0.0427029
\(416\) 0 0
\(417\) −4.45444 12.7661i −0.218135 0.625160i
\(418\) 0 0
\(419\) −19.2168 + 33.2845i −0.938804 + 1.62606i −0.171098 + 0.985254i \(0.554732\pi\)
−0.767706 + 0.640802i \(0.778602\pi\)
\(420\) 0 0
\(421\) −5.90196 10.2225i −0.287644 0.498214i 0.685603 0.727976i \(-0.259539\pi\)
−0.973247 + 0.229762i \(0.926205\pi\)
\(422\) 0 0
\(423\) 18.8113 14.9474i 0.914637 0.726766i
\(424\) 0 0
\(425\) −0.301793 0.522720i −0.0146391 0.0253557i
\(426\) 0 0
\(427\) −8.89917 + 9.50460i −0.430661 + 0.459960i
\(428\) 0 0
\(429\) −4.89412 4.21924i −0.236290 0.203707i
\(430\) 0 0
\(431\) 33.9984i 1.63765i 0.574047 + 0.818823i \(0.305373\pi\)
−0.574047 + 0.818823i \(0.694627\pi\)
\(432\) 0 0
\(433\) 1.24413i 0.0597893i −0.999553 0.0298946i \(-0.990483\pi\)
0.999553 0.0298946i \(-0.00951718\pi\)
\(434\) 0 0
\(435\) −9.50323 + 11.0233i −0.455645 + 0.528526i
\(436\) 0 0
\(437\) −22.9561 + 39.7612i −1.09814 + 1.90204i
\(438\) 0 0
\(439\) 10.3661 5.98485i 0.494745 0.285641i −0.231796 0.972765i \(-0.574460\pi\)
0.726541 + 0.687123i \(0.241127\pi\)
\(440\) 0 0
\(441\) 14.1167 + 15.5473i 0.672223 + 0.740349i
\(442\) 0 0
\(443\) 5.07711 2.93127i 0.241221 0.139269i −0.374517 0.927220i \(-0.622191\pi\)
0.615738 + 0.787951i \(0.288858\pi\)
\(444\) 0 0
\(445\) −10.8713 + 18.8297i −0.515351 + 0.892614i
\(446\) 0 0
\(447\) −6.34044 18.1713i −0.299892 0.859471i
\(448\) 0 0
\(449\) 13.7990i 0.651215i −0.945505 0.325607i \(-0.894431\pi\)
0.945505 0.325607i \(-0.105569\pi\)
\(450\) 0 0
\(451\) 2.96767i 0.139742i
\(452\) 0 0
\(453\) −1.22111 + 6.42276i −0.0573729 + 0.301767i
\(454\) 0 0
\(455\) 10.1946 10.8882i 0.477932 0.510446i
\(456\) 0 0
\(457\) 17.6082 + 30.4983i 0.823676 + 1.42665i 0.902927 + 0.429794i \(0.141414\pi\)
−0.0792505 + 0.996855i \(0.525253\pi\)
\(458\) 0 0
\(459\) −1.31932 + 2.08742i −0.0615808 + 0.0974326i
\(460\) 0 0
\(461\) 11.6988 + 20.2629i 0.544867 + 0.943736i 0.998615 + 0.0526068i \(0.0167530\pi\)
−0.453749 + 0.891130i \(0.649914\pi\)
\(462\) 0 0
\(463\) 2.67980 4.64155i 0.124541 0.215711i −0.797013 0.603963i \(-0.793588\pi\)
0.921553 + 0.388252i \(0.126921\pi\)
\(464\) 0 0
\(465\) 16.0085 + 3.04358i 0.742377 + 0.141143i
\(466\) 0 0
\(467\) −31.3997 −1.45300 −0.726502 0.687164i \(-0.758855\pi\)
−0.726502 + 0.687164i \(0.758855\pi\)
\(468\) 0 0
\(469\) 0.723484 3.10510i 0.0334074 0.143380i
\(470\) 0 0
\(471\) −2.34014 6.70670i −0.107828 0.309028i
\(472\) 0 0
\(473\) 10.2632 + 5.92544i 0.471901 + 0.272452i
\(474\) 0 0
\(475\) 6.71660 3.87783i 0.308179 0.177927i
\(476\) 0 0
\(477\) 30.6653 4.56680i 1.40407 0.209099i
\(478\) 0 0
\(479\) 10.7485 + 18.6169i 0.491109 + 0.850626i 0.999948 0.0102359i \(-0.00325824\pi\)
−0.508838 + 0.860862i \(0.669925\pi\)
\(480\) 0 0
\(481\) 4.45296 + 2.57092i 0.203038 + 0.117224i
\(482\) 0 0
\(483\) 20.3100 + 27.8321i 0.924137 + 1.26641i
\(484\) 0 0
\(485\) 20.5786i 0.934425i
\(486\) 0 0
\(487\) 2.61173 0.118349 0.0591744 0.998248i \(-0.481153\pi\)
0.0591744 + 0.998248i \(0.481153\pi\)
\(488\) 0 0
\(489\) 18.8737 + 16.2711i 0.853499 + 0.735805i
\(490\) 0 0
\(491\) −11.1818 6.45580i −0.504626 0.291346i 0.225996 0.974128i \(-0.427437\pi\)
−0.730622 + 0.682782i \(0.760770\pi\)
\(492\) 0 0
\(493\) −1.79068 + 1.03385i −0.0806482 + 0.0465622i
\(494\) 0 0
\(495\) 7.32401 1.09072i 0.329190 0.0490243i
\(496\) 0 0
\(497\) 8.61516 + 28.3840i 0.386443 + 1.27320i
\(498\) 0 0
\(499\) 0.117182 0.202964i 0.00524577 0.00908593i −0.863391 0.504536i \(-0.831664\pi\)
0.868636 + 0.495450i \(0.164997\pi\)
\(500\) 0 0
\(501\) 26.3938 9.20951i 1.17919 0.411451i
\(502\) 0 0
\(503\) 13.6460 0.608445 0.304223 0.952601i \(-0.401603\pi\)
0.304223 + 0.952601i \(0.401603\pi\)
\(504\) 0 0
\(505\) 25.6991 1.14359
\(506\) 0 0
\(507\) −1.44894 + 7.62106i −0.0643496 + 0.338463i
\(508\) 0 0
\(509\) −1.71269 + 2.96647i −0.0759136 + 0.131486i −0.901483 0.432814i \(-0.857521\pi\)
0.825570 + 0.564300i \(0.190854\pi\)
\(510\) 0 0
\(511\) −1.41649 4.66685i −0.0626619 0.206449i
\(512\) 0 0
\(513\) −26.8220 16.9524i −1.18422 0.748468i
\(514\) 0 0
\(515\) 31.8563 18.3922i 1.40376 0.810459i
\(516\) 0 0
\(517\) −8.86435 5.11784i −0.389854 0.225082i
\(518\) 0 0
\(519\) −0.449919 + 2.36646i −0.0197493 + 0.103876i
\(520\) 0 0
\(521\) −37.3500 −1.63633 −0.818167 0.574981i \(-0.805009\pi\)
−0.818167 + 0.574981i \(0.805009\pi\)
\(522\) 0 0
\(523\) 8.99132i 0.393163i −0.980487 0.196581i \(-0.937016\pi\)
0.980487 0.196581i \(-0.0629840\pi\)
\(524\) 0 0
\(525\) −0.620440 5.78704i −0.0270782 0.252567i
\(526\) 0 0
\(527\) 2.00489 + 1.15753i 0.0873346 + 0.0504226i
\(528\) 0 0
\(529\) 16.7648 + 29.0376i 0.728906 + 1.26250i
\(530\) 0 0
\(531\) −9.72677 3.83727i −0.422106 0.166523i
\(532\) 0 0
\(533\) −5.87021 + 3.38917i −0.254267 + 0.146801i
\(534\) 0 0
\(535\) −26.9938 15.5849i −1.16704 0.673793i
\(536\) 0 0
\(537\) −5.20922 + 6.04245i −0.224794 + 0.260751i
\(538\) 0 0
\(539\) 3.95423 8.02488i 0.170321 0.345656i
\(540\) 0 0
\(541\) 7.90934 0.340049 0.170025 0.985440i \(-0.445615\pi\)
0.170025 + 0.985440i \(0.445615\pi\)
\(542\) 0 0
\(543\) −18.5173 + 21.4792i −0.794653 + 0.921760i
\(544\) 0 0
\(545\) 3.28741 5.69396i 0.140817 0.243902i
\(546\) 0 0
\(547\) −17.2958 29.9573i −0.739516 1.28088i −0.952713 0.303871i \(-0.901721\pi\)
0.213197 0.977009i \(-0.431612\pi\)
\(548\) 0 0
\(549\) −9.18474 11.5590i −0.391995 0.493327i
\(550\) 0 0
\(551\) −13.2843 23.0090i −0.565928 0.980217i
\(552\) 0 0
\(553\) 33.0124 + 30.9095i 1.40383 + 1.31441i
\(554\) 0 0
\(555\) −5.56329 + 1.94118i −0.236149 + 0.0823985i
\(556\) 0 0
\(557\) 2.42861i 0.102903i −0.998675 0.0514517i \(-0.983615\pi\)
0.998675 0.0514517i \(-0.0163848\pi\)
\(558\) 0 0
\(559\) 27.0682i 1.14486i
\(560\) 0 0
\(561\) 1.03348 + 0.196488i 0.0436335 + 0.00829573i
\(562\) 0 0
\(563\) 8.53869 14.7894i 0.359863 0.623301i −0.628075 0.778153i \(-0.716157\pi\)
0.987938 + 0.154852i \(0.0494901\pi\)
\(564\) 0 0
\(565\) 7.03283 4.06041i 0.295873 0.170823i
\(566\) 0 0
\(567\) −19.7814 + 13.2551i −0.830740 + 0.556660i
\(568\) 0 0
\(569\) 19.9471 11.5165i 0.836228 0.482796i −0.0197523 0.999805i \(-0.506288\pi\)
0.855980 + 0.517008i \(0.172954\pi\)
\(570\) 0 0
\(571\) 4.11356 7.12490i 0.172147 0.298168i −0.767023 0.641619i \(-0.778263\pi\)
0.939170 + 0.343452i \(0.111596\pi\)
\(572\) 0 0
\(573\) 25.1402 + 4.77973i 1.05025 + 0.199676i
\(574\) 0 0
\(575\) 9.54919i 0.398229i
\(576\) 0 0
\(577\) 11.3064i 0.470691i 0.971912 + 0.235346i \(0.0756222\pi\)
−0.971912 + 0.235346i \(0.924378\pi\)
\(578\) 0 0
\(579\) −29.1723 + 10.1790i −1.21236 + 0.423024i
\(580\) 0 0
\(581\) −0.869937 0.814523i −0.0360911 0.0337921i
\(582\) 0 0
\(583\) −6.60389 11.4383i −0.273505 0.473725i
\(584\) 0 0
\(585\) 10.5218 + 13.2417i 0.435022 + 0.547476i
\(586\) 0 0
\(587\) −17.2862 29.9407i −0.713480 1.23578i −0.963543 0.267553i \(-0.913785\pi\)
0.250063 0.968229i \(-0.419549\pi\)
\(588\) 0 0
\(589\) −14.8734 + 25.7615i −0.612849 + 1.06149i
\(590\) 0 0
\(591\) 9.05159 10.4994i 0.372333 0.431888i
\(592\) 0 0
\(593\) 9.64649 0.396134 0.198067 0.980188i \(-0.436534\pi\)
0.198067 + 0.980188i \(0.436534\pi\)
\(594\) 0 0
\(595\) −0.551039 + 2.36499i −0.0225904 + 0.0969553i
\(596\) 0 0
\(597\) −18.4383 + 21.3876i −0.754631 + 0.875336i
\(598\) 0 0
\(599\) 5.22049 + 3.01405i 0.213303 + 0.123151i 0.602846 0.797858i \(-0.294033\pi\)
−0.389542 + 0.921009i \(0.627367\pi\)
\(600\) 0 0
\(601\) −23.4624 + 13.5460i −0.957052 + 0.552555i −0.895265 0.445535i \(-0.853014\pi\)
−0.0617879 + 0.998089i \(0.519680\pi\)
\(602\) 0 0
\(603\) 3.36293 + 1.32670i 0.136949 + 0.0540272i
\(604\) 0 0
\(605\) 9.04491 + 15.6662i 0.367728 + 0.636923i
\(606\) 0 0
\(607\) −16.1410 9.31904i −0.655145 0.378248i 0.135280 0.990807i \(-0.456807\pi\)
−0.790425 + 0.612559i \(0.790140\pi\)
\(608\) 0 0
\(609\) −19.8246 + 2.12544i −0.803334 + 0.0861271i
\(610\) 0 0
\(611\) 23.3789i 0.945811i
\(612\) 0 0
\(613\) 24.7398 0.999232 0.499616 0.866247i \(-0.333474\pi\)
0.499616 + 0.866247i \(0.333474\pi\)
\(614\) 0 0
\(615\) 1.45080 7.63087i 0.0585021 0.307706i
\(616\) 0 0
\(617\) −42.5759 24.5812i −1.71404 0.989603i −0.928934 0.370245i \(-0.879274\pi\)
−0.785109 0.619358i \(-0.787393\pi\)
\(618\) 0 0
\(619\) 0.334357 0.193041i 0.0134389 0.00775898i −0.493265 0.869879i \(-0.664197\pi\)
0.506704 + 0.862120i \(0.330864\pi\)
\(620\) 0 0
\(621\) −34.5887 + 18.1638i −1.38800 + 0.728890i
\(622\) 0 0
\(623\) −28.5020 + 8.65098i −1.14191 + 0.346594i
\(624\) 0 0
\(625\) 8.51828 14.7541i 0.340731 0.590164i
\(626\) 0 0
\(627\) −2.52474 + 13.2795i −0.100828 + 0.530332i
\(628\) 0 0
\(629\) −0.837104 −0.0333775
\(630\) 0 0
\(631\) 45.6531 1.81742 0.908710 0.417429i \(-0.137069\pi\)
0.908710 + 0.417429i \(0.137069\pi\)
\(632\) 0 0
\(633\) 33.3385 11.6327i 1.32509 0.462357i
\(634\) 0 0
\(635\) 16.5926 28.7392i 0.658456 1.14048i
\(636\) 0 0
\(637\) 20.3895 1.34297i 0.807863 0.0532104i
\(638\) 0 0
\(639\) −33.2674 + 4.95431i −1.31604 + 0.195990i
\(640\) 0 0
\(641\) −34.2119 + 19.7523i −1.35129 + 0.780167i −0.988430 0.151677i \(-0.951533\pi\)
−0.362859 + 0.931844i \(0.618199\pi\)
\(642\) 0 0
\(643\) 23.1404 + 13.3601i 0.912570 + 0.526873i 0.881257 0.472637i \(-0.156698\pi\)
0.0313129 + 0.999510i \(0.490031\pi\)
\(644\) 0 0
\(645\) −23.4933 20.2537i −0.925047 0.797487i
\(646\) 0 0
\(647\) 40.2634 1.58292 0.791459 0.611222i \(-0.209322\pi\)
0.791459 + 0.611222i \(0.209322\pi\)
\(648\) 0 0
\(649\) 4.45450i 0.174854i
\(650\) 0 0
\(651\) 13.1590 + 18.0326i 0.515741 + 0.706754i
\(652\) 0 0
\(653\) −36.6920 21.1841i −1.43587 0.828998i −0.438308 0.898825i \(-0.644422\pi\)
−0.997559 + 0.0698266i \(0.977755\pi\)
\(654\) 0 0
\(655\) 7.73332 + 13.3945i 0.302166 + 0.523366i
\(656\) 0 0
\(657\) 5.46977 0.814580i 0.213396 0.0317798i
\(658\) 0 0
\(659\) 33.3031 19.2276i 1.29731 0.749000i 0.317368 0.948302i \(-0.397201\pi\)
0.979938 + 0.199302i \(0.0638676\pi\)
\(660\) 0 0
\(661\) −14.2400 8.22149i −0.553874 0.319779i 0.196809 0.980442i \(-0.436942\pi\)
−0.750683 + 0.660663i \(0.770275\pi\)
\(662\) 0 0
\(663\) 0.791601 + 2.26868i 0.0307432 + 0.0881081i
\(664\) 0 0
\(665\) −30.3885 7.08048i −1.17842 0.274569i
\(666\) 0 0
\(667\) −32.7126 −1.26664
\(668\) 0 0
\(669\) 3.83729 + 0.729557i 0.148358 + 0.0282063i
\(670\) 0 0
\(671\) −3.14477 + 5.44690i −0.121402 + 0.210275i
\(672\) 0 0
\(673\) −16.8254 29.1424i −0.648570 1.12336i −0.983465 0.181100i \(-0.942034\pi\)
0.334895 0.942255i \(-0.391299\pi\)
\(674\) 0 0
\(675\) 6.59420 + 0.264193i 0.253811 + 0.0101688i
\(676\) 0 0
\(677\) −21.0119 36.3938i −0.807555 1.39873i −0.914553 0.404466i \(-0.867457\pi\)
0.106998 0.994259i \(-0.465876\pi\)
\(678\) 0 0
\(679\) −19.2680 + 20.5789i −0.739438 + 0.789744i
\(680\) 0 0
\(681\) 7.04702 37.0656i 0.270042 1.42036i
\(682\) 0 0
\(683\) 28.0238i 1.07230i −0.844122 0.536151i \(-0.819878\pi\)
0.844122 0.536151i \(-0.180122\pi\)
\(684\) 0 0
\(685\) 18.8272i 0.719351i
\(686\) 0 0
\(687\) −6.90731 19.7959i −0.263530 0.755260i
\(688\) 0 0
\(689\) 15.0837 26.1258i 0.574644 0.995312i
\(690\) 0 0
\(691\) −4.58578 + 2.64760i −0.174451 + 0.100720i −0.584683 0.811262i \(-0.698781\pi\)
0.410232 + 0.911981i \(0.365448\pi\)
\(692\) 0 0
\(693\) 8.34537 + 5.76684i 0.317015 + 0.219064i
\(694\) 0 0
\(695\) 13.0565 7.53818i 0.495262 0.285940i
\(696\) 0 0
\(697\) 0.551765 0.955685i 0.0208996 0.0361992i
\(698\) 0 0
\(699\) 24.8670 28.8445i 0.940555 1.09100i
\(700\) 0 0
\(701\) 38.6055i 1.45811i −0.684455 0.729055i \(-0.739960\pi\)
0.684455 0.729055i \(-0.260040\pi\)
\(702\) 0 0
\(703\) 10.7562i 0.405678i
\(704\) 0 0
\(705\) 20.2913 + 17.4932i 0.764214 + 0.658832i
\(706\) 0 0
\(707\) 25.6994 + 24.0624i 0.966526 + 0.904960i
\(708\) 0 0
\(709\) 21.9037 + 37.9383i 0.822610 + 1.42480i 0.903732 + 0.428098i \(0.140816\pi\)
−0.0811228 + 0.996704i \(0.525851\pi\)
\(710\) 0 0
\(711\) −40.1480 + 31.9014i −1.50567 + 1.19640i
\(712\) 0 0
\(713\) 18.3130 + 31.7190i 0.685826 + 1.18789i
\(714\) 0 0
\(715\) 3.60256 6.23981i 0.134728 0.233356i
\(716\) 0 0
\(717\) −12.3781 35.4748i −0.462268 1.32483i
\(718\) 0 0
\(719\) −21.2855 −0.793813 −0.396907 0.917859i \(-0.629916\pi\)
−0.396907 + 0.917859i \(0.629916\pi\)
\(720\) 0 0
\(721\) 49.0776 + 11.4350i 1.82775 + 0.425862i
\(722\) 0 0
\(723\) 45.5194 + 8.65428i 1.69288 + 0.321856i
\(724\) 0 0
\(725\) 4.78559 + 2.76296i 0.177733 + 0.102614i
\(726\) 0 0
\(727\) 36.2267 20.9155i 1.34358 0.775713i 0.356245 0.934393i \(-0.384057\pi\)
0.987330 + 0.158679i \(0.0507236\pi\)
\(728\) 0 0
\(729\) −11.5861 24.3877i −0.429115 0.903250i
\(730\) 0 0
\(731\) −2.20338 3.81637i −0.0814950 0.141154i
\(732\) 0 0
\(733\) −36.6457 21.1574i −1.35354 0.781466i −0.364795 0.931088i \(-0.618861\pi\)
−0.988743 + 0.149622i \(0.952194\pi\)
\(734\) 0 0
\(735\) −14.0908 + 18.7016i −0.519747 + 0.689818i
\(736\) 0 0
\(737\) 1.54010i 0.0567302i
\(738\) 0 0
\(739\) 20.4280 0.751456 0.375728 0.926730i \(-0.377393\pi\)
0.375728 + 0.926730i \(0.377393\pi\)
\(740\) 0 0
\(741\) −29.1509 + 10.1715i −1.07089 + 0.373661i
\(742\) 0 0
\(743\) −7.44740 4.29976i −0.273219 0.157743i 0.357131 0.934054i \(-0.383755\pi\)
−0.630349 + 0.776312i \(0.717088\pi\)
\(744\) 0 0
\(745\) 18.5846 10.7298i 0.680887 0.393110i
\(746\) 0 0
\(747\) 1.05797 0.840661i 0.0387093 0.0307582i
\(748\) 0 0
\(749\) −12.4018 40.8598i −0.453153 1.49298i
\(750\) 0 0
\(751\) 20.0359 34.7032i 0.731120 1.26634i −0.225285 0.974293i \(-0.572331\pi\)
0.956405 0.292043i \(-0.0943352\pi\)
\(752\) 0 0
\(753\) 2.30362 + 1.98596i 0.0839487 + 0.0723726i
\(754\) 0 0
\(755\) −7.28990 −0.265307
\(756\) 0 0
\(757\) 10.6186 0.385941 0.192970 0.981205i \(-0.438188\pi\)
0.192970 + 0.981205i \(0.438188\pi\)
\(758\) 0 0
\(759\) 12.6056 + 10.8673i 0.457554 + 0.394459i
\(760\) 0 0
\(761\) −1.36550 + 2.36512i −0.0494993 + 0.0857354i −0.889713 0.456519i \(-0.849096\pi\)
0.840214 + 0.542255i \(0.182429\pi\)
\(762\) 0 0
\(763\) 8.61878 2.61599i 0.312021 0.0947052i
\(764\) 0 0
\(765\) −2.56137 1.01047i −0.0926064 0.0365338i
\(766\) 0 0
\(767\) −8.81125 + 5.08718i −0.318156 + 0.183687i
\(768\) 0 0
\(769\) −5.44566 3.14405i −0.196376 0.113377i 0.398588 0.917130i \(-0.369500\pi\)
−0.594964 + 0.803753i \(0.702834\pi\)
\(770\) 0 0
\(771\) −49.0149 + 17.1026i −1.76523 + 0.615934i
\(772\) 0 0
\(773\) 15.6236 0.561942 0.280971 0.959716i \(-0.409344\pi\)
0.280971 + 0.959716i \(0.409344\pi\)
\(774\) 0 0
\(775\) 6.18698i 0.222243i
\(776\) 0 0
\(777\) −7.38093 3.26778i −0.264789 0.117231i
\(778\) 0 0
\(779\) 12.2799 + 7.08981i 0.439973 + 0.254019i
\(780\) 0 0
\(781\) 7.16426 + 12.4089i 0.256358 + 0.444024i
\(782\) 0 0
\(783\) 0.905046 22.5897i 0.0323437 0.807290i
\(784\) 0 0
\(785\) 6.85925 3.96019i 0.244817 0.141345i
\(786\) 0 0
\(787\) −39.7379 22.9427i −1.41650 0.817819i −0.420514 0.907286i \(-0.638150\pi\)
−0.995990 + 0.0894671i \(0.971484\pi\)
\(788\) 0 0
\(789\) 26.3819 + 5.01581i 0.939222 + 0.178568i
\(790\) 0 0
\(791\) 10.8347 + 2.52448i 0.385239 + 0.0897600i
\(792\) 0 0
\(793\) −14.3657 −0.510141
\(794\) 0 0
\(795\) 11.3890 + 32.6401i 0.403926 + 1.15763i
\(796\) 0 0
\(797\) 14.8057 25.6442i 0.524444 0.908364i −0.475151 0.879904i \(-0.657606\pi\)
0.999595 0.0284597i \(-0.00906022\pi\)
\(798\) 0 0
\(799\) 1.90307 + 3.29622i 0.0673259 + 0.116612i
\(800\) 0 0
\(801\) −4.97491 33.4057i −0.175780 1.18033i
\(802\) 0 0
\(803\) −1.17794 2.04025i −0.0415685 0.0719987i
\(804\) 0 0
\(805\) −26.2579 + 28.0443i −0.925470 + 0.988432i
\(806\) 0 0
\(807\) −0.541012 0.466409i −0.0190445 0.0164184i
\(808\) 0 0
\(809\) 27.7761i 0.976556i −0.872688 0.488278i \(-0.837625\pi\)
0.872688 0.488278i \(-0.162375\pi\)
\(810\) 0 0
\(811\) 17.8221i 0.625820i −0.949783 0.312910i \(-0.898696\pi\)
0.949783 0.312910i \(-0.101304\pi\)
\(812\) 0 0
\(813\) −0.407206 + 0.472339i −0.0142813 + 0.0165657i
\(814\) 0 0
\(815\) −13.8929 + 24.0633i −0.486648 + 0.842899i
\(816\) 0 0
\(817\) 49.0377 28.3119i 1.71561 0.990510i
\(818\) 0 0
\(819\) −1.87646 + 23.0936i −0.0655688 + 0.806954i
\(820\) 0 0
\(821\) 0.242236 0.139855i 0.00845409 0.00488097i −0.495767 0.868456i \(-0.665113\pi\)
0.504221 + 0.863575i \(0.331780\pi\)
\(822\) 0 0
\(823\) −5.56224 + 9.63408i −0.193887 + 0.335823i −0.946535 0.322600i \(-0.895443\pi\)
0.752648 + 0.658423i \(0.228776\pi\)
\(824\) 0 0
\(825\) −0.926224 2.65450i −0.0322470 0.0924177i
\(826\) 0 0
\(827\) 22.9832i 0.799205i −0.916688 0.399603i \(-0.869148\pi\)
0.916688 0.399603i \(-0.130852\pi\)
\(828\) 0 0
\(829\) 6.30082i 0.218837i 0.993996 + 0.109418i \(0.0348988\pi\)
−0.993996 + 0.109418i \(0.965101\pi\)
\(830\) 0 0
\(831\) −1.96445 + 10.3325i −0.0681461 + 0.358432i
\(832\) 0 0
\(833\) −2.76542 + 1.84908i −0.0958163 + 0.0640668i
\(834\) 0 0
\(835\) 15.5851 + 26.9942i 0.539345 + 0.934174i
\(836\) 0 0
\(837\) −22.4102 + 11.7685i −0.774610 + 0.406778i
\(838\) 0 0
\(839\) 11.7701 + 20.3864i 0.406349 + 0.703816i 0.994477 0.104951i \(-0.0334685\pi\)
−0.588129 + 0.808767i \(0.700135\pi\)
\(840\) 0 0
\(841\) −5.03493 + 8.72075i −0.173618 + 0.300716i
\(842\) 0 0
\(843\) 16.1604 + 3.07246i 0.556593 + 0.105821i
\(844\) 0 0
\(845\) −8.64999 −0.297569
\(846\) 0 0
\(847\) −5.62349 + 24.1353i −0.193225 + 0.829300i
\(848\) 0 0
\(849\) 6.46877 + 18.5391i 0.222008 + 0.636259i
\(850\) 0 0
\(851\) −11.4693 6.62182i −0.393164 0.226993i
\(852\) 0 0
\(853\) −1.56621 + 0.904252i −0.0536260 + 0.0309610i −0.526573 0.850130i \(-0.676523\pi\)
0.472947 + 0.881091i \(0.343190\pi\)
\(854\) 0 0
\(855\) 12.9839 32.9118i 0.444040 1.12556i
\(856\) 0 0
\(857\) 0.704571 + 1.22035i 0.0240677 + 0.0416865i 0.877808 0.479012i \(-0.159005\pi\)
−0.853741 + 0.520698i \(0.825672\pi\)
\(858\) 0 0
\(859\) 35.4862 + 20.4879i 1.21077 + 0.699040i 0.962928 0.269760i \(-0.0869444\pi\)
0.247845 + 0.968800i \(0.420278\pi\)
\(860\) 0 0
\(861\) 8.59572 6.27257i 0.292941 0.213769i
\(862\) 0 0
\(863\) 7.34316i 0.249964i −0.992159 0.124982i \(-0.960113\pi\)
0.992159 0.124982i \(-0.0398873\pi\)
\(864\) 0 0
\(865\) −2.68596 −0.0913255
\(866\) 0 0
\(867\) 22.0052 + 18.9707i 0.747334 + 0.644280i
\(868\) 0 0
\(869\) 18.9187 + 10.9227i 0.641774 + 0.370528i
\(870\) 0 0
\(871\) 3.04640 1.75884i 0.103223 0.0595960i
\(872\) 0 0
\(873\) −19.8863 25.0270i −0.673050 0.847035i
\(874\) 0 0
\(875\) 30.6574 9.30519i 1.03641 0.314573i
\(876\) 0 0
\(877\) 1.80443 3.12536i 0.0609312 0.105536i −0.833951 0.551839i \(-0.813926\pi\)
0.894882 + 0.446303i \(0.147260\pi\)
\(878\) 0 0
\(879\) −30.1707 + 10.5274i −1.01763 + 0.355079i
\(880\) 0 0
\(881\) 12.6937 0.427660 0.213830 0.976871i \(-0.431406\pi\)
0.213830 + 0.976871i \(0.431406\pi\)
\(882\) 0 0
\(883\) −8.55621 −0.287939 −0.143970 0.989582i \(-0.545987\pi\)
−0.143970 + 0.989582i \(0.545987\pi\)
\(884\) 0 0
\(885\) 2.17767 11.4540i 0.0732016 0.385023i
\(886\) 0 0
\(887\) −7.45990 + 12.9209i −0.250479 + 0.433842i −0.963658 0.267140i \(-0.913921\pi\)
0.713179 + 0.700982i \(0.247255\pi\)
\(888\) 0 0
\(889\) 43.5017 13.2037i 1.45900 0.442839i
\(890\) 0 0
\(891\) −7.85320 + 8.40414i −0.263092 + 0.281549i
\(892\) 0 0
\(893\) −42.3542 + 24.4532i −1.41733 + 0.818295i
\(894\) 0 0
\(895\) −7.70388 4.44784i −0.257512 0.148675i
\(896\) 0 0
\(897\) −7.10023 + 37.3455i −0.237070 + 1.24693i
\(898\) 0 0
\(899\) −21.1947 −0.706883
\(900\) 0 0
\(901\) 4.91133i 0.163620i
\(902\) 0 0
\(903\) −4.52982 42.2510i −0.150743 1.40603i
\(904\) 0 0
\(905\) −27.3851 15.8108i −0.910312 0.525569i
\(906\) 0 0
\(907\) 16.1506 + 27.9737i 0.536273 + 0.928852i 0.999101 + 0.0424034i \(0.0135015\pi\)
−0.462828 + 0.886448i \(0.653165\pi\)
\(908\) 0 0
\(909\) −31.2544 + 24.8346i −1.03664 + 0.823710i
\(910\) 0 0
\(911\) 13.3778 7.72366i 0.443225 0.255896i −0.261740 0.965139i \(-0.584296\pi\)
0.704965 + 0.709242i \(0.250963\pi\)
\(912\) 0 0
\(913\) −0.498544 0.287834i −0.0164994 0.00952593i
\(914\) 0 0
\(915\) 10.7491 12.4684i 0.355354 0.412194i
\(916\) 0 0
\(917\) −4.80803 + 20.6355i −0.158775 + 0.681444i
\(918\) 0 0
\(919\) −1.01879 −0.0336069 −0.0168034 0.999859i \(-0.505349\pi\)
−0.0168034 + 0.999859i \(0.505349\pi\)
\(920\) 0 0
\(921\) 12.5491 14.5564i 0.413507 0.479648i
\(922\) 0 0
\(923\) −16.3636 + 28.3427i −0.538616 + 0.932910i
\(924\) 0 0
\(925\) 1.11858 + 1.93744i 0.0367787 + 0.0637026i
\(926\) 0 0
\(927\) −20.9690 + 53.1527i −0.688714 + 1.74576i
\(928\) 0 0
\(929\) 17.5872 + 30.4619i 0.577016 + 0.999421i 0.995819 + 0.0913443i \(0.0291164\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(930\) 0 0
\(931\) −23.7594 35.5338i −0.778684 1.16457i
\(932\) 0 0
\(933\) −3.49527 + 1.21959i −0.114430 + 0.0399276i
\(934\) 0 0
\(935\) 1.17301i 0.0383615i
\(936\) 0 0
\(937\) 19.5780i 0.639586i −0.947487 0.319793i \(-0.896387\pi\)
0.947487 0.319793i \(-0.103613\pi\)
\(938\) 0 0
\(939\) −43.8468 8.33628i −1.43089 0.272044i
\(940\) 0 0
\(941\) −23.2160 + 40.2113i −0.756820 + 1.31085i 0.187645 + 0.982237i \(0.439915\pi\)
−0.944464 + 0.328614i \(0.893419\pi\)
\(942\) 0 0
\(943\) 15.1197 8.72936i 0.492365 0.284267i
\(944\) 0 0
\(945\) −18.6395 18.9083i −0.606344 0.615087i
\(946\) 0 0
\(947\) −32.1063 + 18.5366i −1.04331 + 0.602358i −0.920770 0.390105i \(-0.872439\pi\)
−0.122544 + 0.992463i \(0.539105\pi\)
\(948\) 0 0
\(949\) 2.69048 4.66006i 0.0873368 0.151272i
\(950\) 0 0
\(951\) 11.4455 + 2.17604i 0.371144 + 0.0705631i
\(952\) 0 0
\(953\) 2.73116i 0.0884709i −0.999021 0.0442354i \(-0.985915\pi\)
0.999021 0.0442354i \(-0.0140852\pi\)
\(954\) 0 0
\(955\) 28.5344i 0.923352i
\(956\) 0 0
\(957\) −9.09349 + 3.17296i −0.293951 + 0.102567i
\(958\) 0 0
\(959\) 17.6282 18.8275i 0.569244 0.607971i
\(960\) 0 0
\(961\) −3.63491 6.29585i −0.117255 0.203092i
\(962\) 0 0
\(963\) 47.8896 7.13191i 1.54322 0.229823i
\(964\) 0 0
\(965\) −17.2257 29.8358i −0.554516 0.960450i
\(966\) 0 0
\(967\) 14.6811 25.4285i 0.472113 0.817724i −0.527378 0.849631i \(-0.676825\pi\)
0.999491 + 0.0319070i \(0.0101580\pi\)
\(968\) 0 0
\(969\) 3.28205 3.80702i 0.105435 0.122299i
\(970\) 0 0
\(971\) 17.1103 0.549094 0.274547 0.961574i \(-0.411472\pi\)
0.274547 + 0.961574i \(0.411472\pi\)
\(972\) 0 0
\(973\) 20.1148 + 4.68671i 0.644851 + 0.150249i
\(974\) 0 0
\(975\) 4.19297 4.86364i 0.134282 0.155761i
\(976\) 0 0
\(977\) 36.4251 + 21.0301i 1.16534 + 0.672812i 0.952579 0.304292i \(-0.0984198\pi\)
0.212765 + 0.977103i \(0.431753\pi\)
\(978\) 0 0
\(979\) −12.4605 + 7.19406i −0.398238 + 0.229923i
\(980\) 0 0
\(981\) 1.50437 + 10.1016i 0.0480310 + 0.322520i
\(982\) 0 0
\(983\) −3.87731 6.71569i −0.123667 0.214197i 0.797544 0.603261i \(-0.206132\pi\)
−0.921211 + 0.389063i \(0.872799\pi\)
\(984\) 0 0
\(985\) 13.3863 + 7.72860i 0.426524 + 0.246254i
\(986\) 0 0
\(987\) 3.91243 + 36.4925i 0.124534 + 1.16157i
\(988\) 0 0
\(989\) 69.7184i 2.21692i
\(990\) 0 0
\(991\) −11.5135 −0.365738 −0.182869 0.983137i \(-0.558538\pi\)
−0.182869 + 0.983137i \(0.558538\pi\)
\(992\) 0 0
\(993\) −7.76460 + 40.8399i −0.246402 + 1.29601i
\(994\) 0 0
\(995\) −27.2683 15.7434i −0.864464 0.499099i
\(996\) 0 0
\(997\) 15.0836 8.70850i 0.477701 0.275801i −0.241757 0.970337i \(-0.577724\pi\)
0.719458 + 0.694536i \(0.244390\pi\)
\(998\) 0 0
\(999\) 4.89002 7.73695i 0.154713 0.244786i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bu.a.41.5 48
3.2 odd 2 1512.2.bu.a.881.8 48
4.3 odd 2 1008.2.cc.d.545.20 48
7.6 odd 2 inner 504.2.bu.a.41.20 yes 48
9.2 odd 6 inner 504.2.bu.a.209.20 yes 48
9.4 even 3 4536.2.k.a.3401.16 48
9.5 odd 6 4536.2.k.a.3401.33 48
9.7 even 3 1512.2.bu.a.1385.17 48
12.11 even 2 3024.2.cc.d.881.8 48
21.20 even 2 1512.2.bu.a.881.17 48
28.27 even 2 1008.2.cc.d.545.5 48
36.7 odd 6 3024.2.cc.d.2897.17 48
36.11 even 6 1008.2.cc.d.209.5 48
63.13 odd 6 4536.2.k.a.3401.34 48
63.20 even 6 inner 504.2.bu.a.209.5 yes 48
63.34 odd 6 1512.2.bu.a.1385.8 48
63.41 even 6 4536.2.k.a.3401.15 48
84.83 odd 2 3024.2.cc.d.881.17 48
252.83 odd 6 1008.2.cc.d.209.20 48
252.223 even 6 3024.2.cc.d.2897.8 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bu.a.41.5 48 1.1 even 1 trivial
504.2.bu.a.41.20 yes 48 7.6 odd 2 inner
504.2.bu.a.209.5 yes 48 63.20 even 6 inner
504.2.bu.a.209.20 yes 48 9.2 odd 6 inner
1008.2.cc.d.209.5 48 36.11 even 6
1008.2.cc.d.209.20 48 252.83 odd 6
1008.2.cc.d.545.5 48 28.27 even 2
1008.2.cc.d.545.20 48 4.3 odd 2
1512.2.bu.a.881.8 48 3.2 odd 2
1512.2.bu.a.881.17 48 21.20 even 2
1512.2.bu.a.1385.8 48 63.34 odd 6
1512.2.bu.a.1385.17 48 9.7 even 3
3024.2.cc.d.881.8 48 12.11 even 2
3024.2.cc.d.881.17 48 84.83 odd 2
3024.2.cc.d.2897.8 48 252.223 even 6
3024.2.cc.d.2897.17 48 36.7 odd 6
4536.2.k.a.3401.15 48 63.41 even 6
4536.2.k.a.3401.16 48 9.4 even 3
4536.2.k.a.3401.33 48 9.5 odd 6
4536.2.k.a.3401.34 48 63.13 odd 6