Properties

Label 504.2.bu.a.41.4
Level $504$
Weight $2$
Character 504.41
Analytic conductor $4.024$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(41,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bu (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 41.4
Character \(\chi\) \(=\) 504.41
Dual form 504.2.bu.a.209.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50601 - 0.855530i) q^{3} +(0.422480 - 0.731757i) q^{5} +(0.327684 + 2.62538i) q^{7} +(1.53614 + 2.57688i) q^{9} +(-0.791371 + 0.456898i) q^{11} +(-0.472651 - 0.272885i) q^{13} +(-1.26230 + 0.740590i) q^{15} +4.77352 q^{17} +3.15579i q^{19} +(1.75260 - 4.23419i) q^{21} +(1.39291 + 0.804196i) q^{23} +(2.14302 + 3.71182i) q^{25} +(-0.108844 - 5.19501i) q^{27} +(5.56478 - 3.21283i) q^{29} +(1.57351 + 0.908468i) q^{31} +(1.58270 - 0.0110519i) q^{33} +(2.05958 + 0.869387i) q^{35} +7.14037 q^{37} +(0.478356 + 0.815336i) q^{39} +(2.82322 - 4.88995i) q^{41} +(-1.84576 - 3.19695i) q^{43} +(2.53463 - 0.0354002i) q^{45} +(6.75196 + 11.6947i) q^{47} +(-6.78525 + 1.72059i) q^{49} +(-7.18897 - 4.08389i) q^{51} +2.49672i q^{53} +0.772122i q^{55} +(2.69987 - 4.75266i) q^{57} +(0.279096 - 0.483409i) q^{59} +(-10.9926 + 6.34661i) q^{61} +(-6.26191 + 4.87734i) q^{63} +(-0.399372 + 0.230577i) q^{65} +(-3.06545 + 5.30951i) q^{67} +(-1.40972 - 2.40280i) q^{69} -9.24488i q^{71} +8.87479i q^{73} +(-0.0518376 - 7.42346i) q^{75} +(-1.45885 - 1.92793i) q^{77} +(-5.58581 - 9.67491i) q^{79} +(-4.28057 + 7.91686i) q^{81} +(0.122120 + 0.211518i) q^{83} +(2.01672 - 3.49306i) q^{85} +(-11.1293 + 0.0777152i) q^{87} +6.19322 q^{89} +(0.561548 - 1.33031i) q^{91} +(-1.59250 - 2.71435i) q^{93} +(2.30927 + 1.33326i) q^{95} +(-12.2408 + 7.06722i) q^{97} +(-2.39302 - 1.33741i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} + 8 q^{15} - 4 q^{21} + 12 q^{23} - 24 q^{25} - 36 q^{29} + 32 q^{39} + 12 q^{43} + 6 q^{49} + 24 q^{51} + 28 q^{57} - 14 q^{63} + 36 q^{65} - 60 q^{77} - 12 q^{79} - 36 q^{81} - 12 q^{91}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50601 0.855530i −0.869496 0.493941i
\(4\) 0 0
\(5\) 0.422480 0.731757i 0.188939 0.327252i −0.755958 0.654620i \(-0.772829\pi\)
0.944897 + 0.327368i \(0.106162\pi\)
\(6\) 0 0
\(7\) 0.327684 + 2.62538i 0.123853 + 0.992301i
\(8\) 0 0
\(9\) 1.53614 + 2.57688i 0.512045 + 0.858958i
\(10\) 0 0
\(11\) −0.791371 + 0.456898i −0.238607 + 0.137760i −0.614537 0.788888i \(-0.710657\pi\)
0.375929 + 0.926648i \(0.377324\pi\)
\(12\) 0 0
\(13\) −0.472651 0.272885i −0.131090 0.0756848i 0.433021 0.901384i \(-0.357448\pi\)
−0.564111 + 0.825699i \(0.690781\pi\)
\(14\) 0 0
\(15\) −1.26230 + 0.740590i −0.325925 + 0.191219i
\(16\) 0 0
\(17\) 4.77352 1.15775 0.578874 0.815417i \(-0.303492\pi\)
0.578874 + 0.815417i \(0.303492\pi\)
\(18\) 0 0
\(19\) 3.15579i 0.723988i 0.932180 + 0.361994i \(0.117904\pi\)
−0.932180 + 0.361994i \(0.882096\pi\)
\(20\) 0 0
\(21\) 1.75260 4.23419i 0.382448 0.923977i
\(22\) 0 0
\(23\) 1.39291 + 0.804196i 0.290441 + 0.167686i 0.638141 0.769920i \(-0.279704\pi\)
−0.347699 + 0.937606i \(0.613037\pi\)
\(24\) 0 0
\(25\) 2.14302 + 3.71182i 0.428604 + 0.742364i
\(26\) 0 0
\(27\) −0.108844 5.19501i −0.0209470 0.999781i
\(28\) 0 0
\(29\) 5.56478 3.21283i 1.03335 0.596607i 0.115410 0.993318i \(-0.463182\pi\)
0.917944 + 0.396711i \(0.129848\pi\)
\(30\) 0 0
\(31\) 1.57351 + 0.908468i 0.282611 + 0.163166i 0.634605 0.772837i \(-0.281163\pi\)
−0.351994 + 0.936002i \(0.614496\pi\)
\(32\) 0 0
\(33\) 1.58270 0.0110519i 0.275513 0.00192390i
\(34\) 0 0
\(35\) 2.05958 + 0.869387i 0.348133 + 0.146953i
\(36\) 0 0
\(37\) 7.14037 1.17387 0.586935 0.809634i \(-0.300334\pi\)
0.586935 + 0.809634i \(0.300334\pi\)
\(38\) 0 0
\(39\) 0.478356 + 0.815336i 0.0765983 + 0.130558i
\(40\) 0 0
\(41\) 2.82322 4.88995i 0.440912 0.763683i −0.556845 0.830616i \(-0.687988\pi\)
0.997757 + 0.0669338i \(0.0213216\pi\)
\(42\) 0 0
\(43\) −1.84576 3.19695i −0.281476 0.487531i 0.690273 0.723549i \(-0.257491\pi\)
−0.971748 + 0.236019i \(0.924157\pi\)
\(44\) 0 0
\(45\) 2.53463 0.0354002i 0.377841 0.00527715i
\(46\) 0 0
\(47\) 6.75196 + 11.6947i 0.984874 + 1.70585i 0.642494 + 0.766291i \(0.277900\pi\)
0.342381 + 0.939561i \(0.388767\pi\)
\(48\) 0 0
\(49\) −6.78525 + 1.72059i −0.969321 + 0.245798i
\(50\) 0 0
\(51\) −7.18897 4.08389i −1.00666 0.571859i
\(52\) 0 0
\(53\) 2.49672i 0.342951i 0.985188 + 0.171476i \(0.0548535\pi\)
−0.985188 + 0.171476i \(0.945147\pi\)
\(54\) 0 0
\(55\) 0.772122i 0.104113i
\(56\) 0 0
\(57\) 2.69987 4.75266i 0.357607 0.629505i
\(58\) 0 0
\(59\) 0.279096 0.483409i 0.0363353 0.0629345i −0.847286 0.531137i \(-0.821765\pi\)
0.883621 + 0.468203i \(0.155098\pi\)
\(60\) 0 0
\(61\) −10.9926 + 6.34661i −1.40746 + 0.812600i −0.995143 0.0984388i \(-0.968615\pi\)
−0.412321 + 0.911039i \(0.635282\pi\)
\(62\) 0 0
\(63\) −6.26191 + 4.87734i −0.788927 + 0.614487i
\(64\) 0 0
\(65\) −0.399372 + 0.230577i −0.0495360 + 0.0285996i
\(66\) 0 0
\(67\) −3.06545 + 5.30951i −0.374504 + 0.648660i −0.990253 0.139282i \(-0.955520\pi\)
0.615748 + 0.787943i \(0.288854\pi\)
\(68\) 0 0
\(69\) −1.40972 2.40280i −0.169710 0.289263i
\(70\) 0 0
\(71\) 9.24488i 1.09717i −0.836096 0.548583i \(-0.815168\pi\)
0.836096 0.548583i \(-0.184832\pi\)
\(72\) 0 0
\(73\) 8.87479i 1.03872i 0.854557 + 0.519358i \(0.173829\pi\)
−0.854557 + 0.519358i \(0.826171\pi\)
\(74\) 0 0
\(75\) −0.0518376 7.42346i −0.00598569 0.857187i
\(76\) 0 0
\(77\) −1.45885 1.92793i −0.166252 0.219708i
\(78\) 0 0
\(79\) −5.58581 9.67491i −0.628453 1.08851i −0.987862 0.155332i \(-0.950355\pi\)
0.359410 0.933180i \(-0.382978\pi\)
\(80\) 0 0
\(81\) −4.28057 + 7.91686i −0.475619 + 0.879651i
\(82\) 0 0
\(83\) 0.122120 + 0.211518i 0.0134044 + 0.0232171i 0.872650 0.488347i \(-0.162400\pi\)
−0.859245 + 0.511564i \(0.829066\pi\)
\(84\) 0 0
\(85\) 2.01672 3.49306i 0.218744 0.378875i
\(86\) 0 0
\(87\) −11.1293 + 0.0777152i −1.19319 + 0.00833195i
\(88\) 0 0
\(89\) 6.19322 0.656480 0.328240 0.944594i \(-0.393545\pi\)
0.328240 + 0.944594i \(0.393545\pi\)
\(90\) 0 0
\(91\) 0.561548 1.33031i 0.0588662 0.139454i
\(92\) 0 0
\(93\) −1.59250 2.71435i −0.165135 0.281465i
\(94\) 0 0
\(95\) 2.30927 + 1.33326i 0.236926 + 0.136790i
\(96\) 0 0
\(97\) −12.2408 + 7.06722i −1.24286 + 0.717568i −0.969676 0.244393i \(-0.921411\pi\)
−0.273187 + 0.961961i \(0.588078\pi\)
\(98\) 0 0
\(99\) −2.39302 1.33741i −0.240508 0.134414i
\(100\) 0 0
\(101\) −5.62446 9.74186i −0.559655 0.969351i −0.997525 0.0703128i \(-0.977600\pi\)
0.437870 0.899038i \(-0.355733\pi\)
\(102\) 0 0
\(103\) 1.97803 + 1.14202i 0.194901 + 0.112526i 0.594275 0.804262i \(-0.297439\pi\)
−0.399374 + 0.916788i \(0.630772\pi\)
\(104\) 0 0
\(105\) −2.35797 3.07134i −0.230114 0.299732i
\(106\) 0 0
\(107\) 10.9749i 1.06098i −0.847690 0.530492i \(-0.822007\pi\)
0.847690 0.530492i \(-0.177993\pi\)
\(108\) 0 0
\(109\) 6.21135 0.594939 0.297470 0.954731i \(-0.403857\pi\)
0.297470 + 0.954731i \(0.403857\pi\)
\(110\) 0 0
\(111\) −10.7535 6.10880i −1.02067 0.579822i
\(112\) 0 0
\(113\) −15.1205 8.72980i −1.42241 0.821230i −0.425908 0.904767i \(-0.640045\pi\)
−0.996505 + 0.0835364i \(0.973379\pi\)
\(114\) 0 0
\(115\) 1.17695 0.679514i 0.109751 0.0633650i
\(116\) 0 0
\(117\) −0.0228654 1.63715i −0.00211391 0.151355i
\(118\) 0 0
\(119\) 1.56420 + 12.5323i 0.143390 + 1.14883i
\(120\) 0 0
\(121\) −5.08249 + 8.80313i −0.462044 + 0.800284i
\(122\) 0 0
\(123\) −8.43530 + 4.94898i −0.760585 + 0.446234i
\(124\) 0 0
\(125\) 7.84634 0.701798
\(126\) 0 0
\(127\) 7.19234 0.638217 0.319109 0.947718i \(-0.396617\pi\)
0.319109 + 0.947718i \(0.396617\pi\)
\(128\) 0 0
\(129\) 0.0446472 + 6.39375i 0.00393097 + 0.562938i
\(130\) 0 0
\(131\) −2.51594 + 4.35773i −0.219819 + 0.380737i −0.954752 0.297402i \(-0.903880\pi\)
0.734934 + 0.678139i \(0.237213\pi\)
\(132\) 0 0
\(133\) −8.28515 + 1.03410i −0.718414 + 0.0896679i
\(134\) 0 0
\(135\) −3.84747 2.11514i −0.331138 0.182043i
\(136\) 0 0
\(137\) −1.61383 + 0.931746i −0.137879 + 0.0796044i −0.567353 0.823475i \(-0.692032\pi\)
0.429474 + 0.903079i \(0.358699\pi\)
\(138\) 0 0
\(139\) 9.90462 + 5.71843i 0.840098 + 0.485031i 0.857298 0.514821i \(-0.172142\pi\)
−0.0171992 + 0.999852i \(0.505475\pi\)
\(140\) 0 0
\(141\) −0.163323 23.3889i −0.0137543 1.96970i
\(142\) 0 0
\(143\) 0.498724 0.0417054
\(144\) 0 0
\(145\) 5.42943i 0.450889i
\(146\) 0 0
\(147\) 11.6907 + 3.21376i 0.964230 + 0.265066i
\(148\) 0 0
\(149\) 0.443690 + 0.256164i 0.0363485 + 0.0209858i 0.518064 0.855342i \(-0.326653\pi\)
−0.481716 + 0.876328i \(0.659986\pi\)
\(150\) 0 0
\(151\) −5.74808 9.95597i −0.467772 0.810205i 0.531550 0.847027i \(-0.321610\pi\)
−0.999322 + 0.0368219i \(0.988277\pi\)
\(152\) 0 0
\(153\) 7.33277 + 12.3008i 0.592819 + 0.994457i
\(154\) 0 0
\(155\) 1.32956 0.767619i 0.106793 0.0616567i
\(156\) 0 0
\(157\) 14.9187 + 8.61334i 1.19065 + 0.687419i 0.958453 0.285250i \(-0.0920768\pi\)
0.232192 + 0.972670i \(0.425410\pi\)
\(158\) 0 0
\(159\) 2.13602 3.76009i 0.169398 0.298195i
\(160\) 0 0
\(161\) −1.65489 + 3.92044i −0.130423 + 0.308974i
\(162\) 0 0
\(163\) 12.7474 0.998450 0.499225 0.866473i \(-0.333618\pi\)
0.499225 + 0.866473i \(0.333618\pi\)
\(164\) 0 0
\(165\) 0.660574 1.16282i 0.0514256 0.0905258i
\(166\) 0 0
\(167\) −3.92213 + 6.79333i −0.303503 + 0.525683i −0.976927 0.213573i \(-0.931490\pi\)
0.673424 + 0.739257i \(0.264823\pi\)
\(168\) 0 0
\(169\) −6.35107 11.0004i −0.488544 0.846182i
\(170\) 0 0
\(171\) −8.13208 + 4.84773i −0.621876 + 0.370715i
\(172\) 0 0
\(173\) −1.00420 1.73933i −0.0763482 0.132239i 0.825324 0.564660i \(-0.190993\pi\)
−0.901672 + 0.432421i \(0.857659\pi\)
\(174\) 0 0
\(175\) −9.04271 + 6.84255i −0.683565 + 0.517248i
\(176\) 0 0
\(177\) −0.833893 + 0.489244i −0.0626793 + 0.0367738i
\(178\) 0 0
\(179\) 11.8357i 0.884641i 0.896857 + 0.442320i \(0.145845\pi\)
−0.896857 + 0.442320i \(0.854155\pi\)
\(180\) 0 0
\(181\) 10.7449i 0.798660i −0.916807 0.399330i \(-0.869243\pi\)
0.916807 0.399330i \(-0.130757\pi\)
\(182\) 0 0
\(183\) 21.9848 0.153518i 1.62516 0.0113484i
\(184\) 0 0
\(185\) 3.01667 5.22502i 0.221790 0.384151i
\(186\) 0 0
\(187\) −3.77762 + 2.18101i −0.276247 + 0.159491i
\(188\) 0 0
\(189\) 13.6032 1.98808i 0.989489 0.144611i
\(190\) 0 0
\(191\) 2.86793 1.65580i 0.207516 0.119809i −0.392640 0.919692i \(-0.628438\pi\)
0.600156 + 0.799883i \(0.295105\pi\)
\(192\) 0 0
\(193\) −11.7223 + 20.3036i −0.843788 + 1.46148i 0.0428821 + 0.999080i \(0.486346\pi\)
−0.886670 + 0.462403i \(0.846987\pi\)
\(194\) 0 0
\(195\) 0.798724 0.00557745i 0.0571978 0.000399409i
\(196\) 0 0
\(197\) 17.9144i 1.27635i −0.769893 0.638173i \(-0.779690\pi\)
0.769893 0.638173i \(-0.220310\pi\)
\(198\) 0 0
\(199\) 16.0924i 1.14076i −0.821381 0.570380i \(-0.806796\pi\)
0.821381 0.570380i \(-0.193204\pi\)
\(200\) 0 0
\(201\) 9.15905 5.37360i 0.646030 0.379025i
\(202\) 0 0
\(203\) 10.2584 + 13.5569i 0.719997 + 0.951506i
\(204\) 0 0
\(205\) −2.38551 4.13182i −0.166611 0.288579i
\(206\) 0 0
\(207\) 0.0673846 + 4.82471i 0.00468355 + 0.335340i
\(208\) 0 0
\(209\) −1.44188 2.49740i −0.0997367 0.172749i
\(210\) 0 0
\(211\) 1.95748 3.39046i 0.134759 0.233409i −0.790747 0.612144i \(-0.790307\pi\)
0.925505 + 0.378735i \(0.123641\pi\)
\(212\) 0 0
\(213\) −7.90927 + 13.9229i −0.541934 + 0.953981i
\(214\) 0 0
\(215\) −3.11919 −0.212727
\(216\) 0 0
\(217\) −1.86946 + 4.42876i −0.126907 + 0.300644i
\(218\) 0 0
\(219\) 7.59265 13.3655i 0.513064 0.903159i
\(220\) 0 0
\(221\) −2.25621 1.30262i −0.151769 0.0876239i
\(222\) 0 0
\(223\) 21.6047 12.4735i 1.44676 0.835288i 0.448474 0.893796i \(-0.351968\pi\)
0.998287 + 0.0585082i \(0.0186344\pi\)
\(224\) 0 0
\(225\) −6.27293 + 11.2242i −0.418195 + 0.748277i
\(226\) 0 0
\(227\) −11.3878 19.7243i −0.755838 1.30915i −0.944957 0.327195i \(-0.893897\pi\)
0.189119 0.981954i \(-0.439437\pi\)
\(228\) 0 0
\(229\) −22.3549 12.9066i −1.47725 0.852891i −0.477581 0.878588i \(-0.658486\pi\)
−0.999670 + 0.0256966i \(0.991820\pi\)
\(230\) 0 0
\(231\) 0.547642 + 4.15158i 0.0360322 + 0.273154i
\(232\) 0 0
\(233\) 28.7072i 1.88067i 0.340245 + 0.940337i \(0.389490\pi\)
−0.340245 + 0.940337i \(0.610510\pi\)
\(234\) 0 0
\(235\) 11.4103 0.744325
\(236\) 0 0
\(237\) 0.135115 + 19.3493i 0.00877669 + 1.25687i
\(238\) 0 0
\(239\) 20.7087 + 11.9562i 1.33954 + 0.773381i 0.986738 0.162318i \(-0.0518971\pi\)
0.352797 + 0.935700i \(0.385230\pi\)
\(240\) 0 0
\(241\) 12.7991 7.38955i 0.824461 0.476003i −0.0274914 0.999622i \(-0.508752\pi\)
0.851952 + 0.523619i \(0.175419\pi\)
\(242\) 0 0
\(243\) 13.2197 8.26072i 0.848044 0.529926i
\(244\) 0 0
\(245\) −1.60758 + 5.69207i −0.102705 + 0.363653i
\(246\) 0 0
\(247\) 0.861169 1.49159i 0.0547949 0.0949075i
\(248\) 0 0
\(249\) −0.00295396 0.423025i −0.000187200 0.0268081i
\(250\) 0 0
\(251\) −25.5524 −1.61285 −0.806426 0.591334i \(-0.798601\pi\)
−0.806426 + 0.591334i \(0.798601\pi\)
\(252\) 0 0
\(253\) −1.46974 −0.0924020
\(254\) 0 0
\(255\) −6.02561 + 3.53522i −0.377338 + 0.221384i
\(256\) 0 0
\(257\) −2.67566 + 4.63438i −0.166903 + 0.289085i −0.937330 0.348444i \(-0.886710\pi\)
0.770426 + 0.637529i \(0.220043\pi\)
\(258\) 0 0
\(259\) 2.33978 + 18.7462i 0.145387 + 1.16483i
\(260\) 0 0
\(261\) 16.8273 + 9.40440i 1.04158 + 0.582118i
\(262\) 0 0
\(263\) −4.09220 + 2.36263i −0.252336 + 0.145686i −0.620833 0.783943i \(-0.713206\pi\)
0.368497 + 0.929629i \(0.379872\pi\)
\(264\) 0 0
\(265\) 1.82700 + 1.05482i 0.112231 + 0.0647969i
\(266\) 0 0
\(267\) −9.32705 5.29848i −0.570806 0.324262i
\(268\) 0 0
\(269\) −22.4749 −1.37032 −0.685161 0.728392i \(-0.740268\pi\)
−0.685161 + 0.728392i \(0.740268\pi\)
\(270\) 0 0
\(271\) 26.2752i 1.59611i −0.602588 0.798053i \(-0.705864\pi\)
0.602588 0.798053i \(-0.294136\pi\)
\(272\) 0 0
\(273\) −1.98382 + 1.52304i −0.120066 + 0.0921785i
\(274\) 0 0
\(275\) −3.39185 1.95829i −0.204536 0.118089i
\(276\) 0 0
\(277\) −1.43859 2.49171i −0.0864365 0.149712i 0.819566 0.572985i \(-0.194215\pi\)
−0.906002 + 0.423272i \(0.860881\pi\)
\(278\) 0 0
\(279\) 0.0761217 + 5.45027i 0.00455728 + 0.326299i
\(280\) 0 0
\(281\) 3.15735 1.82290i 0.188352 0.108745i −0.402859 0.915262i \(-0.631983\pi\)
0.591211 + 0.806517i \(0.298650\pi\)
\(282\) 0 0
\(283\) 22.9147 + 13.2298i 1.36214 + 0.786431i 0.989908 0.141709i \(-0.0452598\pi\)
0.372231 + 0.928140i \(0.378593\pi\)
\(284\) 0 0
\(285\) −2.33715 3.98356i −0.138441 0.235966i
\(286\) 0 0
\(287\) 13.7631 + 5.80966i 0.812411 + 0.342933i
\(288\) 0 0
\(289\) 5.78646 0.340380
\(290\) 0 0
\(291\) 24.4810 0.170949i 1.43510 0.0100212i
\(292\) 0 0
\(293\) 8.80499 15.2507i 0.514393 0.890955i −0.485468 0.874255i \(-0.661351\pi\)
0.999861 0.0167000i \(-0.00531603\pi\)
\(294\) 0 0
\(295\) −0.235826 0.408462i −0.0137303 0.0237816i
\(296\) 0 0
\(297\) 2.45973 + 4.06145i 0.142728 + 0.235669i
\(298\) 0 0
\(299\) −0.438907 0.760209i −0.0253826 0.0439640i
\(300\) 0 0
\(301\) 7.78839 5.89341i 0.448915 0.339691i
\(302\) 0 0
\(303\) 0.136050 + 19.4832i 0.00781589 + 1.11928i
\(304\) 0 0
\(305\) 10.7253i 0.614127i
\(306\) 0 0
\(307\) 19.7066i 1.12472i 0.826894 + 0.562358i \(0.190106\pi\)
−0.826894 + 0.562358i \(0.809894\pi\)
\(308\) 0 0
\(309\) −2.00191 3.41216i −0.113885 0.194111i
\(310\) 0 0
\(311\) 11.9357 20.6733i 0.676812 1.17227i −0.299124 0.954214i \(-0.596694\pi\)
0.975936 0.218058i \(-0.0699723\pi\)
\(312\) 0 0
\(313\) 6.86688 3.96459i 0.388139 0.224092i −0.293215 0.956047i \(-0.594725\pi\)
0.681353 + 0.731955i \(0.261392\pi\)
\(314\) 0 0
\(315\) 0.923497 + 6.64278i 0.0520332 + 0.374278i
\(316\) 0 0
\(317\) 8.42664 4.86513i 0.473287 0.273253i −0.244327 0.969693i \(-0.578567\pi\)
0.717615 + 0.696440i \(0.245234\pi\)
\(318\) 0 0
\(319\) −2.93587 + 5.08508i −0.164377 + 0.284710i
\(320\) 0 0
\(321\) −9.38936 + 16.5283i −0.524063 + 0.922521i
\(322\) 0 0
\(323\) 15.0642i 0.838196i
\(324\) 0 0
\(325\) 2.33920i 0.129755i
\(326\) 0 0
\(327\) −9.35436 5.31400i −0.517297 0.293865i
\(328\) 0 0
\(329\) −28.4906 + 21.5586i −1.57074 + 1.18857i
\(330\) 0 0
\(331\) −15.2451 26.4053i −0.837947 1.45137i −0.891609 0.452807i \(-0.850423\pi\)
0.0536621 0.998559i \(-0.482911\pi\)
\(332\) 0 0
\(333\) 10.9686 + 18.3998i 0.601075 + 1.00831i
\(334\) 0 0
\(335\) 2.59018 + 4.48633i 0.141517 + 0.245114i
\(336\) 0 0
\(337\) 9.31669 16.1370i 0.507512 0.879037i −0.492450 0.870341i \(-0.663899\pi\)
0.999962 0.00869629i \(-0.00276815\pi\)
\(338\) 0 0
\(339\) 15.3030 + 26.0832i 0.831143 + 1.41664i
\(340\) 0 0
\(341\) −1.66031 −0.0899108
\(342\) 0 0
\(343\) −6.74061 17.2500i −0.363959 0.931415i
\(344\) 0 0
\(345\) −2.35385 + 0.0164368i −0.126727 + 0.000884927i
\(346\) 0 0
\(347\) 2.95873 + 1.70822i 0.158833 + 0.0917022i 0.577310 0.816525i \(-0.304103\pi\)
−0.418477 + 0.908227i \(0.637436\pi\)
\(348\) 0 0
\(349\) 11.0696 6.39102i 0.592541 0.342104i −0.173561 0.984823i \(-0.555527\pi\)
0.766101 + 0.642720i \(0.222194\pi\)
\(350\) 0 0
\(351\) −1.36620 + 2.48513i −0.0729222 + 0.132646i
\(352\) 0 0
\(353\) −18.3612 31.8025i −0.977268 1.69268i −0.672237 0.740336i \(-0.734666\pi\)
−0.305031 0.952342i \(-0.598667\pi\)
\(354\) 0 0
\(355\) −6.76501 3.90578i −0.359049 0.207297i
\(356\) 0 0
\(357\) 8.36605 20.2120i 0.442778 1.06973i
\(358\) 0 0
\(359\) 31.9790i 1.68779i −0.536510 0.843894i \(-0.680258\pi\)
0.536510 0.843894i \(-0.319742\pi\)
\(360\) 0 0
\(361\) 9.04098 0.475841
\(362\) 0 0
\(363\) 15.1856 8.90938i 0.797038 0.467621i
\(364\) 0 0
\(365\) 6.49419 + 3.74943i 0.339922 + 0.196254i
\(366\) 0 0
\(367\) 24.6434 14.2279i 1.28638 0.742689i 0.308370 0.951267i \(-0.400217\pi\)
0.978006 + 0.208577i \(0.0668833\pi\)
\(368\) 0 0
\(369\) 16.9376 0.236561i 0.881739 0.0123149i
\(370\) 0 0
\(371\) −6.55485 + 0.818135i −0.340311 + 0.0424755i
\(372\) 0 0
\(373\) −11.7350 + 20.3257i −0.607618 + 1.05242i 0.384014 + 0.923327i \(0.374541\pi\)
−0.991632 + 0.129098i \(0.958792\pi\)
\(374\) 0 0
\(375\) −11.8167 6.71278i −0.610210 0.346646i
\(376\) 0 0
\(377\) −3.50694 −0.180616
\(378\) 0 0
\(379\) −12.5179 −0.643003 −0.321502 0.946909i \(-0.604188\pi\)
−0.321502 + 0.946909i \(0.604188\pi\)
\(380\) 0 0
\(381\) −10.8317 6.15327i −0.554927 0.315241i
\(382\) 0 0
\(383\) −6.71492 + 11.6306i −0.343116 + 0.594295i −0.985010 0.172499i \(-0.944816\pi\)
0.641893 + 0.766794i \(0.278149\pi\)
\(384\) 0 0
\(385\) −2.02712 + 0.253012i −0.103311 + 0.0128947i
\(386\) 0 0
\(387\) 5.40280 9.66725i 0.274640 0.491414i
\(388\) 0 0
\(389\) −4.38955 + 2.53431i −0.222559 + 0.128495i −0.607135 0.794599i \(-0.707681\pi\)
0.384576 + 0.923094i \(0.374348\pi\)
\(390\) 0 0
\(391\) 6.64907 + 3.83884i 0.336258 + 0.194139i
\(392\) 0 0
\(393\) 7.51720 4.41033i 0.379193 0.222472i
\(394\) 0 0
\(395\) −9.43958 −0.474957
\(396\) 0 0
\(397\) 1.08699i 0.0545543i 0.999628 + 0.0272771i \(0.00868366\pi\)
−0.999628 + 0.0272771i \(0.991316\pi\)
\(398\) 0 0
\(399\) 13.3622 + 5.53083i 0.668948 + 0.276888i
\(400\) 0 0
\(401\) −4.72547 2.72825i −0.235979 0.136242i 0.377348 0.926071i \(-0.376836\pi\)
−0.613327 + 0.789829i \(0.710169\pi\)
\(402\) 0 0
\(403\) −0.495815 0.858777i −0.0246983 0.0427787i
\(404\) 0 0
\(405\) 3.98477 + 6.47706i 0.198005 + 0.321848i
\(406\) 0 0
\(407\) −5.65069 + 3.26243i −0.280094 + 0.161712i
\(408\) 0 0
\(409\) 21.4739 + 12.3979i 1.06181 + 0.613039i 0.925934 0.377686i \(-0.123280\pi\)
0.135881 + 0.990725i \(0.456614\pi\)
\(410\) 0 0
\(411\) 3.22758 0.0225381i 0.159205 0.00111172i
\(412\) 0 0
\(413\) 1.36059 + 0.574329i 0.0669502 + 0.0282609i
\(414\) 0 0
\(415\) 0.206373 0.0101305
\(416\) 0 0
\(417\) −10.0242 17.0857i −0.490885 0.836691i
\(418\) 0 0
\(419\) −0.145143 + 0.251394i −0.00709068 + 0.0122814i −0.869549 0.493847i \(-0.835590\pi\)
0.862458 + 0.506128i \(0.168924\pi\)
\(420\) 0 0
\(421\) −2.47275 4.28293i −0.120515 0.208737i 0.799456 0.600724i \(-0.205121\pi\)
−0.919971 + 0.391987i \(0.871788\pi\)
\(422\) 0 0
\(423\) −19.7639 + 35.3637i −0.960956 + 1.71944i
\(424\) 0 0
\(425\) 10.2297 + 17.7184i 0.496215 + 0.859470i
\(426\) 0 0
\(427\) −20.2644 26.7802i −0.980662 1.29598i
\(428\) 0 0
\(429\) −0.751083 0.426673i −0.0362626 0.0206000i
\(430\) 0 0
\(431\) 15.4421i 0.743818i −0.928269 0.371909i \(-0.878703\pi\)
0.928269 0.371909i \(-0.121297\pi\)
\(432\) 0 0
\(433\) 20.5683i 0.988451i −0.869334 0.494225i \(-0.835452\pi\)
0.869334 0.494225i \(-0.164548\pi\)
\(434\) 0 0
\(435\) −4.64504 + 8.17678i −0.222713 + 0.392046i
\(436\) 0 0
\(437\) −2.53787 + 4.39573i −0.121403 + 0.210276i
\(438\) 0 0
\(439\) −16.1823 + 9.34286i −0.772339 + 0.445910i −0.833708 0.552205i \(-0.813787\pi\)
0.0613693 + 0.998115i \(0.480453\pi\)
\(440\) 0 0
\(441\) −14.8568 14.8417i −0.707467 0.706746i
\(442\) 0 0
\(443\) −29.4963 + 17.0297i −1.40141 + 0.809104i −0.994537 0.104380i \(-0.966714\pi\)
−0.406873 + 0.913485i \(0.633381\pi\)
\(444\) 0 0
\(445\) 2.61651 4.53193i 0.124035 0.214834i
\(446\) 0 0
\(447\) −0.449045 0.765376i −0.0212391 0.0362011i
\(448\) 0 0
\(449\) 12.7995i 0.604045i 0.953301 + 0.302023i \(0.0976618\pi\)
−0.953301 + 0.302023i \(0.902338\pi\)
\(450\) 0 0
\(451\) 5.15969i 0.242960i
\(452\) 0 0
\(453\) 0.139041 + 19.9115i 0.00653270 + 0.935522i
\(454\) 0 0
\(455\) −0.736221 0.972947i −0.0345146 0.0456124i
\(456\) 0 0
\(457\) −1.55034 2.68526i −0.0725217 0.125611i 0.827484 0.561489i \(-0.189771\pi\)
−0.900006 + 0.435878i \(0.856438\pi\)
\(458\) 0 0
\(459\) −0.519567 24.7985i −0.0242513 1.15749i
\(460\) 0 0
\(461\) −2.78519 4.82409i −0.129719 0.224680i 0.793849 0.608115i \(-0.208074\pi\)
−0.923568 + 0.383435i \(0.874741\pi\)
\(462\) 0 0
\(463\) −3.87498 + 6.71166i −0.180086 + 0.311917i −0.941909 0.335867i \(-0.890971\pi\)
0.761824 + 0.647784i \(0.224304\pi\)
\(464\) 0 0
\(465\) −2.65905 + 0.0185680i −0.123310 + 0.000861070i
\(466\) 0 0
\(467\) −17.7545 −0.821579 −0.410789 0.911730i \(-0.634747\pi\)
−0.410789 + 0.911730i \(0.634747\pi\)
\(468\) 0 0
\(469\) −14.9440 6.30813i −0.690050 0.291282i
\(470\) 0 0
\(471\) −15.0988 25.7352i −0.695717 1.18582i
\(472\) 0 0
\(473\) 2.92136 + 1.68665i 0.134325 + 0.0775523i
\(474\) 0 0
\(475\) −11.7137 + 6.76293i −0.537463 + 0.310304i
\(476\) 0 0
\(477\) −6.43374 + 3.83531i −0.294581 + 0.175607i
\(478\) 0 0
\(479\) 2.03903 + 3.53171i 0.0931658 + 0.161368i 0.908842 0.417141i \(-0.136968\pi\)
−0.815676 + 0.578509i \(0.803635\pi\)
\(480\) 0 0
\(481\) −3.37491 1.94850i −0.153882 0.0888441i
\(482\) 0 0
\(483\) 5.84633 4.48841i 0.266017 0.204230i
\(484\) 0 0
\(485\) 11.9430i 0.542306i
\(486\) 0 0
\(487\) −29.6103 −1.34177 −0.670885 0.741561i \(-0.734086\pi\)
−0.670885 + 0.741561i \(0.734086\pi\)
\(488\) 0 0
\(489\) −19.1976 10.9057i −0.868148 0.493175i
\(490\) 0 0
\(491\) −24.9656 14.4139i −1.12668 0.650491i −0.183584 0.983004i \(-0.558770\pi\)
−0.943099 + 0.332513i \(0.892103\pi\)
\(492\) 0 0
\(493\) 26.5636 15.3365i 1.19636 0.690721i
\(494\) 0 0
\(495\) −1.98966 + 1.18609i −0.0894287 + 0.0533106i
\(496\) 0 0
\(497\) 24.2713 3.02940i 1.08872 0.135887i
\(498\) 0 0
\(499\) −13.9354 + 24.1367i −0.623832 + 1.08051i 0.364933 + 0.931034i \(0.381092\pi\)
−0.988765 + 0.149475i \(0.952241\pi\)
\(500\) 0 0
\(501\) 11.7187 6.87532i 0.523551 0.307167i
\(502\) 0 0
\(503\) −20.6312 −0.919901 −0.459950 0.887945i \(-0.652133\pi\)
−0.459950 + 0.887945i \(0.652133\pi\)
\(504\) 0 0
\(505\) −9.50490 −0.422963
\(506\) 0 0
\(507\) 0.153626 + 22.0002i 0.00682278 + 0.977063i
\(508\) 0 0
\(509\) −12.4163 + 21.5056i −0.550341 + 0.953219i 0.447908 + 0.894079i \(0.352169\pi\)
−0.998250 + 0.0591396i \(0.981164\pi\)
\(510\) 0 0
\(511\) −23.2997 + 2.90812i −1.03072 + 0.128648i
\(512\) 0 0
\(513\) 16.3944 0.343488i 0.723829 0.0151654i
\(514\) 0 0
\(515\) 1.67136 0.964960i 0.0736489 0.0425212i
\(516\) 0 0
\(517\) −10.6866 6.16992i −0.469997 0.271353i
\(518\) 0 0
\(519\) 0.0242907 + 3.47858i 0.00106624 + 0.152693i
\(520\) 0 0
\(521\) −25.5525 −1.11947 −0.559737 0.828670i \(-0.689098\pi\)
−0.559737 + 0.828670i \(0.689098\pi\)
\(522\) 0 0
\(523\) 25.0505i 1.09538i 0.836681 + 0.547691i \(0.184493\pi\)
−0.836681 + 0.547691i \(0.815507\pi\)
\(524\) 0 0
\(525\) 19.4724 2.56864i 0.849846 0.112105i
\(526\) 0 0
\(527\) 7.51119 + 4.33659i 0.327192 + 0.188905i
\(528\) 0 0
\(529\) −10.2065 17.6782i −0.443762 0.768619i
\(530\) 0 0
\(531\) 1.67442 0.0233858i 0.0726634 0.00101486i
\(532\) 0 0
\(533\) −2.66879 + 1.54083i −0.115598 + 0.0667407i
\(534\) 0 0
\(535\) −8.03097 4.63668i −0.347209 0.200461i
\(536\) 0 0
\(537\) 10.1258 17.8247i 0.436960 0.769191i
\(538\) 0 0
\(539\) 4.58352 4.46179i 0.197426 0.192183i
\(540\) 0 0
\(541\) 23.6313 1.01599 0.507995 0.861360i \(-0.330387\pi\)
0.507995 + 0.861360i \(0.330387\pi\)
\(542\) 0 0
\(543\) −9.19256 + 16.1819i −0.394491 + 0.694432i
\(544\) 0 0
\(545\) 2.62417 4.54520i 0.112407 0.194695i
\(546\) 0 0
\(547\) 14.0512 + 24.3375i 0.600788 + 1.04060i 0.992702 + 0.120593i \(0.0384797\pi\)
−0.391914 + 0.920002i \(0.628187\pi\)
\(548\) 0 0
\(549\) −33.2406 18.5774i −1.41868 0.792865i
\(550\) 0 0
\(551\) 10.1390 + 17.5613i 0.431937 + 0.748136i
\(552\) 0 0
\(553\) 23.5699 17.8352i 1.00230 0.758429i
\(554\) 0 0
\(555\) −9.01330 + 5.28809i −0.382593 + 0.224467i
\(556\) 0 0
\(557\) 14.3227i 0.606871i −0.952852 0.303436i \(-0.901866\pi\)
0.952852 0.303436i \(-0.0981338\pi\)
\(558\) 0 0
\(559\) 2.01472i 0.0852138i
\(560\) 0 0
\(561\) 7.55506 0.0527566i 0.318975 0.00222739i
\(562\) 0 0
\(563\) 19.2183 33.2871i 0.809955 1.40288i −0.102940 0.994688i \(-0.532825\pi\)
0.912895 0.408196i \(-0.133842\pi\)
\(564\) 0 0
\(565\) −12.7762 + 7.37634i −0.537498 + 0.310325i
\(566\) 0 0
\(567\) −22.1875 8.64390i −0.931785 0.363010i
\(568\) 0 0
\(569\) 22.5883 13.0414i 0.946951 0.546722i 0.0548183 0.998496i \(-0.482542\pi\)
0.892132 + 0.451774i \(0.149209\pi\)
\(570\) 0 0
\(571\) 9.74336 16.8760i 0.407747 0.706238i −0.586890 0.809667i \(-0.699648\pi\)
0.994637 + 0.103428i \(0.0329813\pi\)
\(572\) 0 0
\(573\) −5.73571 + 0.0400522i −0.239613 + 0.00167320i
\(574\) 0 0
\(575\) 6.89364i 0.287484i
\(576\) 0 0
\(577\) 8.07209i 0.336045i 0.985783 + 0.168023i \(0.0537382\pi\)
−0.985783 + 0.168023i \(0.946262\pi\)
\(578\) 0 0
\(579\) 35.0242 20.5486i 1.45556 0.853972i
\(580\) 0 0
\(581\) −0.515298 + 0.389922i −0.0213782 + 0.0161767i
\(582\) 0 0
\(583\) −1.14075 1.97584i −0.0472450 0.0818307i
\(584\) 0 0
\(585\) −1.20766 0.674933i −0.0499305 0.0279050i
\(586\) 0 0
\(587\) −16.1825 28.0289i −0.667923 1.15688i −0.978484 0.206323i \(-0.933850\pi\)
0.310561 0.950554i \(-0.399483\pi\)
\(588\) 0 0
\(589\) −2.86693 + 4.96568i −0.118130 + 0.204607i
\(590\) 0 0
\(591\) −15.3263 + 26.9793i −0.630439 + 1.10978i
\(592\) 0 0
\(593\) 43.7169 1.79524 0.897619 0.440772i \(-0.145295\pi\)
0.897619 + 0.440772i \(0.145295\pi\)
\(594\) 0 0
\(595\) 9.83145 + 4.15003i 0.403050 + 0.170135i
\(596\) 0 0
\(597\) −13.7675 + 24.2353i −0.563467 + 0.991885i
\(598\) 0 0
\(599\) −20.4061 11.7814i −0.833769 0.481377i 0.0213724 0.999772i \(-0.493196\pi\)
−0.855141 + 0.518395i \(0.826530\pi\)
\(600\) 0 0
\(601\) 3.85990 2.22851i 0.157449 0.0909030i −0.419206 0.907891i \(-0.637691\pi\)
0.576654 + 0.816988i \(0.304358\pi\)
\(602\) 0 0
\(603\) −18.3909 + 0.256858i −0.748936 + 0.0104601i
\(604\) 0 0
\(605\) 4.29450 + 7.43830i 0.174596 + 0.302410i
\(606\) 0 0
\(607\) −8.95483 5.17007i −0.363465 0.209847i 0.307134 0.951666i \(-0.400630\pi\)
−0.670600 + 0.741819i \(0.733963\pi\)
\(608\) 0 0
\(609\) −3.85092 29.1932i −0.156047 1.18297i
\(610\) 0 0
\(611\) 7.37004i 0.298160i
\(612\) 0 0
\(613\) 2.30558 0.0931214 0.0465607 0.998915i \(-0.485174\pi\)
0.0465607 + 0.998915i \(0.485174\pi\)
\(614\) 0 0
\(615\) 0.0577031 + 8.26344i 0.00232682 + 0.333214i
\(616\) 0 0
\(617\) −0.725847 0.419068i −0.0292215 0.0168710i 0.485318 0.874338i \(-0.338704\pi\)
−0.514540 + 0.857467i \(0.672037\pi\)
\(618\) 0 0
\(619\) −21.8761 + 12.6302i −0.879274 + 0.507649i −0.870419 0.492312i \(-0.836152\pi\)
−0.00885512 + 0.999961i \(0.502819\pi\)
\(620\) 0 0
\(621\) 4.02620 7.32371i 0.161566 0.293890i
\(622\) 0 0
\(623\) 2.02942 + 16.2596i 0.0813068 + 0.651425i
\(624\) 0 0
\(625\) −7.40018 + 12.8175i −0.296007 + 0.512699i
\(626\) 0 0
\(627\) 0.0348776 + 4.99468i 0.00139288 + 0.199468i
\(628\) 0 0
\(629\) 34.0847 1.35905
\(630\) 0 0
\(631\) 8.42854 0.335535 0.167768 0.985827i \(-0.446344\pi\)
0.167768 + 0.985827i \(0.446344\pi\)
\(632\) 0 0
\(633\) −5.84863 + 3.43138i −0.232462 + 0.136385i
\(634\) 0 0
\(635\) 3.03862 5.26305i 0.120584 0.208858i
\(636\) 0 0
\(637\) 3.67658 + 1.03836i 0.145671 + 0.0411412i
\(638\) 0 0
\(639\) 23.8229 14.2014i 0.942419 0.561799i
\(640\) 0 0
\(641\) 28.3658 16.3770i 1.12038 0.646853i 0.178884 0.983870i \(-0.442751\pi\)
0.941498 + 0.337017i \(0.109418\pi\)
\(642\) 0 0
\(643\) 33.5703 + 19.3818i 1.32388 + 0.764344i 0.984346 0.176249i \(-0.0563962\pi\)
0.339537 + 0.940593i \(0.389730\pi\)
\(644\) 0 0
\(645\) 4.69754 + 2.66856i 0.184965 + 0.105075i
\(646\) 0 0
\(647\) 33.9121 1.33322 0.666611 0.745405i \(-0.267744\pi\)
0.666611 + 0.745405i \(0.267744\pi\)
\(648\) 0 0
\(649\) 0.510075i 0.0200222i
\(650\) 0 0
\(651\) 6.60436 5.07038i 0.258845 0.198724i
\(652\) 0 0
\(653\) −8.48007 4.89597i −0.331851 0.191594i 0.324812 0.945779i \(-0.394699\pi\)
−0.656663 + 0.754185i \(0.728032\pi\)
\(654\) 0 0
\(655\) 2.12587 + 3.68211i 0.0830646 + 0.143872i
\(656\) 0 0
\(657\) −22.8692 + 13.6329i −0.892214 + 0.531870i
\(658\) 0 0
\(659\) −28.8977 + 16.6841i −1.12569 + 0.649920i −0.942849 0.333221i \(-0.891864\pi\)
−0.182846 + 0.983142i \(0.558531\pi\)
\(660\) 0 0
\(661\) 36.8160 + 21.2558i 1.43198 + 0.826753i 0.997272 0.0738194i \(-0.0235188\pi\)
0.434706 + 0.900572i \(0.356852\pi\)
\(662\) 0 0
\(663\) 2.28344 + 3.89202i 0.0886815 + 0.151153i
\(664\) 0 0
\(665\) −2.74360 + 6.49961i −0.106392 + 0.252044i
\(666\) 0 0
\(667\) 10.3350 0.400172
\(668\) 0 0
\(669\) −43.2084 + 0.301722i −1.67053 + 0.0116653i
\(670\) 0 0
\(671\) 5.79951 10.0450i 0.223888 0.387785i
\(672\) 0 0
\(673\) 22.7186 + 39.3498i 0.875739 + 1.51682i 0.855974 + 0.517019i \(0.172958\pi\)
0.0197649 + 0.999805i \(0.493708\pi\)
\(674\) 0 0
\(675\) 19.0497 11.5370i 0.733223 0.444060i
\(676\) 0 0
\(677\) 16.2542 + 28.1532i 0.624701 + 1.08201i 0.988599 + 0.150575i \(0.0481124\pi\)
−0.363898 + 0.931439i \(0.618554\pi\)
\(678\) 0 0
\(679\) −22.5653 29.8209i −0.865975 1.14442i
\(680\) 0 0
\(681\) 0.275461 + 39.4477i 0.0105557 + 1.51164i
\(682\) 0 0
\(683\) 24.3776i 0.932781i −0.884579 0.466391i \(-0.845554\pi\)
0.884579 0.466391i \(-0.154446\pi\)
\(684\) 0 0
\(685\) 1.57458i 0.0601615i
\(686\) 0 0
\(687\) 22.6247 + 38.5627i 0.863186 + 1.47126i
\(688\) 0 0
\(689\) 0.681319 1.18008i 0.0259562 0.0449575i
\(690\) 0 0
\(691\) −23.5773 + 13.6123i −0.896922 + 0.517838i −0.876200 0.481947i \(-0.839930\pi\)
−0.0207214 + 0.999785i \(0.506596\pi\)
\(692\) 0 0
\(693\) 2.72705 6.72085i 0.103592 0.255304i
\(694\) 0 0
\(695\) 8.36901 4.83185i 0.317455 0.183283i
\(696\) 0 0
\(697\) 13.4767 23.3423i 0.510465 0.884152i
\(698\) 0 0
\(699\) 24.5599 43.2334i 0.928941 1.63524i
\(700\) 0 0
\(701\) 32.8777i 1.24177i 0.783900 + 0.620887i \(0.213227\pi\)
−0.783900 + 0.620887i \(0.786773\pi\)
\(702\) 0 0
\(703\) 22.5335i 0.849868i
\(704\) 0 0
\(705\) −17.1840 9.76184i −0.647187 0.367652i
\(706\) 0 0
\(707\) 23.7330 17.9586i 0.892573 0.675403i
\(708\) 0 0
\(709\) 2.02639 + 3.50981i 0.0761026 + 0.131814i 0.901565 0.432643i \(-0.142419\pi\)
−0.825463 + 0.564457i \(0.809086\pi\)
\(710\) 0 0
\(711\) 16.3505 29.2559i 0.613190 1.09718i
\(712\) 0 0
\(713\) 1.46117 + 2.53082i 0.0547213 + 0.0947801i
\(714\) 0 0
\(715\) 0.210701 0.364945i 0.00787977 0.0136482i
\(716\) 0 0
\(717\) −20.9587 35.7231i −0.782716 1.33410i
\(718\) 0 0
\(719\) 35.0419 1.30684 0.653420 0.756995i \(-0.273333\pi\)
0.653420 + 0.756995i \(0.273333\pi\)
\(720\) 0 0
\(721\) −2.35006 + 5.56731i −0.0875209 + 0.207337i
\(722\) 0 0
\(723\) −25.5975 + 0.178746i −0.951982 + 0.00664764i
\(724\) 0 0
\(725\) 23.8509 + 13.7703i 0.885800 + 0.511417i
\(726\) 0 0
\(727\) 0.292512 0.168882i 0.0108487 0.00626349i −0.494566 0.869140i \(-0.664673\pi\)
0.505415 + 0.862877i \(0.331340\pi\)
\(728\) 0 0
\(729\) −26.9763 + 1.13089i −0.999122 + 0.0418847i
\(730\) 0 0
\(731\) −8.81077 15.2607i −0.325878 0.564437i
\(732\) 0 0
\(733\) −2.16404 1.24941i −0.0799306 0.0461479i 0.459502 0.888177i \(-0.348028\pi\)
−0.539433 + 0.842029i \(0.681361\pi\)
\(734\) 0 0
\(735\) 7.29077 7.19698i 0.268924 0.265465i
\(736\) 0 0
\(737\) 5.60240i 0.206367i
\(738\) 0 0
\(739\) 34.0147 1.25125 0.625625 0.780124i \(-0.284844\pi\)
0.625625 + 0.780124i \(0.284844\pi\)
\(740\) 0 0
\(741\) −2.57303 + 1.50959i −0.0945226 + 0.0554563i
\(742\) 0 0
\(743\) 30.1013 + 17.3790i 1.10431 + 0.637573i 0.937350 0.348390i \(-0.113272\pi\)
0.166960 + 0.985964i \(0.446605\pi\)
\(744\) 0 0
\(745\) 0.374900 0.216449i 0.0137353 0.00793007i
\(746\) 0 0
\(747\) −0.357462 + 0.639608i −0.0130789 + 0.0234020i
\(748\) 0 0
\(749\) 28.8133 3.59630i 1.05281 0.131406i
\(750\) 0 0
\(751\) −5.46861 + 9.47191i −0.199552 + 0.345635i −0.948383 0.317126i \(-0.897282\pi\)
0.748831 + 0.662761i \(0.230615\pi\)
\(752\) 0 0
\(753\) 38.4822 + 21.8608i 1.40237 + 0.796653i
\(754\) 0 0
\(755\) −9.71381 −0.353522
\(756\) 0 0
\(757\) −37.5008 −1.36299 −0.681496 0.731822i \(-0.738670\pi\)
−0.681496 + 0.731822i \(0.738670\pi\)
\(758\) 0 0
\(759\) 2.21345 + 1.25741i 0.0803431 + 0.0456411i
\(760\) 0 0
\(761\) −8.94575 + 15.4945i −0.324283 + 0.561675i −0.981367 0.192143i \(-0.938456\pi\)
0.657084 + 0.753818i \(0.271790\pi\)
\(762\) 0 0
\(763\) 2.03536 + 16.3072i 0.0736849 + 0.590359i
\(764\) 0 0
\(765\) 12.0991 0.168983i 0.437445 0.00610960i
\(766\) 0 0
\(767\) −0.263831 + 0.152323i −0.00952637 + 0.00550005i
\(768\) 0 0
\(769\) −47.0913 27.1882i −1.69816 0.980431i −0.947510 0.319727i \(-0.896409\pi\)
−0.750647 0.660704i \(-0.770258\pi\)
\(770\) 0 0
\(771\) 7.99443 4.69032i 0.287912 0.168918i
\(772\) 0 0
\(773\) −2.26464 −0.0814533 −0.0407266 0.999170i \(-0.512967\pi\)
−0.0407266 + 0.999170i \(0.512967\pi\)
\(774\) 0 0
\(775\) 7.78746i 0.279734i
\(776\) 0 0
\(777\) 12.5142 30.2337i 0.448944 1.08463i
\(778\) 0 0
\(779\) 15.4317 + 8.90948i 0.552897 + 0.319215i
\(780\) 0 0
\(781\) 4.22397 + 7.31613i 0.151146 + 0.261792i
\(782\) 0 0
\(783\) −17.2964 28.5594i −0.618122 1.02063i
\(784\) 0 0
\(785\) 12.6058 7.27793i 0.449919 0.259761i
\(786\) 0 0
\(787\) −12.2816 7.09078i −0.437792 0.252759i 0.264869 0.964284i \(-0.414671\pi\)
−0.702660 + 0.711525i \(0.748005\pi\)
\(788\) 0 0
\(789\) 8.18420 0.0571499i 0.291365 0.00203459i
\(790\) 0 0
\(791\) 17.9643 42.5576i 0.638738 1.51317i
\(792\) 0 0
\(793\) 6.92759 0.246006
\(794\) 0 0
\(795\) −1.84905 3.15162i −0.0655790 0.111776i
\(796\) 0 0
\(797\) −1.56607 + 2.71252i −0.0554731 + 0.0960823i −0.892428 0.451189i \(-0.851000\pi\)
0.836955 + 0.547271i \(0.184333\pi\)
\(798\) 0 0
\(799\) 32.2306 + 55.8250i 1.14024 + 1.97495i
\(800\) 0 0
\(801\) 9.51363 + 15.9591i 0.336148 + 0.563889i
\(802\) 0 0
\(803\) −4.05488 7.02326i −0.143094 0.247845i
\(804\) 0 0
\(805\) 2.16965 + 2.86728i 0.0764702 + 0.101058i
\(806\) 0 0
\(807\) 33.8475 + 19.2280i 1.19149 + 0.676857i
\(808\) 0 0
\(809\) 8.37975i 0.294616i −0.989091 0.147308i \(-0.952939\pi\)
0.989091 0.147308i \(-0.0470609\pi\)
\(810\) 0 0
\(811\) 21.1311i 0.742013i 0.928630 + 0.371006i \(0.120987\pi\)
−0.928630 + 0.371006i \(0.879013\pi\)
\(812\) 0 0
\(813\) −22.4792 + 39.5707i −0.788381 + 1.38781i
\(814\) 0 0
\(815\) 5.38551 9.32797i 0.188646 0.326744i
\(816\) 0 0
\(817\) 10.0889 5.82484i 0.352966 0.203785i
\(818\) 0 0
\(819\) 4.29066 0.596499i 0.149928 0.0208433i
\(820\) 0 0
\(821\) −22.9473 + 13.2486i −0.800867 + 0.462381i −0.843774 0.536699i \(-0.819671\pi\)
0.0429075 + 0.999079i \(0.486338\pi\)
\(822\) 0 0
\(823\) −3.00916 + 5.21202i −0.104893 + 0.181679i −0.913694 0.406402i \(-0.866783\pi\)
0.808802 + 0.588082i \(0.200117\pi\)
\(824\) 0 0
\(825\) 3.43279 + 5.85103i 0.119514 + 0.203707i
\(826\) 0 0
\(827\) 0.447159i 0.0155492i 0.999970 + 0.00777462i \(0.00247476\pi\)
−0.999970 + 0.00777462i \(0.997525\pi\)
\(828\) 0 0
\(829\) 23.3395i 0.810614i 0.914181 + 0.405307i \(0.132835\pi\)
−0.914181 + 0.405307i \(0.867165\pi\)
\(830\) 0 0
\(831\) 0.0347981 + 4.98330i 0.00120713 + 0.172869i
\(832\) 0 0
\(833\) −32.3895 + 8.21326i −1.12223 + 0.284572i
\(834\) 0 0
\(835\) 3.31404 + 5.74009i 0.114687 + 0.198644i
\(836\) 0 0
\(837\) 4.54823 8.27330i 0.157210 0.285967i
\(838\) 0 0
\(839\) 11.0244 + 19.0948i 0.380603 + 0.659224i 0.991149 0.132757i \(-0.0423830\pi\)
−0.610545 + 0.791981i \(0.709050\pi\)
\(840\) 0 0
\(841\) 6.14453 10.6426i 0.211880 0.366987i
\(842\) 0 0
\(843\) −6.31455 + 0.0440942i −0.217485 + 0.00151868i
\(844\) 0 0
\(845\) −10.7328 −0.369220
\(846\) 0 0
\(847\) −24.7770 10.4588i −0.851348 0.359369i
\(848\) 0 0
\(849\) −23.1913 39.5285i −0.795924 1.35661i
\(850\) 0 0
\(851\) 9.94589 + 5.74226i 0.340941 + 0.196842i
\(852\) 0 0
\(853\) −9.94613 + 5.74240i −0.340549 + 0.196616i −0.660515 0.750813i \(-0.729662\pi\)
0.319966 + 0.947429i \(0.396329\pi\)
\(854\) 0 0
\(855\) 0.111716 + 7.99878i 0.00382059 + 0.273552i
\(856\) 0 0
\(857\) −20.1891 34.9686i −0.689648 1.19451i −0.971952 0.235180i \(-0.924432\pi\)
0.282304 0.959325i \(-0.408901\pi\)
\(858\) 0 0
\(859\) −22.7331 13.1250i −0.775643 0.447818i 0.0592409 0.998244i \(-0.481132\pi\)
−0.834884 + 0.550426i \(0.814465\pi\)
\(860\) 0 0
\(861\) −15.7571 20.5242i −0.536999 0.699462i
\(862\) 0 0
\(863\) 39.2987i 1.33774i 0.743378 + 0.668871i \(0.233222\pi\)
−0.743378 + 0.668871i \(0.766778\pi\)
\(864\) 0 0
\(865\) −1.69702 −0.0577006
\(866\) 0 0
\(867\) −8.71446 4.95049i −0.295959 0.168127i
\(868\) 0 0
\(869\) 8.84090 + 5.10430i 0.299907 + 0.173151i
\(870\) 0 0
\(871\) 2.89778 1.67303i 0.0981875 0.0566886i
\(872\) 0 0
\(873\) −37.0149 20.6868i −1.25276 0.700141i
\(874\) 0 0
\(875\) 2.57112 + 20.5996i 0.0869196 + 0.696395i
\(876\) 0 0
\(877\) 7.40252 12.8215i 0.249965 0.432952i −0.713551 0.700604i \(-0.752914\pi\)
0.963516 + 0.267651i \(0.0862475\pi\)
\(878\) 0 0
\(879\) −26.3078 + 15.4348i −0.887341 + 0.520602i
\(880\) 0 0
\(881\) 47.2029 1.59031 0.795153 0.606409i \(-0.207390\pi\)
0.795153 + 0.606409i \(0.207390\pi\)
\(882\) 0 0
\(883\) −50.0235 −1.68343 −0.841713 0.539925i \(-0.818452\pi\)
−0.841713 + 0.539925i \(0.818452\pi\)
\(884\) 0 0
\(885\) 0.00570439 + 0.816904i 0.000191751 + 0.0274599i
\(886\) 0 0
\(887\) 1.91871 3.32330i 0.0644239 0.111585i −0.832014 0.554754i \(-0.812812\pi\)
0.896438 + 0.443169i \(0.146146\pi\)
\(888\) 0 0
\(889\) 2.35681 + 18.8826i 0.0790450 + 0.633303i
\(890\) 0 0
\(891\) −0.229682 8.22096i −0.00769464 0.275413i
\(892\) 0 0
\(893\) −36.9061 + 21.3078i −1.23502 + 0.713037i
\(894\) 0 0
\(895\) 8.66085 + 5.00034i 0.289500 + 0.167143i
\(896\) 0 0
\(897\) 0.0106167 + 1.52038i 0.000354482 + 0.0507640i
\(898\) 0 0
\(899\) 11.6750 0.389383
\(900\) 0 0
\(901\) 11.9181i 0.397051i
\(902\) 0 0
\(903\) −16.7714 + 2.21234i −0.558117 + 0.0736221i
\(904\) 0 0
\(905\) −7.86264 4.53950i −0.261363 0.150898i
\(906\) 0 0
\(907\) 12.9009 + 22.3450i 0.428367 + 0.741954i 0.996728 0.0808252i \(-0.0257556\pi\)
−0.568361 + 0.822779i \(0.692422\pi\)
\(908\) 0 0
\(909\) 16.4636 29.4584i 0.546063 0.977072i
\(910\) 0 0
\(911\) 38.0894 21.9909i 1.26196 0.728592i 0.288505 0.957478i \(-0.406842\pi\)
0.973453 + 0.228886i \(0.0735084\pi\)
\(912\) 0 0
\(913\) −0.193284 0.111593i −0.00639678 0.00369318i
\(914\) 0 0
\(915\) 9.17579 16.1524i 0.303342 0.533981i
\(916\) 0 0
\(917\) −12.2651 5.17734i −0.405031 0.170971i
\(918\) 0 0
\(919\) 13.8634 0.457312 0.228656 0.973507i \(-0.426567\pi\)
0.228656 + 0.973507i \(0.426567\pi\)
\(920\) 0 0
\(921\) 16.8596 29.6784i 0.555543 0.977935i
\(922\) 0 0
\(923\) −2.52279 + 4.36960i −0.0830387 + 0.143827i
\(924\) 0 0
\(925\) 15.3020 + 26.5038i 0.503126 + 0.871439i
\(926\) 0 0
\(927\) 0.0956911 + 6.85144i 0.00314291 + 0.225031i
\(928\) 0 0
\(929\) 13.0022 + 22.5204i 0.426588 + 0.738872i 0.996567 0.0827871i \(-0.0263821\pi\)
−0.569979 + 0.821659i \(0.693049\pi\)
\(930\) 0 0
\(931\) −5.42982 21.4128i −0.177955 0.701777i
\(932\) 0 0
\(933\) −35.6619 + 20.9228i −1.16752 + 0.684981i
\(934\) 0 0
\(935\) 3.68574i 0.120537i
\(936\) 0 0
\(937\) 12.2999i 0.401819i 0.979610 + 0.200910i \(0.0643898\pi\)
−0.979610 + 0.200910i \(0.935610\pi\)
\(938\) 0 0
\(939\) −13.7334 + 0.0958997i −0.448173 + 0.00312957i
\(940\) 0 0
\(941\) −19.4720 + 33.7264i −0.634768 + 1.09945i 0.351797 + 0.936076i \(0.385571\pi\)
−0.986564 + 0.163374i \(0.947762\pi\)
\(942\) 0 0
\(943\) 7.86496 4.54084i 0.256118 0.147870i
\(944\) 0 0
\(945\) 4.29230 10.7942i 0.139629 0.351135i
\(946\) 0 0
\(947\) −7.79744 + 4.50186i −0.253383 + 0.146291i −0.621312 0.783563i \(-0.713400\pi\)
0.367929 + 0.929854i \(0.380067\pi\)
\(948\) 0 0
\(949\) 2.42180 4.19468i 0.0786150 0.136165i
\(950\) 0 0
\(951\) −16.8529 + 0.117683i −0.546492 + 0.00381612i
\(952\) 0 0
\(953\) 12.2826i 0.397873i −0.980012 0.198937i \(-0.936251\pi\)
0.980012 0.198937i \(-0.0637488\pi\)
\(954\) 0 0
\(955\) 2.79817i 0.0905466i
\(956\) 0 0
\(957\) 8.77189 5.14646i 0.283555 0.166361i
\(958\) 0 0
\(959\) −2.97501 3.93160i −0.0960682 0.126958i
\(960\) 0 0
\(961\) −13.8494 23.9878i −0.446754 0.773801i
\(962\) 0 0
\(963\) 28.2809 16.8589i 0.911341 0.543272i
\(964\) 0 0
\(965\) 9.90486 + 17.1557i 0.318849 + 0.552262i
\(966\) 0 0
\(967\) 19.6853 34.0960i 0.633037 1.09645i −0.353890 0.935287i \(-0.615141\pi\)
0.986927 0.161166i \(-0.0515253\pi\)
\(968\) 0 0
\(969\) 12.8879 22.6869i 0.414019 0.728807i
\(970\) 0 0
\(971\) −1.59421 −0.0511608 −0.0255804 0.999673i \(-0.508143\pi\)
−0.0255804 + 0.999673i \(0.508143\pi\)
\(972\) 0 0
\(973\) −11.7675 + 27.8772i −0.377248 + 0.893703i
\(974\) 0 0
\(975\) −2.00125 + 3.52285i −0.0640914 + 0.112822i
\(976\) 0 0
\(977\) −35.5341 20.5156i −1.13684 0.656353i −0.191192 0.981553i \(-0.561235\pi\)
−0.945646 + 0.325199i \(0.894569\pi\)
\(978\) 0 0
\(979\) −4.90114 + 2.82967i −0.156641 + 0.0904367i
\(980\) 0 0
\(981\) 9.54148 + 16.0059i 0.304636 + 0.511028i
\(982\) 0 0
\(983\) −7.72534 13.3807i −0.246400 0.426778i 0.716124 0.697973i \(-0.245914\pi\)
−0.962524 + 0.271195i \(0.912581\pi\)
\(984\) 0 0
\(985\) −13.1090 7.56847i −0.417687 0.241152i
\(986\) 0 0
\(987\) 61.3512 8.09295i 1.95283 0.257601i
\(988\) 0 0
\(989\) 5.93742i 0.188799i
\(990\) 0 0
\(991\) 1.86113 0.0591207 0.0295604 0.999563i \(-0.490589\pi\)
0.0295604 + 0.999563i \(0.490589\pi\)
\(992\) 0 0
\(993\) 0.368764 + 52.8093i 0.0117024 + 1.67585i
\(994\) 0 0
\(995\) −11.7757 6.79872i −0.373316 0.215534i
\(996\) 0 0
\(997\) 35.7835 20.6596i 1.13328 0.654297i 0.188519 0.982070i \(-0.439631\pi\)
0.944757 + 0.327773i \(0.106298\pi\)
\(998\) 0 0
\(999\) −0.777184 37.0943i −0.0245890 1.17361i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bu.a.41.4 48
3.2 odd 2 1512.2.bu.a.881.9 48
4.3 odd 2 1008.2.cc.d.545.21 48
7.6 odd 2 inner 504.2.bu.a.41.21 yes 48
9.2 odd 6 inner 504.2.bu.a.209.21 yes 48
9.4 even 3 4536.2.k.a.3401.18 48
9.5 odd 6 4536.2.k.a.3401.31 48
9.7 even 3 1512.2.bu.a.1385.16 48
12.11 even 2 3024.2.cc.d.881.9 48
21.20 even 2 1512.2.bu.a.881.16 48
28.27 even 2 1008.2.cc.d.545.4 48
36.7 odd 6 3024.2.cc.d.2897.16 48
36.11 even 6 1008.2.cc.d.209.4 48
63.13 odd 6 4536.2.k.a.3401.32 48
63.20 even 6 inner 504.2.bu.a.209.4 yes 48
63.34 odd 6 1512.2.bu.a.1385.9 48
63.41 even 6 4536.2.k.a.3401.17 48
84.83 odd 2 3024.2.cc.d.881.16 48
252.83 odd 6 1008.2.cc.d.209.21 48
252.223 even 6 3024.2.cc.d.2897.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bu.a.41.4 48 1.1 even 1 trivial
504.2.bu.a.41.21 yes 48 7.6 odd 2 inner
504.2.bu.a.209.4 yes 48 63.20 even 6 inner
504.2.bu.a.209.21 yes 48 9.2 odd 6 inner
1008.2.cc.d.209.4 48 36.11 even 6
1008.2.cc.d.209.21 48 252.83 odd 6
1008.2.cc.d.545.4 48 28.27 even 2
1008.2.cc.d.545.21 48 4.3 odd 2
1512.2.bu.a.881.9 48 3.2 odd 2
1512.2.bu.a.881.16 48 21.20 even 2
1512.2.bu.a.1385.9 48 63.34 odd 6
1512.2.bu.a.1385.16 48 9.7 even 3
3024.2.cc.d.881.9 48 12.11 even 2
3024.2.cc.d.881.16 48 84.83 odd 2
3024.2.cc.d.2897.9 48 252.223 even 6
3024.2.cc.d.2897.16 48 36.7 odd 6
4536.2.k.a.3401.17 48 63.41 even 6
4536.2.k.a.3401.18 48 9.4 even 3
4536.2.k.a.3401.31 48 9.5 odd 6
4536.2.k.a.3401.32 48 63.13 odd 6