Properties

Label 504.2.bk.c.451.5
Level $504$
Weight $2$
Character 504.451
Analytic conductor $4.024$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(19,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.5
Character \(\chi\) \(=\) 504.451
Dual form 504.2.bk.c.19.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.647235 + 1.25741i) q^{2} +(-1.16217 - 1.62768i) q^{4} +(2.08776 + 3.61611i) q^{5} +(2.39694 + 1.12013i) q^{7} +(2.79887 - 0.407838i) q^{8} +(-5.89822 + 0.284706i) q^{10} +(0.855485 - 1.48174i) q^{11} +1.54062 q^{13} +(-2.95984 + 2.28896i) q^{14} +(-1.29871 + 3.78330i) q^{16} +(-2.02094 - 1.16679i) q^{17} +(6.09693 - 3.52006i) q^{19} +(3.45954 - 7.60077i) q^{20} +(1.30946 + 2.03473i) q^{22} +(-0.406066 + 0.234442i) q^{23} +(-6.21752 + 10.7691i) q^{25} +(-0.997145 + 1.93720i) q^{26} +(-0.962447 - 5.20324i) q^{28} -3.33885i q^{29} +(-1.58126 + 2.73883i) q^{31} +(-3.91660 - 4.08169i) q^{32} +(2.77516 - 1.78596i) q^{34} +(0.953738 + 11.0062i) q^{35} +(-7.74648 + 4.47243i) q^{37} +(0.480026 + 9.94467i) q^{38} +(7.31817 + 9.26956i) q^{40} +5.31411i q^{41} -3.42772 q^{43} +(-3.40603 + 0.329584i) q^{44} +(-0.0319706 - 0.662331i) q^{46} +(-2.95047 - 5.11037i) q^{47} +(4.49063 + 5.36975i) q^{49} +(-9.51696 - 14.7881i) q^{50} +(-1.79047 - 2.50765i) q^{52} +(-1.35437 - 0.781947i) q^{53} +7.14421 q^{55} +(7.16555 + 2.15753i) q^{56} +(4.19831 + 2.16102i) q^{58} +(5.26742 + 3.04114i) q^{59} +(-4.55959 - 7.89744i) q^{61} +(-2.42039 - 3.76097i) q^{62} +(7.66734 - 2.28297i) q^{64} +(3.21646 + 5.57107i) q^{65} +(3.73658 - 6.47195i) q^{67} +(0.449517 + 4.64545i) q^{68} +(-14.4566 - 5.92433i) q^{70} +3.49263i q^{71} +(-12.5811 - 7.26372i) q^{73} +(-0.609899 - 12.6352i) q^{74} +(-12.8152 - 5.83295i) q^{76} +(3.71029 - 2.59340i) q^{77} +(1.46108 - 0.843557i) q^{79} +(-16.3922 + 3.20237i) q^{80} +(-6.68203 - 3.43948i) q^{82} -2.72601i q^{83} -9.74391i q^{85} +(2.21854 - 4.31005i) q^{86} +(1.79008 - 4.49611i) q^{88} +(-1.83829 + 1.06134i) q^{89} +(3.69278 + 1.72569i) q^{91} +(0.853516 + 0.388484i) q^{92} +(8.33550 - 0.402352i) q^{94} +(25.4579 + 14.6981i) q^{95} -1.95202i q^{97} +(-9.65849 + 2.17109i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 2 q^{4} - 16 q^{8} - 18 q^{10} - 8 q^{11} + 10 q^{14} + 6 q^{16} - 20 q^{22} - 16 q^{25} + 30 q^{26} - 14 q^{28} + 12 q^{32} + 24 q^{35} + 18 q^{38} - 30 q^{40} - 16 q^{43} - 24 q^{44}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.647235 + 1.25741i −0.457664 + 0.889125i
\(3\) 0 0
\(4\) −1.16217 1.62768i −0.581087 0.813842i
\(5\) 2.08776 + 3.61611i 0.933677 + 1.61718i 0.776977 + 0.629529i \(0.216752\pi\)
0.156700 + 0.987646i \(0.449915\pi\)
\(6\) 0 0
\(7\) 2.39694 + 1.12013i 0.905958 + 0.423368i
\(8\) 2.79887 0.407838i 0.989550 0.144192i
\(9\) 0 0
\(10\) −5.89822 + 0.284706i −1.86518 + 0.0900318i
\(11\) 0.855485 1.48174i 0.257939 0.446763i −0.707751 0.706462i \(-0.750290\pi\)
0.965690 + 0.259699i \(0.0836235\pi\)
\(12\) 0 0
\(13\) 1.54062 0.427292 0.213646 0.976911i \(-0.431466\pi\)
0.213646 + 0.976911i \(0.431466\pi\)
\(14\) −2.95984 + 2.28896i −0.791052 + 0.611749i
\(15\) 0 0
\(16\) −1.29871 + 3.78330i −0.324676 + 0.945825i
\(17\) −2.02094 1.16679i −0.490149 0.282988i 0.234487 0.972119i \(-0.424659\pi\)
−0.724636 + 0.689132i \(0.757992\pi\)
\(18\) 0 0
\(19\) 6.09693 3.52006i 1.39873 0.807558i 0.404472 0.914551i \(-0.367455\pi\)
0.994260 + 0.106992i \(0.0341221\pi\)
\(20\) 3.45954 7.60077i 0.773578 1.69958i
\(21\) 0 0
\(22\) 1.30946 + 2.03473i 0.279179 + 0.433807i
\(23\) −0.406066 + 0.234442i −0.0846705 + 0.0488846i −0.541737 0.840548i \(-0.682233\pi\)
0.457067 + 0.889432i \(0.348900\pi\)
\(24\) 0 0
\(25\) −6.21752 + 10.7691i −1.24350 + 2.15381i
\(26\) −0.997145 + 1.93720i −0.195556 + 0.379916i
\(27\) 0 0
\(28\) −0.962447 5.20324i −0.181885 0.983320i
\(29\) 3.33885i 0.620009i −0.950735 0.310005i \(-0.899669\pi\)
0.950735 0.310005i \(-0.100331\pi\)
\(30\) 0 0
\(31\) −1.58126 + 2.73883i −0.284003 + 0.491908i −0.972367 0.233458i \(-0.924996\pi\)
0.688364 + 0.725366i \(0.258329\pi\)
\(32\) −3.91660 4.08169i −0.692364 0.721548i
\(33\) 0 0
\(34\) 2.77516 1.78596i 0.475935 0.306290i
\(35\) 0.953738 + 11.0062i 0.161211 + 1.86038i
\(36\) 0 0
\(37\) −7.74648 + 4.47243i −1.27351 + 0.735263i −0.975647 0.219345i \(-0.929608\pi\)
−0.297865 + 0.954608i \(0.596275\pi\)
\(38\) 0.480026 + 9.94467i 0.0778705 + 1.61324i
\(39\) 0 0
\(40\) 7.31817 + 9.26956i 1.15710 + 1.46565i
\(41\) 5.31411i 0.829925i 0.909838 + 0.414963i \(0.136205\pi\)
−0.909838 + 0.414963i \(0.863795\pi\)
\(42\) 0 0
\(43\) −3.42772 −0.522722 −0.261361 0.965241i \(-0.584171\pi\)
−0.261361 + 0.965241i \(0.584171\pi\)
\(44\) −3.40603 + 0.329584i −0.513479 + 0.0496867i
\(45\) 0 0
\(46\) −0.0319706 0.662331i −0.00471380 0.0976554i
\(47\) −2.95047 5.11037i −0.430371 0.745424i 0.566534 0.824038i \(-0.308284\pi\)
−0.996905 + 0.0786139i \(0.974951\pi\)
\(48\) 0 0
\(49\) 4.49063 + 5.36975i 0.641519 + 0.767107i
\(50\) −9.51696 14.7881i −1.34590 2.09135i
\(51\) 0 0
\(52\) −1.79047 2.50765i −0.248294 0.347748i
\(53\) −1.35437 0.781947i −0.186037 0.107409i 0.404089 0.914720i \(-0.367589\pi\)
−0.590126 + 0.807311i \(0.700922\pi\)
\(54\) 0 0
\(55\) 7.14421 0.963325
\(56\) 7.16555 + 2.15753i 0.957537 + 0.288311i
\(57\) 0 0
\(58\) 4.19831 + 2.16102i 0.551266 + 0.283756i
\(59\) 5.26742 + 3.04114i 0.685759 + 0.395923i 0.802021 0.597295i \(-0.203758\pi\)
−0.116262 + 0.993219i \(0.537091\pi\)
\(60\) 0 0
\(61\) −4.55959 7.89744i −0.583795 1.01116i −0.995024 0.0996311i \(-0.968234\pi\)
0.411229 0.911532i \(-0.365100\pi\)
\(62\) −2.42039 3.76097i −0.307390 0.477643i
\(63\) 0 0
\(64\) 7.66734 2.28297i 0.958417 0.285371i
\(65\) 3.21646 + 5.57107i 0.398952 + 0.691006i
\(66\) 0 0
\(67\) 3.73658 6.47195i 0.456496 0.790675i −0.542276 0.840200i \(-0.682437\pi\)
0.998773 + 0.0495251i \(0.0157708\pi\)
\(68\) 0.449517 + 4.64545i 0.0545119 + 0.563344i
\(69\) 0 0
\(70\) −14.4566 5.92433i −1.72789 0.708093i
\(71\) 3.49263i 0.414499i 0.978288 + 0.207249i \(0.0664512\pi\)
−0.978288 + 0.207249i \(0.933549\pi\)
\(72\) 0 0
\(73\) −12.5811 7.26372i −1.47251 0.850154i −0.472988 0.881069i \(-0.656824\pi\)
−0.999522 + 0.0309152i \(0.990158\pi\)
\(74\) −0.609899 12.6352i −0.0708993 1.46882i
\(75\) 0 0
\(76\) −12.8152 5.83295i −1.47001 0.669085i
\(77\) 3.71029 2.59340i 0.422826 0.295545i
\(78\) 0 0
\(79\) 1.46108 0.843557i 0.164385 0.0949075i −0.415551 0.909570i \(-0.636411\pi\)
0.579935 + 0.814662i \(0.303078\pi\)
\(80\) −16.3922 + 3.20237i −1.83271 + 0.358036i
\(81\) 0 0
\(82\) −6.68203 3.43948i −0.737907 0.379827i
\(83\) 2.72601i 0.299219i −0.988745 0.149609i \(-0.952198\pi\)
0.988745 0.149609i \(-0.0478016\pi\)
\(84\) 0 0
\(85\) 9.74391i 1.05688i
\(86\) 2.21854 4.31005i 0.239231 0.464765i
\(87\) 0 0
\(88\) 1.79008 4.49611i 0.190823 0.479287i
\(89\) −1.83829 + 1.06134i −0.194858 + 0.112501i −0.594255 0.804277i \(-0.702553\pi\)
0.399397 + 0.916778i \(0.369220\pi\)
\(90\) 0 0
\(91\) 3.69278 + 1.72569i 0.387108 + 0.180902i
\(92\) 0.853516 + 0.388484i 0.0889852 + 0.0405022i
\(93\) 0 0
\(94\) 8.33550 0.402352i 0.859741 0.0414995i
\(95\) 25.4579 + 14.6981i 2.61193 + 1.50800i
\(96\) 0 0
\(97\) 1.95202i 0.198198i −0.995078 0.0990990i \(-0.968404\pi\)
0.995078 0.0990990i \(-0.0315960\pi\)
\(98\) −9.65849 + 2.17109i −0.975655 + 0.219313i
\(99\) 0 0
\(100\) 24.7545 2.39536i 2.47545 0.239536i
\(101\) 6.89045 11.9346i 0.685625 1.18754i −0.287615 0.957746i \(-0.592862\pi\)
0.973240 0.229792i \(-0.0738044\pi\)
\(102\) 0 0
\(103\) 3.84129 + 6.65331i 0.378494 + 0.655570i 0.990843 0.135017i \(-0.0431089\pi\)
−0.612350 + 0.790587i \(0.709776\pi\)
\(104\) 4.31200 0.628324i 0.422826 0.0616123i
\(105\) 0 0
\(106\) 1.85983 1.19690i 0.180642 0.116253i
\(107\) −7.20414 12.4779i −0.696450 1.20629i −0.969689 0.244341i \(-0.921428\pi\)
0.273239 0.961946i \(-0.411905\pi\)
\(108\) 0 0
\(109\) 2.92380 + 1.68806i 0.280050 + 0.161687i 0.633446 0.773787i \(-0.281640\pi\)
−0.353396 + 0.935474i \(0.614973\pi\)
\(110\) −4.62398 + 8.98322i −0.440879 + 0.856516i
\(111\) 0 0
\(112\) −7.35069 + 7.61363i −0.694575 + 0.719420i
\(113\) 10.7090 1.00742 0.503710 0.863873i \(-0.331968\pi\)
0.503710 + 0.863873i \(0.331968\pi\)
\(114\) 0 0
\(115\) −1.69554 0.978920i −0.158110 0.0912847i
\(116\) −5.43459 + 3.88032i −0.504589 + 0.360279i
\(117\) 0 0
\(118\) −7.23323 + 4.65498i −0.665873 + 0.428526i
\(119\) −3.53711 5.06042i −0.324246 0.463888i
\(120\) 0 0
\(121\) 4.03629 + 6.99106i 0.366935 + 0.635551i
\(122\) 12.8815 0.621785i 1.16623 0.0562937i
\(123\) 0 0
\(124\) 6.29565 0.609198i 0.565366 0.0547076i
\(125\) −31.0452 −2.77677
\(126\) 0 0
\(127\) 9.49738i 0.842757i −0.906885 0.421378i \(-0.861546\pi\)
0.906885 0.421378i \(-0.138454\pi\)
\(128\) −2.09193 + 11.1186i −0.184903 + 0.982757i
\(129\) 0 0
\(130\) −9.08693 + 0.438624i −0.796977 + 0.0384699i
\(131\) 11.8364 6.83375i 1.03415 0.597068i 0.115981 0.993251i \(-0.462999\pi\)
0.918171 + 0.396184i \(0.129666\pi\)
\(132\) 0 0
\(133\) 18.5569 1.60805i 1.60909 0.139435i
\(134\) 5.71947 + 8.88730i 0.494087 + 0.767746i
\(135\) 0 0
\(136\) −6.13220 2.44147i −0.525832 0.209355i
\(137\) −5.99460 + 10.3829i −0.512153 + 0.887075i 0.487748 + 0.872985i \(0.337819\pi\)
−0.999901 + 0.0140902i \(0.995515\pi\)
\(138\) 0 0
\(139\) 6.64909i 0.563968i −0.959419 0.281984i \(-0.909007\pi\)
0.959419 0.281984i \(-0.0909925\pi\)
\(140\) 16.8061 14.3435i 1.42038 1.21224i
\(141\) 0 0
\(142\) −4.39168 2.26055i −0.368541 0.189701i
\(143\) 1.31798 2.28281i 0.110215 0.190898i
\(144\) 0 0
\(145\) 12.0737 6.97073i 1.00266 0.578888i
\(146\) 17.2764 11.1183i 1.42981 0.920160i
\(147\) 0 0
\(148\) 16.2824 + 7.41107i 1.33841 + 0.609186i
\(149\) 7.03123 4.05948i 0.576021 0.332566i −0.183530 0.983014i \(-0.558752\pi\)
0.759550 + 0.650448i \(0.225419\pi\)
\(150\) 0 0
\(151\) 1.07044 + 0.618020i 0.0871113 + 0.0502937i 0.542923 0.839783i \(-0.317318\pi\)
−0.455812 + 0.890076i \(0.650651\pi\)
\(152\) 15.6289 12.3388i 1.26767 1.00081i
\(153\) 0 0
\(154\) 0.859544 + 6.34390i 0.0692640 + 0.511206i
\(155\) −13.2052 −1.06067
\(156\) 0 0
\(157\) 4.80286 8.31880i 0.383310 0.663913i −0.608223 0.793766i \(-0.708117\pi\)
0.991533 + 0.129854i \(0.0414507\pi\)
\(158\) 0.115035 + 2.38316i 0.00915167 + 0.189594i
\(159\) 0 0
\(160\) 6.58293 22.6845i 0.520426 1.79337i
\(161\) −1.23592 + 0.107099i −0.0974041 + 0.00844055i
\(162\) 0 0
\(163\) 9.70461 + 16.8089i 0.760123 + 1.31657i 0.942787 + 0.333397i \(0.108195\pi\)
−0.182663 + 0.983176i \(0.558472\pi\)
\(164\) 8.64969 6.17592i 0.675428 0.482258i
\(165\) 0 0
\(166\) 3.42773 + 1.76437i 0.266043 + 0.136942i
\(167\) −17.7482 −1.37340 −0.686699 0.726942i \(-0.740941\pi\)
−0.686699 + 0.726942i \(0.740941\pi\)
\(168\) 0 0
\(169\) −10.6265 −0.817422
\(170\) 12.2521 + 6.30660i 0.939695 + 0.483694i
\(171\) 0 0
\(172\) 3.98360 + 5.57924i 0.303747 + 0.425413i
\(173\) 3.57075 + 6.18472i 0.271479 + 0.470216i 0.969241 0.246114i \(-0.0791539\pi\)
−0.697762 + 0.716330i \(0.745821\pi\)
\(174\) 0 0
\(175\) −26.9657 + 18.8484i −2.03842 + 1.42480i
\(176\) 4.49486 + 5.16091i 0.338813 + 0.389018i
\(177\) 0 0
\(178\) −0.144733 2.99842i −0.0108482 0.224741i
\(179\) 11.9581 20.7121i 0.893791 1.54809i 0.0584980 0.998288i \(-0.481369\pi\)
0.835293 0.549805i \(-0.185298\pi\)
\(180\) 0 0
\(181\) −20.5572 −1.52800 −0.764002 0.645214i \(-0.776768\pi\)
−0.764002 + 0.645214i \(0.776768\pi\)
\(182\) −4.56000 + 3.52642i −0.338010 + 0.261395i
\(183\) 0 0
\(184\) −1.04091 + 0.821782i −0.0767369 + 0.0605826i
\(185\) −32.3456 18.6748i −2.37810 1.37300i
\(186\) 0 0
\(187\) −3.45776 + 1.99634i −0.252857 + 0.145987i
\(188\) −4.88910 + 10.7416i −0.356575 + 0.783410i
\(189\) 0 0
\(190\) −34.9589 + 22.4979i −2.53618 + 1.63217i
\(191\) −1.74523 + 1.00761i −0.126280 + 0.0729079i −0.561809 0.827267i \(-0.689895\pi\)
0.435529 + 0.900175i \(0.356561\pi\)
\(192\) 0 0
\(193\) 1.78535 3.09232i 0.128512 0.222590i −0.794588 0.607149i \(-0.792313\pi\)
0.923100 + 0.384559i \(0.125646\pi\)
\(194\) 2.45450 + 1.26342i 0.176223 + 0.0907081i
\(195\) 0 0
\(196\) 3.52136 13.5499i 0.251526 0.967851i
\(197\) 17.5393i 1.24962i 0.780775 + 0.624812i \(0.214824\pi\)
−0.780775 + 0.624812i \(0.785176\pi\)
\(198\) 0 0
\(199\) 8.85336 15.3345i 0.627598 1.08703i −0.360434 0.932785i \(-0.617371\pi\)
0.988032 0.154247i \(-0.0492952\pi\)
\(200\) −13.0100 + 32.6769i −0.919945 + 2.31061i
\(201\) 0 0
\(202\) 10.5470 + 16.3886i 0.742083 + 1.15310i
\(203\) 3.73994 8.00302i 0.262492 0.561702i
\(204\) 0 0
\(205\) −19.2164 + 11.0946i −1.34213 + 0.774882i
\(206\) −10.8522 + 0.523831i −0.756107 + 0.0364971i
\(207\) 0 0
\(208\) −2.00082 + 5.82864i −0.138732 + 0.404143i
\(209\) 12.0455i 0.833201i
\(210\) 0 0
\(211\) −4.23050 −0.291240 −0.145620 0.989341i \(-0.546518\pi\)
−0.145620 + 0.989341i \(0.546518\pi\)
\(212\) 0.301253 + 3.11325i 0.0206901 + 0.213819i
\(213\) 0 0
\(214\) 20.3527 0.982418i 1.39128 0.0671567i
\(215\) −7.15626 12.3950i −0.488053 0.845333i
\(216\) 0 0
\(217\) −6.85803 + 4.79359i −0.465553 + 0.325410i
\(218\) −4.01498 + 2.58386i −0.271928 + 0.175001i
\(219\) 0 0
\(220\) −8.30281 11.6285i −0.559775 0.783994i
\(221\) −3.11350 1.79758i −0.209437 0.120918i
\(222\) 0 0
\(223\) 1.43532 0.0961162 0.0480581 0.998845i \(-0.484697\pi\)
0.0480581 + 0.998845i \(0.484697\pi\)
\(224\) −4.81584 14.1707i −0.321772 0.946817i
\(225\) 0 0
\(226\) −6.93126 + 13.4657i −0.461060 + 0.895723i
\(227\) −13.8688 8.00718i −0.920508 0.531455i −0.0367106 0.999326i \(-0.511688\pi\)
−0.883797 + 0.467871i \(0.845021\pi\)
\(228\) 0 0
\(229\) 8.12499 + 14.0729i 0.536914 + 0.929963i 0.999068 + 0.0431631i \(0.0137435\pi\)
−0.462154 + 0.886800i \(0.652923\pi\)
\(230\) 2.32832 1.49840i 0.153525 0.0988016i
\(231\) 0 0
\(232\) −1.36171 9.34501i −0.0894006 0.613530i
\(233\) 5.93054 + 10.2720i 0.388522 + 0.672941i 0.992251 0.124249i \(-0.0396522\pi\)
−0.603729 + 0.797190i \(0.706319\pi\)
\(234\) 0 0
\(235\) 12.3198 21.3385i 0.803654 1.39197i
\(236\) −1.17163 12.1080i −0.0762667 0.788165i
\(237\) 0 0
\(238\) 8.65238 1.17232i 0.560851 0.0759904i
\(239\) 0.846585i 0.0547610i 0.999625 + 0.0273805i \(0.00871657\pi\)
−0.999625 + 0.0273805i \(0.991283\pi\)
\(240\) 0 0
\(241\) −0.761425 0.439609i −0.0490477 0.0283177i 0.475276 0.879837i \(-0.342348\pi\)
−0.524323 + 0.851519i \(0.675682\pi\)
\(242\) −11.4031 + 0.550423i −0.733017 + 0.0353825i
\(243\) 0 0
\(244\) −7.55549 + 16.5998i −0.483691 + 1.06269i
\(245\) −10.0422 + 27.4494i −0.641575 + 1.75368i
\(246\) 0 0
\(247\) 9.39307 5.42309i 0.597667 0.345063i
\(248\) −3.30875 + 8.31052i −0.210106 + 0.527719i
\(249\) 0 0
\(250\) 20.0936 39.0367i 1.27083 2.46889i
\(251\) 18.1441i 1.14524i 0.819820 + 0.572622i \(0.194074\pi\)
−0.819820 + 0.572622i \(0.805926\pi\)
\(252\) 0 0
\(253\) 0.802247i 0.0504368i
\(254\) 11.9421 + 6.14704i 0.749316 + 0.385700i
\(255\) 0 0
\(256\) −12.6267 9.82679i −0.789170 0.614174i
\(257\) −15.8902 + 9.17421i −0.991203 + 0.572271i −0.905634 0.424061i \(-0.860604\pi\)
−0.0855695 + 0.996332i \(0.527271\pi\)
\(258\) 0 0
\(259\) −23.5775 + 2.04311i −1.46504 + 0.126953i
\(260\) 5.32985 11.7099i 0.330543 0.726218i
\(261\) 0 0
\(262\) 0.931910 + 19.3063i 0.0575736 + 1.19275i
\(263\) −3.02044 1.74385i −0.186248 0.107531i 0.403977 0.914769i \(-0.367628\pi\)
−0.590225 + 0.807239i \(0.700961\pi\)
\(264\) 0 0
\(265\) 6.53008i 0.401140i
\(266\) −9.98869 + 24.3744i −0.612446 + 1.49449i
\(267\) 0 0
\(268\) −14.8769 + 1.43956i −0.908748 + 0.0879349i
\(269\) 7.35605 12.7410i 0.448506 0.776835i −0.549783 0.835308i \(-0.685290\pi\)
0.998289 + 0.0584722i \(0.0186229\pi\)
\(270\) 0 0
\(271\) −9.95139 17.2363i −0.604504 1.04703i −0.992130 0.125215i \(-0.960038\pi\)
0.387626 0.921817i \(-0.373295\pi\)
\(272\) 7.03891 6.13049i 0.426797 0.371716i
\(273\) 0 0
\(274\) −9.17573 14.2579i −0.554326 0.861350i
\(275\) 10.6380 + 18.4255i 0.641495 + 1.11110i
\(276\) 0 0
\(277\) 22.9034 + 13.2233i 1.37613 + 0.794510i 0.991691 0.128640i \(-0.0410613\pi\)
0.384440 + 0.923150i \(0.374395\pi\)
\(278\) 8.36065 + 4.30352i 0.501438 + 0.258108i
\(279\) 0 0
\(280\) 7.15812 + 30.4158i 0.427779 + 1.81769i
\(281\) 20.2837 1.21003 0.605013 0.796216i \(-0.293168\pi\)
0.605013 + 0.796216i \(0.293168\pi\)
\(282\) 0 0
\(283\) 5.70426 + 3.29336i 0.339083 + 0.195770i 0.659866 0.751383i \(-0.270613\pi\)
−0.320783 + 0.947153i \(0.603946\pi\)
\(284\) 5.68489 4.05904i 0.337336 0.240860i
\(285\) 0 0
\(286\) 2.01739 + 3.13476i 0.119291 + 0.185362i
\(287\) −5.95248 + 12.7376i −0.351364 + 0.751877i
\(288\) 0 0
\(289\) −5.77721 10.0064i −0.339836 0.588613i
\(290\) 0.950589 + 19.6933i 0.0558205 + 1.15643i
\(291\) 0 0
\(292\) 2.79842 + 28.9198i 0.163765 + 1.69240i
\(293\) 12.9438 0.756187 0.378094 0.925767i \(-0.376580\pi\)
0.378094 + 0.925767i \(0.376580\pi\)
\(294\) 0 0
\(295\) 25.3968i 1.47866i
\(296\) −19.8573 + 15.6771i −1.15418 + 0.911210i
\(297\) 0 0
\(298\) 0.553586 + 11.4686i 0.0320684 + 0.664358i
\(299\) −0.625594 + 0.361187i −0.0361790 + 0.0208880i
\(300\) 0 0
\(301\) −8.21603 3.83948i −0.473564 0.221304i
\(302\) −1.46993 + 0.945983i −0.0845851 + 0.0544352i
\(303\) 0 0
\(304\) 5.39934 + 27.6380i 0.309674 + 1.58515i
\(305\) 19.0387 32.9760i 1.09015 1.88820i
\(306\) 0 0
\(307\) 11.8773i 0.677871i −0.940810 0.338936i \(-0.889933\pi\)
0.940810 0.338936i \(-0.110067\pi\)
\(308\) −8.53323 3.02519i −0.486226 0.172376i
\(309\) 0 0
\(310\) 8.54688 16.6044i 0.485430 0.943067i
\(311\) 5.91849 10.2511i 0.335607 0.581288i −0.647994 0.761645i \(-0.724392\pi\)
0.983601 + 0.180357i \(0.0577253\pi\)
\(312\) 0 0
\(313\) −12.8383 + 7.41217i −0.725661 + 0.418961i −0.816833 0.576875i \(-0.804272\pi\)
0.0911716 + 0.995835i \(0.470939\pi\)
\(314\) 7.35159 + 11.4234i 0.414874 + 0.644660i
\(315\) 0 0
\(316\) −3.07107 1.39782i −0.172761 0.0786336i
\(317\) −5.87478 + 3.39181i −0.329961 + 0.190503i −0.655824 0.754914i \(-0.727678\pi\)
0.325863 + 0.945417i \(0.394345\pi\)
\(318\) 0 0
\(319\) −4.94732 2.85634i −0.276997 0.159924i
\(320\) 24.2631 + 22.9597i 1.35635 + 1.28348i
\(321\) 0 0
\(322\) 0.665263 1.62338i 0.0370737 0.0904674i
\(323\) −16.4287 −0.914116
\(324\) 0 0
\(325\) −9.57885 + 16.5911i −0.531339 + 0.920306i
\(326\) −27.4168 + 1.32340i −1.51848 + 0.0732966i
\(327\) 0 0
\(328\) 2.16730 + 14.8735i 0.119669 + 0.821252i
\(329\) −1.34784 15.5542i −0.0743090 0.857528i
\(330\) 0 0
\(331\) 2.37285 + 4.10989i 0.130424 + 0.225900i 0.923840 0.382779i \(-0.125033\pi\)
−0.793416 + 0.608679i \(0.791700\pi\)
\(332\) −4.43709 + 3.16810i −0.243517 + 0.173872i
\(333\) 0 0
\(334\) 11.4873 22.3168i 0.628555 1.22112i
\(335\) 31.2044 1.70488
\(336\) 0 0
\(337\) 16.5173 0.899754 0.449877 0.893090i \(-0.351468\pi\)
0.449877 + 0.893090i \(0.351468\pi\)
\(338\) 6.87783 13.3619i 0.374105 0.726790i
\(339\) 0 0
\(340\) −15.8600 + 11.3241i −0.860130 + 0.614137i
\(341\) 2.70549 + 4.68605i 0.146511 + 0.253764i
\(342\) 0 0
\(343\) 4.74897 + 17.9010i 0.256420 + 0.966565i
\(344\) −9.59373 + 1.39795i −0.517259 + 0.0753726i
\(345\) 0 0
\(346\) −10.0879 + 0.486938i −0.542327 + 0.0261780i
\(347\) −9.54986 + 16.5408i −0.512663 + 0.887959i 0.487229 + 0.873274i \(0.338008\pi\)
−0.999892 + 0.0146846i \(0.995326\pi\)
\(348\) 0 0
\(349\) 2.49767 0.133697 0.0668485 0.997763i \(-0.478706\pi\)
0.0668485 + 0.997763i \(0.478706\pi\)
\(350\) −6.24702 46.1064i −0.333917 2.46449i
\(351\) 0 0
\(352\) −9.39862 + 2.31157i −0.500948 + 0.123207i
\(353\) 22.3071 + 12.8790i 1.18729 + 0.685481i 0.957689 0.287805i \(-0.0929254\pi\)
0.229599 + 0.973285i \(0.426259\pi\)
\(354\) 0 0
\(355\) −12.6297 + 7.29179i −0.670317 + 0.387008i
\(356\) 3.86393 + 1.75869i 0.204788 + 0.0932105i
\(357\) 0 0
\(358\) 18.3039 + 28.4419i 0.967391 + 1.50320i
\(359\) −28.7697 + 16.6102i −1.51840 + 0.876651i −0.518639 + 0.854993i \(0.673561\pi\)
−0.999765 + 0.0216582i \(0.993105\pi\)
\(360\) 0 0
\(361\) 15.2817 26.4687i 0.804300 1.39309i
\(362\) 13.3053 25.8489i 0.699313 1.35859i
\(363\) 0 0
\(364\) −1.48277 8.01623i −0.0777182 0.420164i
\(365\) 60.6597i 3.17507i
\(366\) 0 0
\(367\) 2.17584 3.76866i 0.113578 0.196722i −0.803633 0.595126i \(-0.797102\pi\)
0.917210 + 0.398403i \(0.130436\pi\)
\(368\) −0.359605 1.84074i −0.0187457 0.0959552i
\(369\) 0 0
\(370\) 44.4171 28.5849i 2.30914 1.48606i
\(371\) −2.37047 3.39135i −0.123068 0.176070i
\(372\) 0 0
\(373\) 11.0943 6.40533i 0.574444 0.331655i −0.184479 0.982837i \(-0.559060\pi\)
0.758922 + 0.651181i \(0.225726\pi\)
\(374\) −0.272238 5.63994i −0.0140771 0.291634i
\(375\) 0 0
\(376\) −10.3422 13.0999i −0.533358 0.675578i
\(377\) 5.14391i 0.264925i
\(378\) 0 0
\(379\) −24.0807 −1.23694 −0.618472 0.785807i \(-0.712248\pi\)
−0.618472 + 0.785807i \(0.712248\pi\)
\(380\) −5.66260 58.5192i −0.290485 3.00197i
\(381\) 0 0
\(382\) −0.137406 2.84663i −0.00703030 0.145646i
\(383\) −8.78233 15.2114i −0.448756 0.777268i 0.549549 0.835461i \(-0.314799\pi\)
−0.998305 + 0.0581930i \(0.981466\pi\)
\(384\) 0 0
\(385\) 17.1242 + 8.00242i 0.872731 + 0.407841i
\(386\) 2.73278 + 4.24638i 0.139095 + 0.216135i
\(387\) 0 0
\(388\) −3.17728 + 2.26859i −0.161302 + 0.115170i
\(389\) 23.9022 + 13.7999i 1.21189 + 0.699685i 0.963171 0.268890i \(-0.0866570\pi\)
0.248719 + 0.968576i \(0.419990\pi\)
\(390\) 0 0
\(391\) 1.09418 0.0553349
\(392\) 14.7587 + 13.1978i 0.745426 + 0.666588i
\(393\) 0 0
\(394\) −22.0541 11.3521i −1.11107 0.571908i
\(395\) 6.10079 + 3.52229i 0.306964 + 0.177226i
\(396\) 0 0
\(397\) −8.65850 14.9970i −0.434558 0.752676i 0.562702 0.826660i \(-0.309762\pi\)
−0.997259 + 0.0739841i \(0.976429\pi\)
\(398\) 13.5516 + 21.0573i 0.679278 + 1.05551i
\(399\) 0 0
\(400\) −32.6679 37.5086i −1.63339 1.87543i
\(401\) 3.87616 + 6.71371i 0.193566 + 0.335266i 0.946430 0.322910i \(-0.104661\pi\)
−0.752863 + 0.658177i \(0.771328\pi\)
\(402\) 0 0
\(403\) −2.43613 + 4.21950i −0.121352 + 0.210188i
\(404\) −27.4337 + 2.65462i −1.36488 + 0.132072i
\(405\) 0 0
\(406\) 7.64248 + 9.88248i 0.379290 + 0.490459i
\(407\) 15.3044i 0.758611i
\(408\) 0 0
\(409\) −4.01694 2.31918i −0.198625 0.114676i 0.397389 0.917650i \(-0.369916\pi\)
−0.596014 + 0.802974i \(0.703250\pi\)
\(410\) −1.51296 31.3438i −0.0747196 1.54796i
\(411\) 0 0
\(412\) 6.36524 13.9847i 0.313593 0.688977i
\(413\) 9.21921 + 13.1896i 0.453648 + 0.649018i
\(414\) 0 0
\(415\) 9.85758 5.69128i 0.483889 0.279374i
\(416\) −6.03401 6.28835i −0.295841 0.308312i
\(417\) 0 0
\(418\) 15.1461 + 7.79624i 0.740820 + 0.381327i
\(419\) 14.2419i 0.695760i 0.937539 + 0.347880i \(0.113098\pi\)
−0.937539 + 0.347880i \(0.886902\pi\)
\(420\) 0 0
\(421\) 20.0126i 0.975356i −0.873024 0.487678i \(-0.837844\pi\)
0.873024 0.487678i \(-0.162156\pi\)
\(422\) 2.73813 5.31948i 0.133290 0.258948i
\(423\) 0 0
\(424\) −4.10962 1.63620i −0.199581 0.0794610i
\(425\) 25.1304 14.5091i 1.21900 0.703793i
\(426\) 0 0
\(427\) −2.08292 24.0370i −0.100800 1.16323i
\(428\) −11.9377 + 26.2276i −0.577029 + 1.26776i
\(429\) 0 0
\(430\) 20.2174 0.975890i 0.974971 0.0470616i
\(431\) −12.1099 6.99165i −0.583313 0.336776i 0.179136 0.983824i \(-0.442670\pi\)
−0.762449 + 0.647049i \(0.776003\pi\)
\(432\) 0 0
\(433\) 0.984888i 0.0473307i −0.999720 0.0236653i \(-0.992466\pi\)
0.999720 0.0236653i \(-0.00753362\pi\)
\(434\) −1.58876 11.7259i −0.0762632 0.562864i
\(435\) 0 0
\(436\) −0.650342 6.72084i −0.0311457 0.321870i
\(437\) −1.65050 + 2.85875i −0.0789542 + 0.136753i
\(438\) 0 0
\(439\) 3.43693 + 5.95294i 0.164036 + 0.284118i 0.936312 0.351168i \(-0.114215\pi\)
−0.772277 + 0.635286i \(0.780882\pi\)
\(440\) 19.9957 2.91368i 0.953258 0.138904i
\(441\) 0 0
\(442\) 4.27547 2.75150i 0.203363 0.130875i
\(443\) 1.70483 + 2.95285i 0.0809989 + 0.140294i 0.903679 0.428210i \(-0.140856\pi\)
−0.822680 + 0.568504i \(0.807522\pi\)
\(444\) 0 0
\(445\) −7.67582 4.43164i −0.363869 0.210080i
\(446\) −0.928990 + 1.80479i −0.0439890 + 0.0854593i
\(447\) 0 0
\(448\) 20.9354 + 3.11625i 0.989102 + 0.147229i
\(449\) −32.9924 −1.55701 −0.778503 0.627641i \(-0.784021\pi\)
−0.778503 + 0.627641i \(0.784021\pi\)
\(450\) 0 0
\(451\) 7.87416 + 4.54615i 0.370780 + 0.214070i
\(452\) −12.4457 17.4309i −0.585399 0.819881i
\(453\) 0 0
\(454\) 19.0447 12.2563i 0.893814 0.575218i
\(455\) 1.46935 + 16.9563i 0.0688842 + 0.794926i
\(456\) 0 0
\(457\) 11.4224 + 19.7842i 0.534319 + 0.925467i 0.999196 + 0.0400919i \(0.0127651\pi\)
−0.464877 + 0.885375i \(0.653902\pi\)
\(458\) −22.9542 + 1.10799i −1.07258 + 0.0517731i
\(459\) 0 0
\(460\) 0.377139 + 3.89747i 0.0175842 + 0.181721i
\(461\) −15.8743 −0.739338 −0.369669 0.929164i \(-0.620529\pi\)
−0.369669 + 0.929164i \(0.620529\pi\)
\(462\) 0 0
\(463\) 2.72059i 0.126436i 0.998000 + 0.0632182i \(0.0201364\pi\)
−0.998000 + 0.0632182i \(0.979864\pi\)
\(464\) 12.6319 + 4.33619i 0.586420 + 0.201302i
\(465\) 0 0
\(466\) −16.7546 + 0.808739i −0.776141 + 0.0374641i
\(467\) −20.7726 + 11.9931i −0.961240 + 0.554972i −0.896555 0.442933i \(-0.853938\pi\)
−0.0646858 + 0.997906i \(0.520605\pi\)
\(468\) 0 0
\(469\) 16.2058 11.3274i 0.748313 0.523052i
\(470\) 18.8575 + 29.3021i 0.869832 + 1.35160i
\(471\) 0 0
\(472\) 15.9831 + 6.36351i 0.735682 + 0.292904i
\(473\) −2.93236 + 5.07900i −0.134830 + 0.233533i
\(474\) 0 0
\(475\) 87.5443i 4.01681i
\(476\) −4.12603 + 11.6384i −0.189116 + 0.533445i
\(477\) 0 0
\(478\) −1.06451 0.547939i −0.0486894 0.0250622i
\(479\) 9.87511 17.1042i 0.451205 0.781511i −0.547256 0.836965i \(-0.684328\pi\)
0.998461 + 0.0554547i \(0.0176608\pi\)
\(480\) 0 0
\(481\) −11.9344 + 6.89033i −0.544162 + 0.314172i
\(482\) 1.04559 0.672895i 0.0476253 0.0306495i
\(483\) 0 0
\(484\) 6.68836 14.6946i 0.304016 0.667937i
\(485\) 7.05874 4.07536i 0.320521 0.185053i
\(486\) 0 0
\(487\) −32.1435 18.5581i −1.45656 0.840946i −0.457721 0.889096i \(-0.651334\pi\)
−0.998840 + 0.0481495i \(0.984668\pi\)
\(488\) −15.9826 20.2443i −0.723497 0.916417i
\(489\) 0 0
\(490\) −28.0155 30.3935i −1.26561 1.37304i
\(491\) 20.5746 0.928517 0.464259 0.885700i \(-0.346321\pi\)
0.464259 + 0.885700i \(0.346321\pi\)
\(492\) 0 0
\(493\) −3.89573 + 6.74761i −0.175455 + 0.303897i
\(494\) 0.739539 + 15.3210i 0.0332734 + 0.689323i
\(495\) 0 0
\(496\) −8.30821 9.53933i −0.373050 0.428328i
\(497\) −3.91219 + 8.37162i −0.175486 + 0.375518i
\(498\) 0 0
\(499\) −0.517579 0.896473i −0.0231700 0.0401316i 0.854208 0.519932i \(-0.174043\pi\)
−0.877378 + 0.479800i \(0.840709\pi\)
\(500\) 36.0799 + 50.5318i 1.61354 + 2.25985i
\(501\) 0 0
\(502\) −22.8146 11.7435i −1.01826 0.524137i
\(503\) 19.7898 0.882382 0.441191 0.897413i \(-0.354556\pi\)
0.441191 + 0.897413i \(0.354556\pi\)
\(504\) 0 0
\(505\) 57.5425 2.56061
\(506\) −1.00876 0.519243i −0.0448447 0.0230831i
\(507\) 0 0
\(508\) −15.4587 + 11.0376i −0.685870 + 0.489715i
\(509\) −2.11849 3.66933i −0.0939004 0.162640i 0.815249 0.579111i \(-0.196600\pi\)
−0.909149 + 0.416471i \(0.863267\pi\)
\(510\) 0 0
\(511\) −22.0199 31.5031i −0.974104 1.39362i
\(512\) 20.5288 9.51676i 0.907253 0.420586i
\(513\) 0 0
\(514\) −1.25107 25.9184i −0.0551825 1.14321i
\(515\) −16.0394 + 27.7811i −0.706781 + 1.22418i
\(516\) 0 0
\(517\) −10.0963 −0.444037
\(518\) 12.6912 30.9690i 0.557618 1.36070i
\(519\) 0 0
\(520\) 11.2745 + 14.2809i 0.494421 + 0.626259i
\(521\) 33.6570 + 19.4319i 1.47454 + 0.851326i 0.999588 0.0286855i \(-0.00913212\pi\)
0.474952 + 0.880012i \(0.342465\pi\)
\(522\) 0 0
\(523\) 14.8181 8.55526i 0.647952 0.374095i −0.139719 0.990191i \(-0.544620\pi\)
0.787671 + 0.616096i \(0.211287\pi\)
\(524\) −24.8791 11.3239i −1.08685 0.494688i
\(525\) 0 0
\(526\) 4.14768 2.66926i 0.180847 0.116385i
\(527\) 6.39126 3.69000i 0.278408 0.160739i
\(528\) 0 0
\(529\) −11.3901 + 19.7282i −0.495221 + 0.857747i
\(530\) 8.21101 + 4.22650i 0.356663 + 0.183587i
\(531\) 0 0
\(532\) −24.1837 28.3359i −1.04850 1.22852i
\(533\) 8.18704i 0.354620i
\(534\) 0 0
\(535\) 30.0811 52.1019i 1.30052 2.25256i
\(536\) 7.81870 19.6381i 0.337717 0.848236i
\(537\) 0 0
\(538\) 11.2597 + 17.4960i 0.485439 + 0.754308i
\(539\) 11.7983 2.06023i 0.508187 0.0887402i
\(540\) 0 0
\(541\) 37.6652 21.7460i 1.61935 0.934935i 0.632268 0.774750i \(-0.282124\pi\)
0.987087 0.160185i \(-0.0512092\pi\)
\(542\) 28.1140 1.35706i 1.20760 0.0582906i
\(543\) 0 0
\(544\) 3.15273 + 12.8187i 0.135172 + 0.549597i
\(545\) 14.0971i 0.603852i
\(546\) 0 0
\(547\) 10.8290 0.463016 0.231508 0.972833i \(-0.425634\pi\)
0.231508 + 0.972833i \(0.425634\pi\)
\(548\) 23.8669 2.30948i 1.01954 0.0986560i
\(549\) 0 0
\(550\) −30.0538 + 1.45069i −1.28150 + 0.0618576i
\(551\) −11.7530 20.3567i −0.500693 0.867226i
\(552\) 0 0
\(553\) 4.44702 0.385356i 0.189106 0.0163870i
\(554\) −31.4510 + 20.2404i −1.33622 + 0.859934i
\(555\) 0 0
\(556\) −10.8226 + 7.72739i −0.458981 + 0.327714i
\(557\) 7.04197 + 4.06568i 0.298378 + 0.172269i 0.641714 0.766944i \(-0.278224\pi\)
−0.343336 + 0.939213i \(0.611557\pi\)
\(558\) 0 0
\(559\) −5.28082 −0.223355
\(560\) −42.8783 10.6855i −1.81194 0.451544i
\(561\) 0 0
\(562\) −13.1283 + 25.5050i −0.553786 + 1.07586i
\(563\) −19.6081 11.3207i −0.826381 0.477111i 0.0262311 0.999656i \(-0.491649\pi\)
−0.852612 + 0.522545i \(0.824983\pi\)
\(564\) 0 0
\(565\) 22.3579 + 38.7251i 0.940605 + 1.62918i
\(566\) −7.83310 + 5.04103i −0.329250 + 0.211890i
\(567\) 0 0
\(568\) 1.42443 + 9.77541i 0.0597676 + 0.410167i
\(569\) −10.1485 17.5778i −0.425449 0.736900i 0.571013 0.820941i \(-0.306551\pi\)
−0.996462 + 0.0840413i \(0.973217\pi\)
\(570\) 0 0
\(571\) −18.3819 + 31.8383i −0.769257 + 1.33239i 0.168710 + 0.985666i \(0.446040\pi\)
−0.937967 + 0.346726i \(0.887293\pi\)
\(572\) −5.24741 + 0.507765i −0.219405 + 0.0212307i
\(573\) 0 0
\(574\) −12.1638 15.7289i −0.507706 0.656514i
\(575\) 5.83059i 0.243153i
\(576\) 0 0
\(577\) 1.39915 + 0.807801i 0.0582475 + 0.0336292i 0.528841 0.848721i \(-0.322627\pi\)
−0.470593 + 0.882350i \(0.655960\pi\)
\(578\) 16.3214 0.787830i 0.678881 0.0327694i
\(579\) 0 0
\(580\) −25.3778 11.5509i −1.05376 0.479625i
\(581\) 3.05348 6.53409i 0.126680 0.271080i
\(582\) 0 0
\(583\) −2.31729 + 1.33789i −0.0959723 + 0.0554097i
\(584\) −38.1753 15.1991i −1.57971 0.628945i
\(585\) 0 0
\(586\) −8.37771 + 16.2758i −0.346080 + 0.672345i
\(587\) 3.68747i 0.152198i −0.997100 0.0760991i \(-0.975753\pi\)
0.997100 0.0760991i \(-0.0242465\pi\)
\(588\) 0 0
\(589\) 22.2646i 0.917396i
\(590\) −31.9342 16.4377i −1.31471 0.676729i
\(591\) 0 0
\(592\) −6.86015 35.1156i −0.281951 1.44324i
\(593\) −32.3781 + 18.6935i −1.32961 + 0.767650i −0.985239 0.171184i \(-0.945241\pi\)
−0.344370 + 0.938834i \(0.611908\pi\)
\(594\) 0 0
\(595\) 10.9144 23.3556i 0.447447 0.957485i
\(596\) −14.7791 6.72679i −0.605374 0.275540i
\(597\) 0 0
\(598\) −0.0492546 1.02040i −0.00201417 0.0417274i
\(599\) −8.61435 4.97350i −0.351973 0.203212i 0.313581 0.949561i \(-0.398471\pi\)
−0.665554 + 0.746350i \(0.731805\pi\)
\(600\) 0 0
\(601\) 35.9296i 1.46560i −0.680445 0.732799i \(-0.738214\pi\)
0.680445 0.732799i \(-0.261786\pi\)
\(602\) 10.1455 7.84589i 0.413500 0.319775i
\(603\) 0 0
\(604\) −0.238098 2.46059i −0.00968808 0.100120i
\(605\) −16.8536 + 29.1914i −0.685198 + 1.18680i
\(606\) 0 0
\(607\) −14.9355 25.8690i −0.606212 1.04999i −0.991859 0.127344i \(-0.959355\pi\)
0.385646 0.922647i \(-0.373978\pi\)
\(608\) −38.2471 11.0991i −1.55112 0.450128i
\(609\) 0 0
\(610\) 29.1419 + 45.2827i 1.17992 + 1.83344i
\(611\) −4.54557 7.87315i −0.183894 0.318514i
\(612\) 0 0
\(613\) 32.8160 + 18.9463i 1.32542 + 0.765234i 0.984588 0.174889i \(-0.0559566\pi\)
0.340836 + 0.940123i \(0.389290\pi\)
\(614\) 14.9346 + 7.68738i 0.602712 + 0.310238i
\(615\) 0 0
\(616\) 9.32692 8.77178i 0.375792 0.353425i
\(617\) −39.0332 −1.57142 −0.785709 0.618597i \(-0.787702\pi\)
−0.785709 + 0.618597i \(0.787702\pi\)
\(618\) 0 0
\(619\) −21.5338 12.4325i −0.865517 0.499706i 0.000339137 1.00000i \(-0.499892\pi\)
−0.865856 + 0.500294i \(0.833225\pi\)
\(620\) 15.3468 + 21.4939i 0.616341 + 0.863216i
\(621\) 0 0
\(622\) 9.05924 + 14.0769i 0.363242 + 0.564431i
\(623\) −5.59509 + 0.484842i −0.224163 + 0.0194248i
\(624\) 0 0
\(625\) −33.7275 58.4177i −1.34910 2.33671i
\(626\) −1.01079 20.9404i −0.0403992 0.836947i
\(627\) 0 0
\(628\) −19.1221 + 1.85035i −0.763056 + 0.0738371i
\(629\) 20.8735 0.832281
\(630\) 0 0
\(631\) 43.3823i 1.72702i 0.504330 + 0.863511i \(0.331740\pi\)
−0.504330 + 0.863511i \(0.668260\pi\)
\(632\) 3.74535 2.95689i 0.148982 0.117619i
\(633\) 0 0
\(634\) −0.462536 9.58232i −0.0183696 0.380563i
\(635\) 34.3436 19.8283i 1.36289 0.786862i
\(636\) 0 0
\(637\) 6.91837 + 8.27276i 0.274116 + 0.327779i
\(638\) 6.79368 4.37210i 0.268964 0.173093i
\(639\) 0 0
\(640\) −44.5737 + 15.6484i −1.76193 + 0.618557i
\(641\) 3.32559 5.76010i 0.131353 0.227510i −0.792845 0.609423i \(-0.791401\pi\)
0.924198 + 0.381913i \(0.124735\pi\)
\(642\) 0 0
\(643\) 18.1066i 0.714055i 0.934094 + 0.357027i \(0.116210\pi\)
−0.934094 + 0.357027i \(0.883790\pi\)
\(644\) 1.61068 + 1.88722i 0.0634695 + 0.0743668i
\(645\) 0 0
\(646\) 10.6332 20.6576i 0.418358 0.812763i
\(647\) 24.6421 42.6815i 0.968783 1.67798i 0.269694 0.962946i \(-0.413077\pi\)
0.699089 0.715035i \(-0.253589\pi\)
\(648\) 0 0
\(649\) 9.01239 5.20331i 0.353767 0.204248i
\(650\) −14.6620 22.7829i −0.575092 0.893618i
\(651\) 0 0
\(652\) 16.0811 35.3308i 0.629784 1.38366i
\(653\) −22.1087 + 12.7645i −0.865181 + 0.499512i −0.865744 0.500488i \(-0.833154\pi\)
0.000563051 1.00000i \(0.499821\pi\)
\(654\) 0 0
\(655\) 49.4233 + 28.5345i 1.93113 + 1.11494i
\(656\) −20.1049 6.90147i −0.784964 0.269457i
\(657\) 0 0
\(658\) 20.4304 + 8.37240i 0.796458 + 0.326390i
\(659\) 12.0942 0.471125 0.235562 0.971859i \(-0.424307\pi\)
0.235562 + 0.971859i \(0.424307\pi\)
\(660\) 0 0
\(661\) 5.42541 9.39708i 0.211024 0.365504i −0.741011 0.671493i \(-0.765654\pi\)
0.952035 + 0.305988i \(0.0989869\pi\)
\(662\) −6.70362 + 0.323582i −0.260544 + 0.0125764i
\(663\) 0 0
\(664\) −1.11177 7.62976i −0.0431451 0.296092i
\(665\) 44.5573 + 63.7466i 1.72786 + 2.47199i
\(666\) 0 0
\(667\) 0.782767 + 1.35579i 0.0303089 + 0.0524965i
\(668\) 20.6265 + 28.8885i 0.798063 + 1.11773i
\(669\) 0 0
\(670\) −20.1966 + 39.2368i −0.780263 + 1.51585i
\(671\) −15.6026 −0.602333
\(672\) 0 0
\(673\) −48.1931 −1.85771 −0.928854 0.370446i \(-0.879205\pi\)
−0.928854 + 0.370446i \(0.879205\pi\)
\(674\) −10.6906 + 20.7691i −0.411785 + 0.799994i
\(675\) 0 0
\(676\) 12.3498 + 17.2965i 0.474993 + 0.665252i
\(677\) 2.56093 + 4.43567i 0.0984246 + 0.170476i 0.911033 0.412334i \(-0.135286\pi\)
−0.812608 + 0.582810i \(0.801953\pi\)
\(678\) 0 0
\(679\) 2.18651 4.67888i 0.0839107 0.179559i
\(680\) −3.97394 27.2719i −0.152394 1.04583i
\(681\) 0 0
\(682\) −7.64340 + 0.368945i −0.292681 + 0.0141276i
\(683\) 11.7191 20.2980i 0.448418 0.776682i −0.549866 0.835253i \(-0.685321\pi\)
0.998283 + 0.0585709i \(0.0186544\pi\)
\(684\) 0 0
\(685\) −50.0612 −1.91274
\(686\) −25.5827 5.61476i −0.976752 0.214373i
\(687\) 0 0
\(688\) 4.45160 12.9681i 0.169715 0.494404i
\(689\) −2.08658 1.20468i −0.0794922 0.0458948i
\(690\) 0 0
\(691\) 11.9534 6.90129i 0.454728 0.262537i −0.255097 0.966915i \(-0.582107\pi\)
0.709825 + 0.704378i \(0.248774\pi\)
\(692\) 5.91694 12.9998i 0.224928 0.494177i
\(693\) 0 0
\(694\) −14.6177 22.7139i −0.554879 0.862209i
\(695\) 24.0439 13.8817i 0.912035 0.526564i
\(696\) 0 0
\(697\) 6.20044 10.7395i 0.234859 0.406787i
\(698\) −1.61658 + 3.14060i −0.0611884 + 0.118873i
\(699\) 0 0
\(700\) 62.0180 + 21.9866i 2.34406 + 0.831015i
\(701\) 11.8718i 0.448393i −0.974544 0.224196i \(-0.928024\pi\)
0.974544 0.224196i \(-0.0719757\pi\)
\(702\) 0 0
\(703\) −31.4865 + 54.5362i −1.18754 + 2.05687i
\(704\) 3.17652 13.3141i 0.119719 0.501793i
\(705\) 0 0
\(706\) −30.6322 + 19.7135i −1.15286 + 0.741927i
\(707\) 29.8843 20.8883i 1.12391 0.785587i
\(708\) 0 0
\(709\) −27.1241 + 15.6601i −1.01867 + 0.588127i −0.913717 0.406350i \(-0.866801\pi\)
−0.104949 + 0.994478i \(0.533468\pi\)
\(710\) −0.994371 20.6003i −0.0373181 0.773116i
\(711\) 0 0
\(712\) −4.71227 + 3.72026i −0.176600 + 0.139423i
\(713\) 1.48286i 0.0555335i
\(714\) 0 0
\(715\) 11.0065 0.411621
\(716\) −47.6101 + 4.60698i −1.77927 + 0.172171i
\(717\) 0 0
\(718\) −2.26511 46.9260i −0.0845330 1.75126i
\(719\) 12.6273 + 21.8712i 0.470920 + 0.815657i 0.999447 0.0332594i \(-0.0105888\pi\)
−0.528527 + 0.848917i \(0.677255\pi\)
\(720\) 0 0
\(721\) 1.75479 + 20.2503i 0.0653518 + 0.754161i
\(722\) 23.3912 + 36.3469i 0.870530 + 1.35269i
\(723\) 0 0
\(724\) 23.8910 + 33.4606i 0.887903 + 1.24355i
\(725\) 35.9563 + 20.7594i 1.33538 + 0.770984i
\(726\) 0 0
\(727\) −17.9342 −0.665144 −0.332572 0.943078i \(-0.607916\pi\)
−0.332572 + 0.943078i \(0.607916\pi\)
\(728\) 11.0394 + 3.32393i 0.409148 + 0.123193i
\(729\) 0 0
\(730\) 76.2743 + 39.2611i 2.82304 + 1.45312i
\(731\) 6.92720 + 3.99942i 0.256212 + 0.147924i
\(732\) 0 0
\(733\) 6.16779 + 10.6829i 0.227813 + 0.394583i 0.957160 0.289561i \(-0.0935093\pi\)
−0.729347 + 0.684144i \(0.760176\pi\)
\(734\) 3.33048 + 5.17513i 0.122930 + 0.191018i
\(735\) 0 0
\(736\) 2.54732 + 0.739219i 0.0938954 + 0.0272480i
\(737\) −6.39319 11.0733i −0.235496 0.407891i
\(738\) 0 0
\(739\) −21.7463 + 37.6656i −0.799949 + 1.38555i 0.119699 + 0.992810i \(0.461807\pi\)
−0.919648 + 0.392743i \(0.871526\pi\)
\(740\) 7.19464 + 74.3518i 0.264480 + 2.73322i
\(741\) 0 0
\(742\) 5.79857 0.785656i 0.212872 0.0288424i
\(743\) 32.8397i 1.20477i 0.798205 + 0.602386i \(0.205783\pi\)
−0.798205 + 0.602386i \(0.794217\pi\)
\(744\) 0 0
\(745\) 29.3591 + 16.9505i 1.07563 + 0.621018i
\(746\) 0.873485 + 18.0959i 0.0319806 + 0.662539i
\(747\) 0 0
\(748\) 7.26793 + 3.30805i 0.265742 + 0.120954i
\(749\) −3.29101 37.9784i −0.120251 1.38770i
\(750\) 0 0
\(751\) −7.62670 + 4.40328i −0.278302 + 0.160678i −0.632655 0.774434i \(-0.718035\pi\)
0.354352 + 0.935112i \(0.384701\pi\)
\(752\) 23.1659 4.52566i 0.844772 0.165034i
\(753\) 0 0
\(754\) 6.46802 + 3.32932i 0.235551 + 0.121247i
\(755\) 5.16112i 0.187832i
\(756\) 0 0
\(757\) 16.9328i 0.615433i −0.951478 0.307717i \(-0.900435\pi\)
0.951478 0.307717i \(-0.0995649\pi\)
\(758\) 15.5859 30.2794i 0.566105 1.09980i
\(759\) 0 0
\(760\) 77.2478 + 30.7554i 2.80207 + 1.11562i
\(761\) −10.9108 + 6.29937i −0.395517 + 0.228352i −0.684548 0.728968i \(-0.740000\pi\)
0.289031 + 0.957320i \(0.406667\pi\)
\(762\) 0 0
\(763\) 5.11734 + 7.32121i 0.185260 + 0.265045i
\(764\) 3.66832 + 1.66966i 0.132715 + 0.0604063i
\(765\) 0 0
\(766\) 24.8113 1.19763i 0.896468 0.0432723i
\(767\) 8.11510 + 4.68526i 0.293019 + 0.169175i
\(768\) 0 0
\(769\) 16.0445i 0.578581i 0.957241 + 0.289291i \(0.0934194\pi\)
−0.957241 + 0.289291i \(0.906581\pi\)
\(770\) −21.1457 + 16.3528i −0.762040 + 0.589313i
\(771\) 0 0
\(772\) −7.10820 + 0.687825i −0.255830 + 0.0247554i
\(773\) −9.15671 + 15.8599i −0.329344 + 0.570440i −0.982382 0.186885i \(-0.940161\pi\)
0.653038 + 0.757325i \(0.273494\pi\)
\(774\) 0 0
\(775\) −19.6631 34.0574i −0.706318 1.22338i
\(776\) −0.796109 5.46346i −0.0285787 0.196127i
\(777\) 0 0
\(778\) −32.8226 + 21.1231i −1.17675 + 0.757301i
\(779\) 18.7060 + 32.3998i 0.670213 + 1.16084i
\(780\) 0 0
\(781\) 5.17518 + 2.98789i 0.185183 + 0.106915i
\(782\) −0.708190 + 1.37583i −0.0253248 + 0.0491997i
\(783\) 0 0
\(784\) −26.1474 + 10.0157i −0.933835 + 0.357703i
\(785\) 40.1090 1.43155
\(786\) 0 0
\(787\) 3.88976 + 2.24576i 0.138655 + 0.0800526i 0.567723 0.823220i \(-0.307825\pi\)
−0.429068 + 0.903272i \(0.641158\pi\)
\(788\) 28.5484 20.3837i 1.01700 0.726140i
\(789\) 0 0
\(790\) −8.37763 + 5.39146i −0.298063 + 0.191820i
\(791\) 25.6689 + 11.9955i 0.912680 + 0.426510i
\(792\) 0 0
\(793\) −7.02460 12.1670i −0.249451 0.432062i
\(794\) 24.4615 1.18075i 0.868104 0.0419032i
\(795\) 0 0
\(796\) −35.2488 + 3.41085i −1.24936 + 0.120894i
\(797\) −31.7698 −1.12534 −0.562672 0.826680i \(-0.690227\pi\)
−0.562672 + 0.826680i \(0.690227\pi\)
\(798\) 0 0
\(799\) 13.7703i 0.487159i
\(800\) 68.3076 16.8001i 2.41504 0.593974i
\(801\) 0 0
\(802\) −10.9507 + 0.528587i −0.386682 + 0.0186650i
\(803\) −21.5259 + 12.4280i −0.759634 + 0.438575i
\(804\) 0 0
\(805\) −2.96759 4.24563i −0.104594 0.149639i
\(806\) −3.72890 5.79423i −0.131345 0.204093i
\(807\) 0 0
\(808\) 14.4181 36.2136i 0.507226 1.27399i
\(809\) 12.5784 21.7864i 0.442232 0.765969i −0.555623 0.831435i \(-0.687520\pi\)
0.997855 + 0.0654659i \(0.0208534\pi\)
\(810\) 0 0
\(811\) 48.0042i 1.68565i −0.538184 0.842827i \(-0.680890\pi\)
0.538184 0.842827i \(-0.319110\pi\)
\(812\) −17.3728 + 3.21347i −0.609667 + 0.112771i
\(813\) 0 0
\(814\) −19.2439 9.90554i −0.674500 0.347189i
\(815\) −40.5219 + 70.1859i −1.41942 + 2.45851i
\(816\) 0 0
\(817\) −20.8985 + 12.0658i −0.731148 + 0.422128i
\(818\) 5.51607 3.54989i 0.192865 0.124119i
\(819\) 0 0
\(820\) 40.3914 + 18.3844i 1.41053 + 0.642011i
\(821\) −14.5854 + 8.42089i −0.509034 + 0.293891i −0.732437 0.680835i \(-0.761617\pi\)
0.223402 + 0.974726i \(0.428284\pi\)
\(822\) 0 0
\(823\) −17.1163 9.88209i −0.596636 0.344468i 0.171081 0.985257i \(-0.445274\pi\)
−0.767717 + 0.640789i \(0.778607\pi\)
\(824\) 13.4647 + 17.0551i 0.469066 + 0.594143i
\(825\) 0 0
\(826\) −22.5518 + 3.05557i −0.784677 + 0.106317i
\(827\) −49.1702 −1.70981 −0.854907 0.518781i \(-0.826386\pi\)
−0.854907 + 0.518781i \(0.826386\pi\)
\(828\) 0 0
\(829\) 7.96007 13.7872i 0.276465 0.478851i −0.694039 0.719937i \(-0.744171\pi\)
0.970504 + 0.241087i \(0.0775038\pi\)
\(830\) 0.776111 + 16.0786i 0.0269392 + 0.558098i
\(831\) 0 0
\(832\) 11.8125 3.51719i 0.409524 0.121937i
\(833\) −2.80992 16.0915i −0.0973580 0.557539i
\(834\) 0 0
\(835\) −37.0541 64.1795i −1.28231 2.22102i
\(836\) −19.6062 + 13.9989i −0.678094 + 0.484162i
\(837\) 0 0
\(838\) −17.9079 9.21783i −0.618618 0.318425i
\(839\) −38.3305 −1.32332 −0.661658 0.749806i \(-0.730147\pi\)
−0.661658 + 0.749806i \(0.730147\pi\)
\(840\) 0 0
\(841\) 17.8521 0.615589
\(842\) 25.1641 + 12.9529i 0.867213 + 0.446385i
\(843\) 0 0
\(844\) 4.91657 + 6.88591i 0.169235 + 0.237023i
\(845\) −22.1856 38.4266i −0.763207 1.32191i
\(846\) 0 0
\(847\) 1.84387 + 21.2783i 0.0633561 + 0.731131i
\(848\) 4.71727 4.10848i 0.161992 0.141086i
\(849\) 0 0
\(850\) 1.97858 + 40.9901i 0.0678647 + 1.40595i
\(851\) 2.09705 3.63220i 0.0718860 0.124510i
\(852\) 0 0
\(853\) −22.5158 −0.770927 −0.385463 0.922723i \(-0.625958\pi\)
−0.385463 + 0.922723i \(0.625958\pi\)
\(854\) 31.5726 + 12.9385i 1.08039 + 0.442746i
\(855\) 0 0
\(856\) −25.2524 31.9860i −0.863109 1.09326i
\(857\) 11.1913 + 6.46129i 0.382287 + 0.220713i 0.678813 0.734311i \(-0.262495\pi\)
−0.296526 + 0.955025i \(0.595828\pi\)
\(858\) 0 0
\(859\) 20.1418 11.6289i 0.687229 0.396772i −0.115344 0.993326i \(-0.536797\pi\)
0.802573 + 0.596554i \(0.203464\pi\)
\(860\) −11.8583 + 26.0533i −0.404366 + 0.888410i
\(861\) 0 0
\(862\) 16.6293 10.7019i 0.566397 0.364508i
\(863\) 7.69412 4.44220i 0.261911 0.151214i −0.363295 0.931674i \(-0.618348\pi\)
0.625206 + 0.780460i \(0.285015\pi\)
\(864\) 0 0
\(865\) −14.9098 + 25.8245i −0.506947 + 0.878059i
\(866\) 1.23841 + 0.637454i 0.0420829 + 0.0216616i
\(867\) 0 0
\(868\) 15.7727 + 5.59171i 0.535359 + 0.189795i
\(869\) 2.88660i 0.0979212i
\(870\) 0 0
\(871\) 5.75667 9.97084i 0.195057 0.337849i
\(872\) 8.87180 + 3.53222i 0.300437 + 0.119616i
\(873\) 0 0
\(874\) −2.52637 3.92565i −0.0854558 0.132787i
\(875\) −74.4135 34.7746i −2.51564 1.17560i
\(876\) 0 0
\(877\) −40.2134 + 23.2172i −1.35791 + 0.783990i −0.989342 0.145610i \(-0.953485\pi\)
−0.368569 + 0.929600i \(0.620152\pi\)
\(878\) −9.70981 + 0.468690i −0.327690 + 0.0158175i
\(879\) 0 0
\(880\) −9.27822 + 27.0287i −0.312769 + 0.911137i
\(881\) 27.1901i 0.916058i −0.888937 0.458029i \(-0.848556\pi\)
0.888937 0.458029i \(-0.151444\pi\)
\(882\) 0 0
\(883\) −21.7975 −0.733543 −0.366772 0.930311i \(-0.619537\pi\)
−0.366772 + 0.930311i \(0.619537\pi\)
\(884\) 0.692536 + 7.15689i 0.0232925 + 0.240712i
\(885\) 0 0
\(886\) −4.81638 + 0.232485i −0.161809 + 0.00781049i
\(887\) 21.1661 + 36.6607i 0.710688 + 1.23095i 0.964599 + 0.263720i \(0.0849495\pi\)
−0.253911 + 0.967227i \(0.581717\pi\)
\(888\) 0 0
\(889\) 10.6383 22.7646i 0.356796 0.763502i
\(890\) 10.5405 6.78336i 0.353317 0.227379i
\(891\) 0 0
\(892\) −1.66809 2.33625i −0.0558519 0.0782234i
\(893\) −35.9777 20.7717i −1.20395 0.695099i
\(894\) 0 0
\(895\) 99.8629 3.33805
\(896\) −17.4685 + 24.3074i −0.583582 + 0.812054i
\(897\) 0 0
\(898\) 21.3538 41.4850i 0.712586 1.38437i
\(899\) 9.14454 + 5.27960i 0.304987 + 0.176085i
\(900\) 0 0
\(901\) 1.82473 + 3.16053i 0.0607906 + 0.105292i
\(902\) −10.8128 + 6.95864i −0.360027 + 0.231697i
\(903\) 0 0
\(904\) 29.9732 4.36755i 0.996892 0.145262i
\(905\) −42.9186 74.3371i −1.42666 2.47105i
\(906\) 0 0
\(907\) 22.5605 39.0760i 0.749109 1.29750i −0.199141 0.979971i \(-0.563815\pi\)
0.948250 0.317525i \(-0.102852\pi\)
\(908\) 3.08485 + 31.8798i 0.102374 + 1.05797i
\(909\) 0 0
\(910\) −22.2721 9.12716i −0.738314 0.302562i
\(911\) 36.2714i 1.20173i −0.799352 0.600863i \(-0.794824\pi\)
0.799352 0.600863i \(-0.205176\pi\)
\(912\) 0 0
\(913\) −4.03926 2.33207i −0.133680 0.0771801i
\(914\) −32.2699 + 1.55766i −1.06739 + 0.0515228i
\(915\) 0 0
\(916\) 13.4636 29.5801i 0.444849 0.977352i
\(917\) 36.0258 3.12181i 1.18968 0.103091i
\(918\) 0 0
\(919\) −37.7905 + 21.8183i −1.24659 + 0.719721i −0.970428 0.241390i \(-0.922397\pi\)
−0.276164 + 0.961110i \(0.589063\pi\)
\(920\) −5.14483 2.04836i −0.169620 0.0675325i
\(921\) 0 0
\(922\) 10.2744 19.9605i 0.338369 0.657364i
\(923\) 5.38082i 0.177112i
\(924\) 0 0
\(925\) 111.230i 3.65721i
\(926\) −3.42090 1.76086i −0.112418 0.0578654i
\(927\) 0 0
\(928\) −13.6282 + 13.0770i −0.447367 + 0.429272i
\(929\) −10.2075 + 5.89332i −0.334898 + 0.193354i −0.658014 0.753006i \(-0.728603\pi\)
0.323115 + 0.946360i \(0.395270\pi\)
\(930\) 0 0
\(931\) 46.2809 + 16.9317i 1.51680 + 0.554913i
\(932\) 9.82724 21.5909i 0.321902 0.707233i
\(933\) 0 0
\(934\) −1.63548 33.8820i −0.0535144 1.10865i
\(935\) −14.4380 8.33578i −0.472173 0.272609i
\(936\) 0 0
\(937\) 35.0529i 1.14513i 0.819860 + 0.572565i \(0.194051\pi\)
−0.819860 + 0.572565i \(0.805949\pi\)
\(938\) 3.75431 + 27.7089i 0.122583 + 0.904726i
\(939\) 0 0
\(940\) −49.0501 + 4.74632i −1.59984 + 0.154808i
\(941\) 14.2985 24.7658i 0.466119 0.807342i −0.533132 0.846032i \(-0.678985\pi\)
0.999251 + 0.0386903i \(0.0123186\pi\)
\(942\) 0 0
\(943\) −1.24585 2.15788i −0.0405705 0.0702702i
\(944\) −18.3464 + 15.9787i −0.597124 + 0.520061i
\(945\) 0 0
\(946\) −4.48847 6.97449i −0.145933 0.226760i
\(947\) −25.7444 44.5906i −0.836580 1.44900i −0.892738 0.450577i \(-0.851218\pi\)
0.0561576 0.998422i \(-0.482115\pi\)
\(948\) 0 0
\(949\) −19.3828 11.1906i −0.629191 0.363264i
\(950\) −110.079 56.6617i −3.57144 1.83835i
\(951\) 0 0
\(952\) −11.9637 12.7209i −0.387747 0.412287i
\(953\) 11.8761 0.384706 0.192353 0.981326i \(-0.438388\pi\)
0.192353 + 0.981326i \(0.438388\pi\)
\(954\) 0 0
\(955\) −7.28724 4.20729i −0.235810 0.136145i
\(956\) 1.37797 0.983878i 0.0445668 0.0318209i
\(957\) 0 0
\(958\) 15.1155 + 23.4875i 0.488360 + 0.758848i
\(959\) −25.9989 + 18.1726i −0.839548 + 0.586823i
\(960\) 0 0
\(961\) 10.4992 + 18.1852i 0.338684 + 0.586618i
\(962\) −0.939624 19.4661i −0.0302947 0.627613i
\(963\) 0 0
\(964\) 0.169364 + 1.75026i 0.00545484 + 0.0563721i
\(965\) 14.9096 0.479956
\(966\) 0 0
\(967\) 59.2193i 1.90437i 0.305530 + 0.952183i \(0.401167\pi\)
−0.305530 + 0.952183i \(0.598833\pi\)
\(968\) 14.1483 + 17.9209i 0.454742 + 0.576000i
\(969\) 0 0
\(970\) 0.555752 + 11.5135i 0.0178441 + 0.369675i
\(971\) 4.53638 2.61908i 0.145579 0.0840503i −0.425441 0.904986i \(-0.639881\pi\)
0.571020 + 0.820936i \(0.306548\pi\)
\(972\) 0 0
\(973\) 7.44782 15.9375i 0.238766 0.510931i
\(974\) 44.1396 28.4062i 1.41432 0.910194i
\(975\) 0 0
\(976\) 35.7999 6.99384i 1.14593 0.223867i
\(977\) −26.6049 + 46.0810i −0.851165 + 1.47426i 0.0289924 + 0.999580i \(0.490770\pi\)
−0.880158 + 0.474682i \(0.842563\pi\)
\(978\) 0 0
\(979\) 3.63183i 0.116074i
\(980\) 56.3498 15.5554i 1.80003 0.496899i
\(981\) 0 0
\(982\) −13.3166 + 25.8707i −0.424949 + 0.825568i
\(983\) 13.9737 24.2032i 0.445693 0.771963i −0.552407 0.833574i \(-0.686291\pi\)
0.998100 + 0.0616113i \(0.0196239\pi\)
\(984\) 0 0
\(985\) −63.4241 + 36.6179i −2.02086 + 1.16674i
\(986\) −5.96307 9.26583i −0.189903 0.295084i
\(987\) 0 0
\(988\) −19.7434 8.98637i −0.628123 0.285894i
\(989\) 1.39188 0.803601i 0.0442592 0.0255530i
\(990\) 0 0
\(991\) 18.7980 + 10.8530i 0.597139 + 0.344758i 0.767915 0.640552i \(-0.221294\pi\)
−0.170776 + 0.985310i \(0.554628\pi\)
\(992\) 17.3722 4.27267i 0.551569 0.135657i
\(993\) 0 0
\(994\) −7.99448 10.3376i −0.253569 0.327890i
\(995\) 73.9349 2.34389
\(996\) 0 0
\(997\) −16.8274 + 29.1458i −0.532928 + 0.923058i 0.466333 + 0.884609i \(0.345575\pi\)
−0.999261 + 0.0384485i \(0.987758\pi\)
\(998\) 1.46223 0.0705815i 0.0462861 0.00223422i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bk.c.451.5 32
3.2 odd 2 168.2.t.a.115.12 yes 32
4.3 odd 2 2016.2.bs.c.1711.16 32
7.5 odd 6 inner 504.2.bk.c.19.16 32
8.3 odd 2 inner 504.2.bk.c.451.16 32
8.5 even 2 2016.2.bs.c.1711.1 32
12.11 even 2 672.2.bb.a.367.1 32
21.5 even 6 168.2.t.a.19.1 32
21.11 odd 6 1176.2.p.a.979.19 32
21.17 even 6 1176.2.p.a.979.20 32
24.5 odd 2 672.2.bb.a.367.8 32
24.11 even 2 168.2.t.a.115.1 yes 32
28.19 even 6 2016.2.bs.c.271.1 32
56.5 odd 6 2016.2.bs.c.271.16 32
56.19 even 6 inner 504.2.bk.c.19.5 32
84.11 even 6 4704.2.p.a.3919.24 32
84.47 odd 6 672.2.bb.a.271.8 32
84.59 odd 6 4704.2.p.a.3919.5 32
168.5 even 6 672.2.bb.a.271.1 32
168.11 even 6 1176.2.p.a.979.18 32
168.53 odd 6 4704.2.p.a.3919.6 32
168.59 odd 6 1176.2.p.a.979.17 32
168.101 even 6 4704.2.p.a.3919.23 32
168.131 odd 6 168.2.t.a.19.12 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.1 32 21.5 even 6
168.2.t.a.19.12 yes 32 168.131 odd 6
168.2.t.a.115.1 yes 32 24.11 even 2
168.2.t.a.115.12 yes 32 3.2 odd 2
504.2.bk.c.19.5 32 56.19 even 6 inner
504.2.bk.c.19.16 32 7.5 odd 6 inner
504.2.bk.c.451.5 32 1.1 even 1 trivial
504.2.bk.c.451.16 32 8.3 odd 2 inner
672.2.bb.a.271.1 32 168.5 even 6
672.2.bb.a.271.8 32 84.47 odd 6
672.2.bb.a.367.1 32 12.11 even 2
672.2.bb.a.367.8 32 24.5 odd 2
1176.2.p.a.979.17 32 168.59 odd 6
1176.2.p.a.979.18 32 168.11 even 6
1176.2.p.a.979.19 32 21.11 odd 6
1176.2.p.a.979.20 32 21.17 even 6
2016.2.bs.c.271.1 32 28.19 even 6
2016.2.bs.c.271.16 32 56.5 odd 6
2016.2.bs.c.1711.1 32 8.5 even 2
2016.2.bs.c.1711.16 32 4.3 odd 2
4704.2.p.a.3919.5 32 84.59 odd 6
4704.2.p.a.3919.6 32 168.53 odd 6
4704.2.p.a.3919.23 32 168.101 even 6
4704.2.p.a.3919.24 32 84.11 even 6