Properties

Label 504.2.bk.c.451.16
Level $504$
Weight $2$
Character 504.451
Analytic conductor $4.024$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(19,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.16
Character \(\chi\) \(=\) 504.451
Dual form 504.2.bk.c.19.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41257 + 0.0681843i) q^{2} +(1.99070 + 0.192630i) q^{4} +(-2.08776 - 3.61611i) q^{5} +(-2.39694 - 1.12013i) q^{7} +(2.79887 + 0.407838i) q^{8} +(-2.70255 - 5.25036i) q^{10} +(0.855485 - 1.48174i) q^{11} -1.54062 q^{13} +(-3.30947 - 1.74569i) q^{14} +(3.92579 + 0.766938i) q^{16} +(-2.02094 - 1.16679i) q^{17} +(6.09693 - 3.52006i) q^{19} +(-3.45954 - 7.60077i) q^{20} +(1.30946 - 2.03473i) q^{22} +(0.406066 - 0.234442i) q^{23} +(-6.21752 + 10.7691i) q^{25} +(-2.17624 - 0.105046i) q^{26} +(-4.55582 - 2.69156i) q^{28} +3.33885i q^{29} +(1.58126 - 2.73883i) q^{31} +(5.49315 + 1.35103i) q^{32} +(-2.77516 - 1.78596i) q^{34} +(0.953738 + 11.0062i) q^{35} +(7.74648 - 4.47243i) q^{37} +(8.85235 - 4.55662i) q^{38} +(-4.36859 - 10.9725i) q^{40} +5.31411i q^{41} -3.42772 q^{43} +(1.98844 - 2.78492i) q^{44} +(0.589581 - 0.303478i) q^{46} +(2.95047 + 5.11037i) q^{47} +(4.49063 + 5.36975i) q^{49} +(-9.51696 + 14.7881i) q^{50} +(-3.06692 - 0.296770i) q^{52} +(1.35437 + 0.781947i) q^{53} -7.14421 q^{55} +(-6.25189 - 4.11265i) q^{56} +(-0.227657 + 4.71636i) q^{58} +(5.26742 + 3.04114i) q^{59} +(4.55959 + 7.89744i) q^{61} +(2.42039 - 3.76097i) q^{62} +(7.66734 + 2.28297i) q^{64} +(3.21646 + 5.57107i) q^{65} +(3.73658 - 6.47195i) q^{67} +(-3.79832 - 2.71202i) q^{68} +(0.596773 + 15.6120i) q^{70} -3.49263i q^{71} +(-12.5811 - 7.26372i) q^{73} +(11.2474 - 5.78943i) q^{74} +(12.8152 - 5.83295i) q^{76} +(-3.71029 + 2.59340i) q^{77} +(-1.46108 + 0.843557i) q^{79} +(-5.42278 - 15.7973i) q^{80} +(-0.362339 + 7.50655i) q^{82} -2.72601i q^{83} +9.74391i q^{85} +(-4.84189 - 0.233717i) q^{86} +(2.99870 - 3.79831i) q^{88} +(-1.83829 + 1.06134i) q^{89} +(3.69278 + 1.72569i) q^{91} +(0.853516 - 0.388484i) q^{92} +(3.81930 + 7.41993i) q^{94} +(-25.4579 - 14.6981i) q^{95} -1.95202i q^{97} +(5.97720 + 7.89133i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 2 q^{4} - 16 q^{8} - 18 q^{10} - 8 q^{11} + 10 q^{14} + 6 q^{16} - 20 q^{22} - 16 q^{25} + 30 q^{26} - 14 q^{28} + 12 q^{32} + 24 q^{35} + 18 q^{38} - 30 q^{40} - 16 q^{43} - 24 q^{44}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41257 + 0.0681843i 0.998837 + 0.0482136i
\(3\) 0 0
\(4\) 1.99070 + 0.192630i 0.995351 + 0.0963150i
\(5\) −2.08776 3.61611i −0.933677 1.61718i −0.776977 0.629529i \(-0.783248\pi\)
−0.156700 0.987646i \(-0.550085\pi\)
\(6\) 0 0
\(7\) −2.39694 1.12013i −0.905958 0.423368i
\(8\) 2.79887 + 0.407838i 0.989550 + 0.144192i
\(9\) 0 0
\(10\) −2.70255 5.25036i −0.854621 1.66031i
\(11\) 0.855485 1.48174i 0.257939 0.446763i −0.707751 0.706462i \(-0.750290\pi\)
0.965690 + 0.259699i \(0.0836235\pi\)
\(12\) 0 0
\(13\) −1.54062 −0.427292 −0.213646 0.976911i \(-0.568534\pi\)
−0.213646 + 0.976911i \(0.568534\pi\)
\(14\) −3.30947 1.74569i −0.884492 0.466555i
\(15\) 0 0
\(16\) 3.92579 + 0.766938i 0.981447 + 0.191735i
\(17\) −2.02094 1.16679i −0.490149 0.282988i 0.234487 0.972119i \(-0.424659\pi\)
−0.724636 + 0.689132i \(0.757992\pi\)
\(18\) 0 0
\(19\) 6.09693 3.52006i 1.39873 0.807558i 0.404472 0.914551i \(-0.367455\pi\)
0.994260 + 0.106992i \(0.0341221\pi\)
\(20\) −3.45954 7.60077i −0.773578 1.69958i
\(21\) 0 0
\(22\) 1.30946 2.03473i 0.279179 0.433807i
\(23\) 0.406066 0.234442i 0.0846705 0.0488846i −0.457067 0.889432i \(-0.651100\pi\)
0.541737 + 0.840548i \(0.317767\pi\)
\(24\) 0 0
\(25\) −6.21752 + 10.7691i −1.24350 + 2.15381i
\(26\) −2.17624 0.105046i −0.426795 0.0206013i
\(27\) 0 0
\(28\) −4.55582 2.69156i −0.860969 0.508657i
\(29\) 3.33885i 0.620009i 0.950735 + 0.310005i \(0.100331\pi\)
−0.950735 + 0.310005i \(0.899669\pi\)
\(30\) 0 0
\(31\) 1.58126 2.73883i 0.284003 0.491908i −0.688364 0.725366i \(-0.741671\pi\)
0.972367 + 0.233458i \(0.0750040\pi\)
\(32\) 5.49315 + 1.35103i 0.971061 + 0.238831i
\(33\) 0 0
\(34\) −2.77516 1.78596i −0.475935 0.306290i
\(35\) 0.953738 + 11.0062i 0.161211 + 1.86038i
\(36\) 0 0
\(37\) 7.74648 4.47243i 1.27351 0.735263i 0.297865 0.954608i \(-0.403725\pi\)
0.975647 + 0.219345i \(0.0703920\pi\)
\(38\) 8.85235 4.55662i 1.43604 0.739181i
\(39\) 0 0
\(40\) −4.36859 10.9725i −0.690735 1.73490i
\(41\) 5.31411i 0.829925i 0.909838 + 0.414963i \(0.136205\pi\)
−0.909838 + 0.414963i \(0.863795\pi\)
\(42\) 0 0
\(43\) −3.42772 −0.522722 −0.261361 0.965241i \(-0.584171\pi\)
−0.261361 + 0.965241i \(0.584171\pi\)
\(44\) 1.98844 2.78492i 0.299769 0.419842i
\(45\) 0 0
\(46\) 0.589581 0.303478i 0.0869290 0.0447454i
\(47\) 2.95047 + 5.11037i 0.430371 + 0.745424i 0.996905 0.0786139i \(-0.0250494\pi\)
−0.566534 + 0.824038i \(0.691716\pi\)
\(48\) 0 0
\(49\) 4.49063 + 5.36975i 0.641519 + 0.767107i
\(50\) −9.51696 + 14.7881i −1.34590 + 2.09135i
\(51\) 0 0
\(52\) −3.06692 0.296770i −0.425305 0.0411546i
\(53\) 1.35437 + 0.781947i 0.186037 + 0.107409i 0.590126 0.807311i \(-0.299078\pi\)
−0.404089 + 0.914720i \(0.632411\pi\)
\(54\) 0 0
\(55\) −7.14421 −0.963325
\(56\) −6.25189 4.11265i −0.835444 0.549576i
\(57\) 0 0
\(58\) −0.227657 + 4.71636i −0.0298929 + 0.619288i
\(59\) 5.26742 + 3.04114i 0.685759 + 0.395923i 0.802021 0.597295i \(-0.203758\pi\)
−0.116262 + 0.993219i \(0.537091\pi\)
\(60\) 0 0
\(61\) 4.55959 + 7.89744i 0.583795 + 1.01116i 0.995024 + 0.0996311i \(0.0317663\pi\)
−0.411229 + 0.911532i \(0.634900\pi\)
\(62\) 2.42039 3.76097i 0.307390 0.477643i
\(63\) 0 0
\(64\) 7.66734 + 2.28297i 0.958417 + 0.285371i
\(65\) 3.21646 + 5.57107i 0.398952 + 0.691006i
\(66\) 0 0
\(67\) 3.73658 6.47195i 0.456496 0.790675i −0.542276 0.840200i \(-0.682437\pi\)
0.998773 + 0.0495251i \(0.0157708\pi\)
\(68\) −3.79832 2.71202i −0.460614 0.328881i
\(69\) 0 0
\(70\) 0.596773 + 15.6120i 0.0713281 + 1.86599i
\(71\) 3.49263i 0.414499i −0.978288 0.207249i \(-0.933549\pi\)
0.978288 0.207249i \(-0.0664512\pi\)
\(72\) 0 0
\(73\) −12.5811 7.26372i −1.47251 0.850154i −0.472988 0.881069i \(-0.656824\pi\)
−0.999522 + 0.0309152i \(0.990158\pi\)
\(74\) 11.2474 5.78943i 1.30748 0.673007i
\(75\) 0 0
\(76\) 12.8152 5.83295i 1.47001 0.669085i
\(77\) −3.71029 + 2.59340i −0.422826 + 0.295545i
\(78\) 0 0
\(79\) −1.46108 + 0.843557i −0.164385 + 0.0949075i −0.579935 0.814662i \(-0.696922\pi\)
0.415551 + 0.909570i \(0.363589\pi\)
\(80\) −5.42278 15.7973i −0.606286 1.76619i
\(81\) 0 0
\(82\) −0.362339 + 7.50655i −0.0400137 + 0.828960i
\(83\) 2.72601i 0.299219i −0.988745 0.149609i \(-0.952198\pi\)
0.988745 0.149609i \(-0.0478016\pi\)
\(84\) 0 0
\(85\) 9.74391i 1.05688i
\(86\) −4.84189 0.233717i −0.522114 0.0252023i
\(87\) 0 0
\(88\) 2.99870 3.79831i 0.319663 0.404901i
\(89\) −1.83829 + 1.06134i −0.194858 + 0.112501i −0.594255 0.804277i \(-0.702553\pi\)
0.399397 + 0.916778i \(0.369220\pi\)
\(90\) 0 0
\(91\) 3.69278 + 1.72569i 0.387108 + 0.180902i
\(92\) 0.853516 0.388484i 0.0889852 0.0405022i
\(93\) 0 0
\(94\) 3.81930 + 7.41993i 0.393931 + 0.765307i
\(95\) −25.4579 14.6981i −2.61193 1.50800i
\(96\) 0 0
\(97\) 1.95202i 0.198198i −0.995078 0.0990990i \(-0.968404\pi\)
0.995078 0.0990990i \(-0.0315960\pi\)
\(98\) 5.97720 + 7.89133i 0.603788 + 0.797145i
\(99\) 0 0
\(100\) −14.4517 + 20.2403i −1.44517 + 2.02403i
\(101\) −6.89045 + 11.9346i −0.685625 + 1.18754i 0.287615 + 0.957746i \(0.407138\pi\)
−0.973240 + 0.229792i \(0.926196\pi\)
\(102\) 0 0
\(103\) −3.84129 6.65331i −0.378494 0.655570i 0.612350 0.790587i \(-0.290224\pi\)
−0.990843 + 0.135017i \(0.956891\pi\)
\(104\) −4.31200 0.628324i −0.422826 0.0616123i
\(105\) 0 0
\(106\) 1.85983 + 1.19690i 0.180642 + 0.116253i
\(107\) −7.20414 12.4779i −0.696450 1.20629i −0.969689 0.244341i \(-0.921428\pi\)
0.273239 0.961946i \(-0.411905\pi\)
\(108\) 0 0
\(109\) −2.92380 1.68806i −0.280050 0.161687i 0.353396 0.935474i \(-0.385027\pi\)
−0.633446 + 0.773787i \(0.718360\pi\)
\(110\) −10.0917 0.487123i −0.962204 0.0464453i
\(111\) 0 0
\(112\) −8.55080 6.23568i −0.807975 0.589217i
\(113\) 10.7090 1.00742 0.503710 0.863873i \(-0.331968\pi\)
0.503710 + 0.863873i \(0.331968\pi\)
\(114\) 0 0
\(115\) −1.69554 0.978920i −0.158110 0.0912847i
\(116\) −0.643163 + 6.64666i −0.0597162 + 0.617127i
\(117\) 0 0
\(118\) 7.23323 + 4.65498i 0.665873 + 0.428526i
\(119\) 3.53711 + 5.06042i 0.324246 + 0.463888i
\(120\) 0 0
\(121\) 4.03629 + 6.99106i 0.366935 + 0.635551i
\(122\) 5.90225 + 11.4666i 0.534365 + 1.03813i
\(123\) 0 0
\(124\) 3.67540 5.14759i 0.330061 0.462267i
\(125\) 31.0452 2.77677
\(126\) 0 0
\(127\) 9.49738i 0.842757i 0.906885 + 0.421378i \(0.138454\pi\)
−0.906885 + 0.421378i \(0.861546\pi\)
\(128\) 10.6750 + 3.74764i 0.943544 + 0.331248i
\(129\) 0 0
\(130\) 4.16361 + 8.08883i 0.365173 + 0.709437i
\(131\) 11.8364 6.83375i 1.03415 0.597068i 0.115981 0.993251i \(-0.462999\pi\)
0.918171 + 0.396184i \(0.129666\pi\)
\(132\) 0 0
\(133\) −18.5569 + 1.60805i −1.60909 + 0.139435i
\(134\) 5.71947 8.88730i 0.494087 0.767746i
\(135\) 0 0
\(136\) −5.18048 4.08990i −0.444222 0.350706i
\(137\) −5.99460 + 10.3829i −0.512153 + 0.887075i 0.487748 + 0.872985i \(0.337819\pi\)
−0.999901 + 0.0140902i \(0.995515\pi\)
\(138\) 0 0
\(139\) 6.64909i 0.563968i −0.959419 0.281984i \(-0.909007\pi\)
0.959419 0.281984i \(-0.0909925\pi\)
\(140\) −0.221510 + 22.0937i −0.0187210 + 1.86726i
\(141\) 0 0
\(142\) 0.238143 4.93358i 0.0199845 0.414017i
\(143\) −1.31798 + 2.28281i −0.110215 + 0.190898i
\(144\) 0 0
\(145\) 12.0737 6.97073i 1.00266 0.578888i
\(146\) −17.2764 11.1183i −1.42981 0.920160i
\(147\) 0 0
\(148\) 16.2824 7.41107i 1.33841 0.609186i
\(149\) −7.03123 + 4.05948i −0.576021 + 0.332566i −0.759550 0.650448i \(-0.774581\pi\)
0.183530 + 0.983014i \(0.441248\pi\)
\(150\) 0 0
\(151\) −1.07044 0.618020i −0.0871113 0.0502937i 0.455812 0.890076i \(-0.349349\pi\)
−0.542923 + 0.839783i \(0.682682\pi\)
\(152\) 18.5001 7.36564i 1.50056 0.597432i
\(153\) 0 0
\(154\) −5.41786 + 3.41037i −0.436584 + 0.274815i
\(155\) −13.2052 −1.06067
\(156\) 0 0
\(157\) −4.80286 + 8.31880i −0.383310 + 0.663913i −0.991533 0.129854i \(-0.958549\pi\)
0.608223 + 0.793766i \(0.291883\pi\)
\(158\) −2.12140 + 1.09196i −0.168769 + 0.0868716i
\(159\) 0 0
\(160\) −6.58293 22.6845i −0.520426 1.79337i
\(161\) −1.23592 + 0.107099i −0.0974041 + 0.00844055i
\(162\) 0 0
\(163\) 9.70461 + 16.8089i 0.760123 + 1.31657i 0.942787 + 0.333397i \(0.108195\pi\)
−0.182663 + 0.983176i \(0.558472\pi\)
\(164\) −1.02366 + 10.5788i −0.0799343 + 0.826067i
\(165\) 0 0
\(166\) 0.185871 3.85068i 0.0144264 0.298871i
\(167\) 17.7482 1.37340 0.686699 0.726942i \(-0.259059\pi\)
0.686699 + 0.726942i \(0.259059\pi\)
\(168\) 0 0
\(169\) −10.6265 −0.817422
\(170\) −0.664382 + 13.7639i −0.0509558 + 1.05565i
\(171\) 0 0
\(172\) −6.82356 0.660281i −0.520292 0.0503460i
\(173\) −3.57075 6.18472i −0.271479 0.470216i 0.697762 0.716330i \(-0.254179\pi\)
−0.969241 + 0.246114i \(0.920846\pi\)
\(174\) 0 0
\(175\) 26.9657 18.8484i 2.03842 1.42480i
\(176\) 4.49486 5.16091i 0.338813 0.389018i
\(177\) 0 0
\(178\) −2.66907 + 1.37387i −0.200055 + 0.102976i
\(179\) 11.9581 20.7121i 0.893791 1.54809i 0.0584980 0.998288i \(-0.481369\pi\)
0.835293 0.549805i \(-0.185298\pi\)
\(180\) 0 0
\(181\) 20.5572 1.52800 0.764002 0.645214i \(-0.223232\pi\)
0.764002 + 0.645214i \(0.223232\pi\)
\(182\) 5.09864 + 2.68945i 0.377936 + 0.199355i
\(183\) 0 0
\(184\) 1.23214 0.490564i 0.0908345 0.0361648i
\(185\) −32.3456 18.6748i −2.37810 1.37300i
\(186\) 0 0
\(187\) −3.45776 + 1.99634i −0.252857 + 0.145987i
\(188\) 4.88910 + 10.7416i 0.356575 + 0.783410i
\(189\) 0 0
\(190\) −34.9589 22.4979i −2.53618 1.63217i
\(191\) 1.74523 1.00761i 0.126280 0.0729079i −0.435529 0.900175i \(-0.643439\pi\)
0.561809 + 0.827267i \(0.310105\pi\)
\(192\) 0 0
\(193\) 1.78535 3.09232i 0.128512 0.222590i −0.794588 0.607149i \(-0.792313\pi\)
0.923100 + 0.384559i \(0.125646\pi\)
\(194\) 0.133097 2.75737i 0.00955584 0.197967i
\(195\) 0 0
\(196\) 7.90514 + 11.5546i 0.564653 + 0.825329i
\(197\) 17.5393i 1.24962i −0.780775 0.624812i \(-0.785176\pi\)
0.780775 0.624812i \(-0.214824\pi\)
\(198\) 0 0
\(199\) −8.85336 + 15.3345i −0.627598 + 1.08703i 0.360434 + 0.932785i \(0.382629\pi\)
−0.988032 + 0.154247i \(0.950705\pi\)
\(200\) −21.7941 + 27.6054i −1.54107 + 1.95200i
\(201\) 0 0
\(202\) −10.5470 + 16.3886i −0.742083 + 1.15310i
\(203\) 3.73994 8.00302i 0.262492 0.561702i
\(204\) 0 0
\(205\) 19.2164 11.0946i 1.34213 0.774882i
\(206\) −4.97244 9.66017i −0.346446 0.673056i
\(207\) 0 0
\(208\) −6.04816 1.18156i −0.419364 0.0819266i
\(209\) 12.0455i 0.833201i
\(210\) 0 0
\(211\) −4.23050 −0.291240 −0.145620 0.989341i \(-0.546518\pi\)
−0.145620 + 0.989341i \(0.546518\pi\)
\(212\) 2.54552 + 1.81752i 0.174827 + 0.124827i
\(213\) 0 0
\(214\) −9.32554 18.1171i −0.637481 1.23846i
\(215\) 7.15626 + 12.3950i 0.488053 + 0.845333i
\(216\) 0 0
\(217\) −6.85803 + 4.79359i −0.465553 + 0.325410i
\(218\) −4.01498 2.58386i −0.271928 0.175001i
\(219\) 0 0
\(220\) −14.2220 1.37619i −0.958846 0.0927827i
\(221\) 3.11350 + 1.79758i 0.209437 + 0.120918i
\(222\) 0 0
\(223\) −1.43532 −0.0961162 −0.0480581 0.998845i \(-0.515303\pi\)
−0.0480581 + 0.998845i \(0.515303\pi\)
\(224\) −11.6534 9.39136i −0.778627 0.627487i
\(225\) 0 0
\(226\) 15.1272 + 0.730187i 1.00625 + 0.0485713i
\(227\) −13.8688 8.00718i −0.920508 0.531455i −0.0367106 0.999326i \(-0.511688\pi\)
−0.883797 + 0.467871i \(0.845021\pi\)
\(228\) 0 0
\(229\) −8.12499 14.0729i −0.536914 0.929963i −0.999068 0.0431631i \(-0.986256\pi\)
0.462154 0.886800i \(-0.347077\pi\)
\(230\) −2.32832 1.49840i −0.153525 0.0988016i
\(231\) 0 0
\(232\) −1.36171 + 9.34501i −0.0894006 + 0.613530i
\(233\) 5.93054 + 10.2720i 0.388522 + 0.672941i 0.992251 0.124249i \(-0.0396522\pi\)
−0.603729 + 0.797190i \(0.706319\pi\)
\(234\) 0 0
\(235\) 12.3198 21.3385i 0.803654 1.39197i
\(236\) 9.90004 + 7.06867i 0.644438 + 0.460131i
\(237\) 0 0
\(238\) 4.65137 + 7.38937i 0.301504 + 0.478982i
\(239\) 0.846585i 0.0547610i −0.999625 0.0273805i \(-0.991283\pi\)
0.999625 0.0273805i \(-0.00871657\pi\)
\(240\) 0 0
\(241\) −0.761425 0.439609i −0.0490477 0.0283177i 0.475276 0.879837i \(-0.342348\pi\)
−0.524323 + 0.851519i \(0.675682\pi\)
\(242\) 5.22486 + 10.1506i 0.335867 + 0.652503i
\(243\) 0 0
\(244\) 7.55549 + 16.5998i 0.483691 + 1.06269i
\(245\) 10.0422 27.4494i 0.641575 1.75368i
\(246\) 0 0
\(247\) −9.39307 + 5.42309i −0.597667 + 0.345063i
\(248\) 5.54275 7.02072i 0.351965 0.445816i
\(249\) 0 0
\(250\) 43.8535 + 2.11680i 2.77354 + 0.133878i
\(251\) 18.1441i 1.14524i 0.819820 + 0.572622i \(0.194074\pi\)
−0.819820 + 0.572622i \(0.805926\pi\)
\(252\) 0 0
\(253\) 0.802247i 0.0504368i
\(254\) −0.647573 + 13.4157i −0.0406323 + 0.841776i
\(255\) 0 0
\(256\) 14.8236 + 6.02167i 0.926476 + 0.376354i
\(257\) −15.8902 + 9.17421i −0.991203 + 0.572271i −0.905634 0.424061i \(-0.860604\pi\)
−0.0855695 + 0.996332i \(0.527271\pi\)
\(258\) 0 0
\(259\) −23.5775 + 2.04311i −1.46504 + 0.126953i
\(260\) 5.32985 + 11.7099i 0.330543 + 0.726218i
\(261\) 0 0
\(262\) 17.1857 8.84609i 1.06174 0.546513i
\(263\) 3.02044 + 1.74385i 0.186248 + 0.107531i 0.590225 0.807239i \(-0.299039\pi\)
−0.403977 + 0.914769i \(0.632372\pi\)
\(264\) 0 0
\(265\) 6.53008i 0.401140i
\(266\) −26.3225 + 1.00619i −1.61394 + 0.0616933i
\(267\) 0 0
\(268\) 8.68512 12.1640i 0.530528 0.743032i
\(269\) −7.35605 + 12.7410i −0.448506 + 0.776835i −0.998289 0.0584722i \(-0.981377\pi\)
0.549783 + 0.835308i \(0.314710\pi\)
\(270\) 0 0
\(271\) 9.95139 + 17.2363i 0.604504 + 1.04703i 0.992130 + 0.125215i \(0.0399619\pi\)
−0.387626 + 0.921817i \(0.626705\pi\)
\(272\) −7.03891 6.13049i −0.426797 0.371716i
\(273\) 0 0
\(274\) −9.17573 + 14.2579i −0.554326 + 0.861350i
\(275\) 10.6380 + 18.4255i 0.641495 + 1.11110i
\(276\) 0 0
\(277\) −22.9034 13.2233i −1.37613 0.794510i −0.384440 0.923150i \(-0.625605\pi\)
−0.991691 + 0.128640i \(0.958939\pi\)
\(278\) 0.453363 9.39229i 0.0271909 0.563312i
\(279\) 0 0
\(280\) −1.81934 + 31.1938i −0.108726 + 1.86419i
\(281\) 20.2837 1.21003 0.605013 0.796216i \(-0.293168\pi\)
0.605013 + 0.796216i \(0.293168\pi\)
\(282\) 0 0
\(283\) 5.70426 + 3.29336i 0.339083 + 0.195770i 0.659866 0.751383i \(-0.270613\pi\)
−0.320783 + 0.947153i \(0.603946\pi\)
\(284\) 0.672785 6.95278i 0.0399225 0.412572i
\(285\) 0 0
\(286\) −2.01739 + 3.13476i −0.119291 + 0.185362i
\(287\) 5.95248 12.7376i 0.351364 0.751877i
\(288\) 0 0
\(289\) −5.77721 10.0064i −0.339836 0.588613i
\(290\) 17.5302 9.02341i 1.02941 0.529873i
\(291\) 0 0
\(292\) −23.6461 16.8834i −1.38378 0.988026i
\(293\) −12.9438 −0.756187 −0.378094 0.925767i \(-0.623420\pi\)
−0.378094 + 0.925767i \(0.623420\pi\)
\(294\) 0 0
\(295\) 25.3968i 1.47866i
\(296\) 23.5054 9.35844i 1.36622 0.543948i
\(297\) 0 0
\(298\) −10.2089 + 5.25488i −0.591385 + 0.304407i
\(299\) −0.625594 + 0.361187i −0.0361790 + 0.0208880i
\(300\) 0 0
\(301\) 8.21603 + 3.83948i 0.473564 + 0.221304i
\(302\) −1.46993 0.945983i −0.0845851 0.0544352i
\(303\) 0 0
\(304\) 26.6349 9.14305i 1.52762 0.524390i
\(305\) 19.0387 32.9760i 1.09015 1.88820i
\(306\) 0 0
\(307\) 11.8773i 0.677871i −0.940810 0.338936i \(-0.889933\pi\)
0.940810 0.338936i \(-0.110067\pi\)
\(308\) −7.88564 + 4.44797i −0.449326 + 0.253447i
\(309\) 0 0
\(310\) −18.6533 0.900389i −1.05944 0.0511386i
\(311\) −5.91849 + 10.2511i −0.335607 + 0.581288i −0.983601 0.180357i \(-0.942275\pi\)
0.647994 + 0.761645i \(0.275608\pi\)
\(312\) 0 0
\(313\) −12.8383 + 7.41217i −0.725661 + 0.418961i −0.816833 0.576875i \(-0.804272\pi\)
0.0911716 + 0.995835i \(0.470939\pi\)
\(314\) −7.35159 + 11.4234i −0.414874 + 0.644660i
\(315\) 0 0
\(316\) −3.07107 + 1.39782i −0.172761 + 0.0786336i
\(317\) 5.87478 3.39181i 0.329961 0.190503i −0.325863 0.945417i \(-0.605655\pi\)
0.655824 + 0.754914i \(0.272322\pi\)
\(318\) 0 0
\(319\) 4.94732 + 2.85634i 0.276997 + 0.159924i
\(320\) −7.75211 32.4923i −0.433356 1.81637i
\(321\) 0 0
\(322\) −1.75312 + 0.0670137i −0.0976978 + 0.00373453i
\(323\) −16.4287 −0.914116
\(324\) 0 0
\(325\) 9.57885 16.5911i 0.531339 0.920306i
\(326\) 12.5623 + 24.4054i 0.695763 + 1.35169i
\(327\) 0 0
\(328\) −2.16730 + 14.8735i −0.119669 + 0.821252i
\(329\) −1.34784 15.5542i −0.0743090 0.857528i
\(330\) 0 0
\(331\) 2.37285 + 4.10989i 0.130424 + 0.225900i 0.923840 0.382779i \(-0.125033\pi\)
−0.793416 + 0.608679i \(0.791700\pi\)
\(332\) 0.525112 5.42668i 0.0288193 0.297828i
\(333\) 0 0
\(334\) 25.0706 + 1.21015i 1.37180 + 0.0662164i
\(335\) −31.2044 −1.70488
\(336\) 0 0
\(337\) 16.5173 0.899754 0.449877 0.893090i \(-0.351468\pi\)
0.449877 + 0.893090i \(0.351468\pi\)
\(338\) −15.0106 0.724559i −0.816471 0.0394108i
\(339\) 0 0
\(340\) −1.87697 + 19.3972i −0.101793 + 1.05196i
\(341\) −2.70549 4.68605i −0.146511 0.253764i
\(342\) 0 0
\(343\) −4.74897 17.9010i −0.256420 0.966565i
\(344\) −9.59373 1.39795i −0.517259 0.0753726i
\(345\) 0 0
\(346\) −4.62223 8.97981i −0.248493 0.482758i
\(347\) −9.54986 + 16.5408i −0.512663 + 0.887959i 0.487229 + 0.873274i \(0.338008\pi\)
−0.999892 + 0.0146846i \(0.995326\pi\)
\(348\) 0 0
\(349\) −2.49767 −0.133697 −0.0668485 0.997763i \(-0.521294\pi\)
−0.0668485 + 0.997763i \(0.521294\pi\)
\(350\) 39.3761 24.7860i 2.10474 1.32487i
\(351\) 0 0
\(352\) 6.70119 6.98366i 0.357175 0.372230i
\(353\) 22.3071 + 12.8790i 1.18729 + 0.685481i 0.957689 0.287805i \(-0.0929254\pi\)
0.229599 + 0.973285i \(0.426259\pi\)
\(354\) 0 0
\(355\) −12.6297 + 7.29179i −0.670317 + 0.387008i
\(356\) −3.86393 + 1.75869i −0.204788 + 0.0932105i
\(357\) 0 0
\(358\) 18.3039 28.4419i 0.967391 1.50320i
\(359\) 28.7697 16.6102i 1.51840 0.876651i 0.518639 0.854993i \(-0.326439\pi\)
0.999765 0.0216582i \(-0.00689457\pi\)
\(360\) 0 0
\(361\) 15.2817 26.4687i 0.804300 1.39309i
\(362\) 29.0384 + 1.40168i 1.52623 + 0.0736705i
\(363\) 0 0
\(364\) 7.01880 + 4.14668i 0.367885 + 0.217345i
\(365\) 60.6597i 3.17507i
\(366\) 0 0
\(367\) −2.17584 + 3.76866i −0.113578 + 0.196722i −0.917210 0.398403i \(-0.869564\pi\)
0.803633 + 0.595126i \(0.202898\pi\)
\(368\) 1.77393 0.608943i 0.0924725 0.0317433i
\(369\) 0 0
\(370\) −44.4171 28.5849i −2.30914 1.48606i
\(371\) −2.37047 3.39135i −0.123068 0.176070i
\(372\) 0 0
\(373\) −11.0943 + 6.40533i −0.574444 + 0.331655i −0.758922 0.651181i \(-0.774274\pi\)
0.184479 + 0.982837i \(0.440940\pi\)
\(374\) −5.02045 + 2.58420i −0.259601 + 0.133626i
\(375\) 0 0
\(376\) 6.17379 + 15.5066i 0.318389 + 0.799691i
\(377\) 5.14391i 0.264925i
\(378\) 0 0
\(379\) −24.0807 −1.23694 −0.618472 0.785807i \(-0.712248\pi\)
−0.618472 + 0.785807i \(0.712248\pi\)
\(380\) −47.8478 34.1635i −2.45454 1.75255i
\(381\) 0 0
\(382\) 2.53396 1.30432i 0.129648 0.0667347i
\(383\) 8.78233 + 15.2114i 0.448756 + 0.777268i 0.998305 0.0581930i \(-0.0185339\pi\)
−0.549549 + 0.835461i \(0.685201\pi\)
\(384\) 0 0
\(385\) 17.1242 + 8.00242i 0.872731 + 0.407841i
\(386\) 2.73278 4.24638i 0.139095 0.216135i
\(387\) 0 0
\(388\) 0.376018 3.88590i 0.0190894 0.197277i
\(389\) −23.9022 13.7999i −1.21189 0.699685i −0.248719 0.968576i \(-0.580010\pi\)
−0.963171 + 0.268890i \(0.913343\pi\)
\(390\) 0 0
\(391\) −1.09418 −0.0553349
\(392\) 10.3787 + 16.8607i 0.524204 + 0.851593i
\(393\) 0 0
\(394\) 1.19591 24.7755i 0.0602488 1.24817i
\(395\) 6.10079 + 3.52229i 0.306964 + 0.177226i
\(396\) 0 0
\(397\) 8.65850 + 14.9970i 0.434558 + 0.752676i 0.997259 0.0739841i \(-0.0235714\pi\)
−0.562702 + 0.826660i \(0.690238\pi\)
\(398\) −13.5516 + 21.0573i −0.679278 + 1.05551i
\(399\) 0 0
\(400\) −32.6679 + 37.5086i −1.63339 + 1.87543i
\(401\) 3.87616 + 6.71371i 0.193566 + 0.335266i 0.946430 0.322910i \(-0.104661\pi\)
−0.752863 + 0.658177i \(0.771328\pi\)
\(402\) 0 0
\(403\) −2.43613 + 4.21950i −0.121352 + 0.210188i
\(404\) −16.0158 + 22.4309i −0.796815 + 1.11598i
\(405\) 0 0
\(406\) 5.82860 11.0498i 0.289268 0.548393i
\(407\) 15.3044i 0.758611i
\(408\) 0 0
\(409\) −4.01694 2.31918i −0.198625 0.114676i 0.397389 0.917650i \(-0.369916\pi\)
−0.596014 + 0.802974i \(0.703250\pi\)
\(410\) 27.9010 14.3617i 1.37793 0.709271i
\(411\) 0 0
\(412\) −6.36524 13.9847i −0.313593 0.688977i
\(413\) −9.21921 13.1896i −0.453648 0.649018i
\(414\) 0 0
\(415\) −9.85758 + 5.69128i −0.483889 + 0.279374i
\(416\) −8.46287 2.08143i −0.414927 0.102050i
\(417\) 0 0
\(418\) 0.821311 17.0150i 0.0401716 0.832232i
\(419\) 14.2419i 0.695760i 0.937539 + 0.347880i \(0.113098\pi\)
−0.937539 + 0.347880i \(0.886902\pi\)
\(420\) 0 0
\(421\) 20.0126i 0.975356i 0.873024 + 0.487678i \(0.162156\pi\)
−0.873024 + 0.487678i \(0.837844\pi\)
\(422\) −5.97587 0.288454i −0.290901 0.0140417i
\(423\) 0 0
\(424\) 3.47180 + 2.74093i 0.168606 + 0.133111i
\(425\) 25.1304 14.5091i 1.21900 0.703793i
\(426\) 0 0
\(427\) −2.08292 24.0370i −0.100800 1.16323i
\(428\) −11.9377 26.2276i −0.577029 1.26776i
\(429\) 0 0
\(430\) 9.26357 + 17.9968i 0.446729 + 0.867881i
\(431\) 12.1099 + 6.99165i 0.583313 + 0.336776i 0.762449 0.647049i \(-0.223997\pi\)
−0.179136 + 0.983824i \(0.557330\pi\)
\(432\) 0 0
\(433\) 0.984888i 0.0473307i −0.999720 0.0236653i \(-0.992466\pi\)
0.999720 0.0236653i \(-0.00753362\pi\)
\(434\) −10.0143 + 6.30367i −0.480701 + 0.302586i
\(435\) 0 0
\(436\) −5.49525 3.92363i −0.263175 0.187908i
\(437\) 1.65050 2.85875i 0.0789542 0.136753i
\(438\) 0 0
\(439\) −3.43693 5.95294i −0.164036 0.284118i 0.772277 0.635286i \(-0.219118\pi\)
−0.936312 + 0.351168i \(0.885785\pi\)
\(440\) −19.9957 2.91368i −0.953258 0.138904i
\(441\) 0 0
\(442\) 4.27547 + 2.75150i 0.203363 + 0.130875i
\(443\) 1.70483 + 2.95285i 0.0809989 + 0.140294i 0.903679 0.428210i \(-0.140856\pi\)
−0.822680 + 0.568504i \(0.807522\pi\)
\(444\) 0 0
\(445\) 7.67582 + 4.43164i 0.363869 + 0.210080i
\(446\) −2.02749 0.0978664i −0.0960044 0.00463411i
\(447\) 0 0
\(448\) −15.8209 14.0605i −0.747468 0.664297i
\(449\) −32.9924 −1.55701 −0.778503 0.627641i \(-0.784021\pi\)
−0.778503 + 0.627641i \(0.784021\pi\)
\(450\) 0 0
\(451\) 7.87416 + 4.54615i 0.370780 + 0.214070i
\(452\) 21.3185 + 2.06288i 1.00274 + 0.0970297i
\(453\) 0 0
\(454\) −19.0447 12.2563i −0.893814 0.575218i
\(455\) −1.46935 16.9563i −0.0688842 0.794926i
\(456\) 0 0
\(457\) 11.4224 + 19.7842i 0.534319 + 0.925467i 0.999196 + 0.0400919i \(0.0127651\pi\)
−0.464877 + 0.885375i \(0.653902\pi\)
\(458\) −10.5176 20.4329i −0.491453 0.954768i
\(459\) 0 0
\(460\) −3.18674 2.27535i −0.148583 0.106089i
\(461\) 15.8743 0.739338 0.369669 0.929164i \(-0.379471\pi\)
0.369669 + 0.929164i \(0.379471\pi\)
\(462\) 0 0
\(463\) 2.72059i 0.126436i −0.998000 0.0632182i \(-0.979864\pi\)
0.998000 0.0632182i \(-0.0201364\pi\)
\(464\) −2.56069 + 13.1076i −0.118877 + 0.608506i
\(465\) 0 0
\(466\) 7.67691 + 14.9143i 0.355626 + 0.690890i
\(467\) −20.7726 + 11.9931i −0.961240 + 0.554972i −0.896555 0.442933i \(-0.853938\pi\)
−0.0646858 + 0.997906i \(0.520605\pi\)
\(468\) 0 0
\(469\) −16.2058 + 11.3274i −0.748313 + 0.523052i
\(470\) 18.8575 29.3021i 0.869832 1.35160i
\(471\) 0 0
\(472\) 13.5025 + 10.6600i 0.621504 + 0.490667i
\(473\) −2.93236 + 5.07900i −0.134830 + 0.233533i
\(474\) 0 0
\(475\) 87.5443i 4.01681i
\(476\) 6.06654 + 10.7551i 0.278060 + 0.492961i
\(477\) 0 0
\(478\) 0.0577238 1.19586i 0.00264022 0.0546973i
\(479\) −9.87511 + 17.1042i −0.451205 + 0.781511i −0.998461 0.0554547i \(-0.982339\pi\)
0.547256 + 0.836965i \(0.315672\pi\)
\(480\) 0 0
\(481\) −11.9344 + 6.89033i −0.544162 + 0.314172i
\(482\) −1.04559 0.672895i −0.0476253 0.0306495i
\(483\) 0 0
\(484\) 6.68836 + 14.6946i 0.304016 + 0.667937i
\(485\) −7.05874 + 4.07536i −0.320521 + 0.185053i
\(486\) 0 0
\(487\) 32.1435 + 18.5581i 1.45656 + 0.840946i 0.998840 0.0481495i \(-0.0153324\pi\)
0.457721 + 0.889096i \(0.348666\pi\)
\(488\) 9.54081 + 23.9635i 0.431892 + 1.08478i
\(489\) 0 0
\(490\) 16.0570 38.0895i 0.725381 1.72071i
\(491\) 20.5746 0.928517 0.464259 0.885700i \(-0.346321\pi\)
0.464259 + 0.885700i \(0.346321\pi\)
\(492\) 0 0
\(493\) 3.89573 6.74761i 0.175455 0.303897i
\(494\) −13.6381 + 7.02003i −0.613608 + 0.315846i
\(495\) 0 0
\(496\) 8.30821 9.53933i 0.373050 0.428328i
\(497\) −3.91219 + 8.37162i −0.175486 + 0.375518i
\(498\) 0 0
\(499\) −0.517579 0.896473i −0.0231700 0.0401316i 0.854208 0.519932i \(-0.174043\pi\)
−0.877378 + 0.479800i \(0.840709\pi\)
\(500\) 61.8018 + 5.98024i 2.76386 + 0.267445i
\(501\) 0 0
\(502\) −1.23714 + 25.6297i −0.0552163 + 1.14391i
\(503\) −19.7898 −0.882382 −0.441191 0.897413i \(-0.645444\pi\)
−0.441191 + 0.897413i \(0.645444\pi\)
\(504\) 0 0
\(505\) 57.5425 2.56061
\(506\) 0.0547007 1.13323i 0.00243174 0.0503782i
\(507\) 0 0
\(508\) −1.82948 + 18.9065i −0.0811701 + 0.838838i
\(509\) 2.11849 + 3.66933i 0.0939004 + 0.162640i 0.909149 0.416471i \(-0.136733\pi\)
−0.815249 + 0.579111i \(0.803400\pi\)
\(510\) 0 0
\(511\) 22.0199 + 31.5031i 0.974104 + 1.39362i
\(512\) 20.5288 + 9.51676i 0.907253 + 0.420586i
\(513\) 0 0
\(514\) −23.0715 + 11.8757i −1.01764 + 0.523816i
\(515\) −16.0394 + 27.7811i −0.706781 + 1.22418i
\(516\) 0 0
\(517\) 10.0963 0.444037
\(518\) −33.4442 + 1.27841i −1.46945 + 0.0561703i
\(519\) 0 0
\(520\) 6.73035 + 16.9045i 0.295145 + 0.741310i
\(521\) 33.6570 + 19.4319i 1.47454 + 0.851326i 0.999588 0.0286855i \(-0.00913212\pi\)
0.474952 + 0.880012i \(0.342465\pi\)
\(522\) 0 0
\(523\) 14.8181 8.55526i 0.647952 0.374095i −0.139719 0.990191i \(-0.544620\pi\)
0.787671 + 0.616096i \(0.211287\pi\)
\(524\) 24.8791 11.3239i 1.08685 0.494688i
\(525\) 0 0
\(526\) 4.14768 + 2.66926i 0.180847 + 0.116385i
\(527\) −6.39126 + 3.69000i −0.278408 + 0.160739i
\(528\) 0 0
\(529\) −11.3901 + 19.7282i −0.495221 + 0.857747i
\(530\) 0.445249 9.22419i 0.0193404 0.400673i
\(531\) 0 0
\(532\) −37.2510 0.373475i −1.61503 0.0161922i
\(533\) 8.18704i 0.354620i
\(534\) 0 0
\(535\) −30.0811 + 52.1019i −1.30052 + 2.25256i
\(536\) 13.0977 16.5902i 0.565735 0.716589i
\(537\) 0 0
\(538\) −11.2597 + 17.4960i −0.485439 + 0.754308i
\(539\) 11.7983 2.06023i 0.508187 0.0887402i
\(540\) 0 0
\(541\) −37.6652 + 21.7460i −1.61935 + 0.934935i −0.632268 + 0.774750i \(0.717876\pi\)
−0.987087 + 0.160185i \(0.948791\pi\)
\(542\) 12.8818 + 25.0260i 0.553320 + 1.07496i
\(543\) 0 0
\(544\) −9.52494 9.13969i −0.408379 0.391861i
\(545\) 14.0971i 0.603852i
\(546\) 0 0
\(547\) 10.8290 0.463016 0.231508 0.972833i \(-0.425634\pi\)
0.231508 + 0.972833i \(0.425634\pi\)
\(548\) −13.9335 + 19.5146i −0.595210 + 0.833623i
\(549\) 0 0
\(550\) 13.7706 + 26.7527i 0.587179 + 1.14074i
\(551\) 11.7530 + 20.3567i 0.500693 + 0.867226i
\(552\) 0 0
\(553\) 4.44702 0.385356i 0.189106 0.0163870i
\(554\) −31.4510 20.2404i −1.33622 0.859934i
\(555\) 0 0
\(556\) 1.28081 13.2363i 0.0543186 0.561346i
\(557\) −7.04197 4.06568i −0.298378 0.172269i 0.343336 0.939213i \(-0.388443\pi\)
−0.641714 + 0.766944i \(0.721776\pi\)
\(558\) 0 0
\(559\) 5.28082 0.223355
\(560\) −4.69687 + 43.9393i −0.198479 + 1.85678i
\(561\) 0 0
\(562\) 28.6522 + 1.38303i 1.20862 + 0.0583397i
\(563\) −19.6081 11.3207i −0.826381 0.477111i 0.0262311 0.999656i \(-0.491649\pi\)
−0.852612 + 0.522545i \(0.824983\pi\)
\(564\) 0 0
\(565\) −22.3579 38.7251i −0.940605 1.62918i
\(566\) 7.83310 + 5.04103i 0.329250 + 0.211890i
\(567\) 0 0
\(568\) 1.42443 9.77541i 0.0597676 0.410167i
\(569\) −10.1485 17.5778i −0.425449 0.736900i 0.571013 0.820941i \(-0.306551\pi\)
−0.996462 + 0.0840413i \(0.973217\pi\)
\(570\) 0 0
\(571\) −18.3819 + 31.8383i −0.769257 + 1.33239i 0.168710 + 0.985666i \(0.446040\pi\)
−0.937967 + 0.346726i \(0.887293\pi\)
\(572\) −3.06344 + 4.29051i −0.128089 + 0.179395i
\(573\) 0 0
\(574\) 9.27679 17.5869i 0.387206 0.734062i
\(575\) 5.83059i 0.243153i
\(576\) 0 0
\(577\) 1.39915 + 0.807801i 0.0582475 + 0.0336292i 0.528841 0.848721i \(-0.322627\pi\)
−0.470593 + 0.882350i \(0.655960\pi\)
\(578\) −7.47843 14.5287i −0.311062 0.604313i
\(579\) 0 0
\(580\) 25.3778 11.5509i 1.05376 0.479625i
\(581\) −3.05348 + 6.53409i −0.126680 + 0.271080i
\(582\) 0 0
\(583\) 2.31729 1.33789i 0.0959723 0.0554097i
\(584\) −32.2505 25.4613i −1.33454 1.05359i
\(585\) 0 0
\(586\) −18.2841 0.882567i −0.755308 0.0364585i
\(587\) 3.68747i 0.152198i −0.997100 0.0760991i \(-0.975753\pi\)
0.997100 0.0760991i \(-0.0242465\pi\)
\(588\) 0 0
\(589\) 22.2646i 0.917396i
\(590\) 1.73166 35.8747i 0.0712914 1.47694i
\(591\) 0 0
\(592\) 33.8411 11.6167i 1.39086 0.477445i
\(593\) −32.3781 + 18.6935i −1.32961 + 0.767650i −0.985239 0.171184i \(-0.945241\pi\)
−0.344370 + 0.938834i \(0.611908\pi\)
\(594\) 0 0
\(595\) 10.9144 23.3556i 0.447447 0.957485i
\(596\) −14.7791 + 6.72679i −0.605374 + 0.275540i
\(597\) 0 0
\(598\) −0.908322 + 0.467546i −0.0371440 + 0.0191194i
\(599\) 8.61435 + 4.97350i 0.351973 + 0.203212i 0.665554 0.746350i \(-0.268195\pi\)
−0.313581 + 0.949561i \(0.601529\pi\)
\(600\) 0 0
\(601\) 35.9296i 1.46560i −0.680445 0.732799i \(-0.738214\pi\)
0.680445 0.732799i \(-0.261786\pi\)
\(602\) 11.3439 + 5.98373i 0.462343 + 0.243879i
\(603\) 0 0
\(604\) −2.01188 1.43649i −0.0818622 0.0584500i
\(605\) 16.8536 29.1914i 0.685198 1.18680i
\(606\) 0 0
\(607\) 14.9355 + 25.8690i 0.606212 + 1.04999i 0.991859 + 0.127344i \(0.0406451\pi\)
−0.385646 + 0.922647i \(0.626022\pi\)
\(608\) 38.2471 11.0991i 1.55112 0.450128i
\(609\) 0 0
\(610\) 29.1419 45.2827i 1.17992 1.83344i
\(611\) −4.54557 7.87315i −0.183894 0.318514i
\(612\) 0 0
\(613\) −32.8160 18.9463i −1.32542 0.765234i −0.340836 0.940123i \(-0.610710\pi\)
−0.984588 + 0.174889i \(0.944043\pi\)
\(614\) 0.809843 16.7775i 0.0326826 0.677083i
\(615\) 0 0
\(616\) −11.4423 + 5.74539i −0.461023 + 0.231488i
\(617\) −39.0332 −1.57142 −0.785709 0.618597i \(-0.787702\pi\)
−0.785709 + 0.618597i \(0.787702\pi\)
\(618\) 0 0
\(619\) −21.5338 12.4325i −0.865517 0.499706i 0.000339137 1.00000i \(-0.499892\pi\)
−0.865856 + 0.500294i \(0.833225\pi\)
\(620\) −26.2877 2.54372i −1.05574 0.102158i
\(621\) 0 0
\(622\) −9.05924 + 14.0769i −0.363242 + 0.564431i
\(623\) 5.59509 0.484842i 0.224163 0.0194248i
\(624\) 0 0
\(625\) −33.7275 58.4177i −1.34910 2.33671i
\(626\) −18.6403 + 9.59483i −0.745017 + 0.383487i
\(627\) 0 0
\(628\) −11.1635 + 15.6351i −0.445473 + 0.623908i
\(629\) −20.8735 −0.832281
\(630\) 0 0
\(631\) 43.3823i 1.72702i −0.504330 0.863511i \(-0.668260\pi\)
0.504330 0.863511i \(-0.331740\pi\)
\(632\) −4.43341 + 1.76512i −0.176352 + 0.0702127i
\(633\) 0 0
\(634\) 8.52980 4.39059i 0.338762 0.174373i
\(635\) 34.3436 19.8283i 1.36289 0.786862i
\(636\) 0 0
\(637\) −6.91837 8.27276i −0.274116 0.327779i
\(638\) 6.79368 + 4.37210i 0.268964 + 0.173093i
\(639\) 0 0
\(640\) −8.73493 46.4261i −0.345278 1.83515i
\(641\) 3.32559 5.76010i 0.131353 0.227510i −0.792845 0.609423i \(-0.791401\pi\)
0.924198 + 0.381913i \(0.124735\pi\)
\(642\) 0 0
\(643\) 18.1066i 0.714055i 0.934094 + 0.357027i \(0.116210\pi\)
−0.934094 + 0.357027i \(0.883790\pi\)
\(644\) −2.48098 0.0248741i −0.0977642 0.000980176i
\(645\) 0 0
\(646\) −23.2066 1.12018i −0.913053 0.0440728i
\(647\) −24.6421 + 42.6815i −0.968783 + 1.67798i −0.269694 + 0.962946i \(0.586923\pi\)
−0.699089 + 0.715035i \(0.746411\pi\)
\(648\) 0 0
\(649\) 9.01239 5.20331i 0.353767 0.204248i
\(650\) 14.6620 22.7829i 0.575092 0.893618i
\(651\) 0 0
\(652\) 16.0811 + 35.3308i 0.629784 + 1.38366i
\(653\) 22.1087 12.7645i 0.865181 0.499512i −0.000563051 1.00000i \(-0.500179\pi\)
0.865744 + 0.500488i \(0.166846\pi\)
\(654\) 0 0
\(655\) −49.4233 28.5345i −1.93113 1.11494i
\(656\) −4.07560 + 20.8621i −0.159125 + 0.814527i
\(657\) 0 0
\(658\) −0.843373 22.0632i −0.0328781 0.860114i
\(659\) 12.0942 0.471125 0.235562 0.971859i \(-0.424307\pi\)
0.235562 + 0.971859i \(0.424307\pi\)
\(660\) 0 0
\(661\) −5.42541 + 9.39708i −0.211024 + 0.365504i −0.952035 0.305988i \(-0.901013\pi\)
0.741011 + 0.671493i \(0.234346\pi\)
\(662\) 3.07158 + 5.96730i 0.119380 + 0.231926i
\(663\) 0 0
\(664\) 1.11177 7.62976i 0.0431451 0.296092i
\(665\) 44.5573 + 63.7466i 1.72786 + 2.47199i
\(666\) 0 0
\(667\) 0.782767 + 1.35579i 0.0303089 + 0.0524965i
\(668\) 35.3314 + 3.41884i 1.36701 + 0.132279i
\(669\) 0 0
\(670\) −44.0784 2.12765i −1.70290 0.0821984i
\(671\) 15.6026 0.602333
\(672\) 0 0
\(673\) −48.1931 −1.85771 −0.928854 0.370446i \(-0.879205\pi\)
−0.928854 + 0.370446i \(0.879205\pi\)
\(674\) 23.3318 + 1.12622i 0.898708 + 0.0433804i
\(675\) 0 0
\(676\) −21.1542 2.04698i −0.813621 0.0787300i
\(677\) −2.56093 4.43567i −0.0984246 0.170476i 0.812608 0.582810i \(-0.198047\pi\)
−0.911033 + 0.412334i \(0.864714\pi\)
\(678\) 0 0
\(679\) −2.18651 + 4.67888i −0.0839107 + 0.179559i
\(680\) −3.97394 + 27.2719i −0.152394 + 1.04583i
\(681\) 0 0
\(682\) −3.50218 6.80385i −0.134105 0.260533i
\(683\) 11.7191 20.2980i 0.448418 0.776682i −0.549866 0.835253i \(-0.685321\pi\)
0.998283 + 0.0585709i \(0.0186544\pi\)
\(684\) 0 0
\(685\) 50.0612 1.91274
\(686\) −5.48768 25.6103i −0.209521 0.977804i
\(687\) 0 0
\(688\) −13.4565 2.62885i −0.513024 0.100224i
\(689\) −2.08658 1.20468i −0.0794922 0.0458948i
\(690\) 0 0
\(691\) 11.9534 6.90129i 0.454728 0.262537i −0.255097 0.966915i \(-0.582107\pi\)
0.709825 + 0.704378i \(0.248774\pi\)
\(692\) −5.91694 12.9998i −0.224928 0.494177i
\(693\) 0 0
\(694\) −14.6177 + 22.7139i −0.554879 + 0.862209i
\(695\) −24.0439 + 13.8817i −0.912035 + 0.526564i
\(696\) 0 0
\(697\) 6.20044 10.7395i 0.234859 0.406787i
\(698\) −3.52813 0.170302i −0.133542 0.00644601i
\(699\) 0 0
\(700\) 57.3115 32.3271i 2.16617 1.22185i
\(701\) 11.8718i 0.448393i 0.974544 + 0.224196i \(0.0719757\pi\)
−0.974544 + 0.224196i \(0.928024\pi\)
\(702\) 0 0
\(703\) 31.4865 54.5362i 1.18754 2.05687i
\(704\) 9.94207 9.40798i 0.374706 0.354577i
\(705\) 0 0
\(706\) 30.6322 + 19.7135i 1.15286 + 0.741927i
\(707\) 29.8843 20.8883i 1.12391 0.785587i
\(708\) 0 0
\(709\) 27.1241 15.6601i 1.01867 0.588127i 0.104949 0.994478i \(-0.466532\pi\)
0.913717 + 0.406350i \(0.133199\pi\)
\(710\) −18.3376 + 9.43900i −0.688197 + 0.354239i
\(711\) 0 0
\(712\) −5.57798 + 2.22082i −0.209043 + 0.0832286i
\(713\) 1.48286i 0.0555335i
\(714\) 0 0
\(715\) 11.0065 0.411621
\(716\) 27.7948 38.9280i 1.03874 1.45481i
\(717\) 0 0
\(718\) 41.7717 21.5014i 1.55891 0.802424i
\(719\) −12.6273 21.8712i −0.470920 0.815657i 0.528527 0.848917i \(-0.322745\pi\)
−0.999447 + 0.0332594i \(0.989411\pi\)
\(720\) 0 0
\(721\) 1.75479 + 20.2503i 0.0653518 + 0.754161i
\(722\) 23.3912 36.3469i 0.870530 1.35269i
\(723\) 0 0
\(724\) 40.9232 + 3.95993i 1.52090 + 0.147170i
\(725\) −35.9563 20.7594i −1.33538 0.770984i
\(726\) 0 0
\(727\) 17.9342 0.665144 0.332572 0.943078i \(-0.392084\pi\)
0.332572 + 0.943078i \(0.392084\pi\)
\(728\) 9.63180 + 6.33604i 0.356978 + 0.234829i
\(729\) 0 0
\(730\) −4.13604 + 85.6860i −0.153082 + 3.17138i
\(731\) 6.92720 + 3.99942i 0.256212 + 0.147924i
\(732\) 0 0
\(733\) −6.16779 10.6829i −0.227813 0.394583i 0.729347 0.684144i \(-0.239824\pi\)
−0.957160 + 0.289561i \(0.906491\pi\)
\(734\) −3.33048 + 5.17513i −0.122930 + 0.191018i
\(735\) 0 0
\(736\) 2.54732 0.739219i 0.0938954 0.0272480i
\(737\) −6.39319 11.0733i −0.235496 0.407891i
\(738\) 0 0
\(739\) −21.7463 + 37.6656i −0.799949 + 1.38555i 0.119699 + 0.992810i \(0.461807\pi\)
−0.919648 + 0.392743i \(0.871526\pi\)
\(740\) −60.7932 43.4066i −2.23480 1.59566i
\(741\) 0 0
\(742\) −3.11721 4.95214i −0.114436 0.181799i
\(743\) 32.8397i 1.20477i −0.798205 0.602386i \(-0.794217\pi\)
0.798205 0.602386i \(-0.205783\pi\)
\(744\) 0 0
\(745\) 29.3591 + 16.9505i 1.07563 + 0.621018i
\(746\) −16.1083 + 8.29150i −0.589766 + 0.303574i
\(747\) 0 0
\(748\) −7.26793 + 3.30805i −0.265742 + 0.120954i
\(749\) 3.29101 + 37.9784i 0.120251 + 1.38770i
\(750\) 0 0
\(751\) 7.62670 4.40328i 0.278302 0.160678i −0.354352 0.935112i \(-0.615299\pi\)
0.632655 + 0.774434i \(0.281965\pi\)
\(752\) 7.66360 + 22.3251i 0.279463 + 0.814111i
\(753\) 0 0
\(754\) 0.350734 7.26613i 0.0127730 0.264617i
\(755\) 5.16112i 0.187832i
\(756\) 0 0
\(757\) 16.9328i 0.615433i 0.951478 + 0.307717i \(0.0995649\pi\)
−0.951478 + 0.307717i \(0.900435\pi\)
\(758\) −34.0157 1.64193i −1.23551 0.0596375i
\(759\) 0 0
\(760\) −65.2589 51.5208i −2.36719 1.86886i
\(761\) −10.9108 + 6.29937i −0.395517 + 0.228352i −0.684548 0.728968i \(-0.740000\pi\)
0.289031 + 0.957320i \(0.406667\pi\)
\(762\) 0 0
\(763\) 5.11734 + 7.32121i 0.185260 + 0.265045i
\(764\) 3.66832 1.66966i 0.132715 0.0604063i
\(765\) 0 0
\(766\) 11.3685 + 22.0860i 0.410759 + 0.798000i
\(767\) −8.11510 4.68526i −0.293019 0.169175i
\(768\) 0 0
\(769\) 16.0445i 0.578581i 0.957241 + 0.289291i \(0.0934194\pi\)
−0.957241 + 0.289291i \(0.906581\pi\)
\(770\) 23.6435 + 12.4716i 0.852053 + 0.449444i
\(771\) 0 0
\(772\) 4.14978 5.81197i 0.149354 0.209177i
\(773\) 9.15671 15.8599i 0.329344 0.570440i −0.653038 0.757325i \(-0.726506\pi\)
0.982382 + 0.186885i \(0.0598391\pi\)
\(774\) 0 0
\(775\) 19.6631 + 34.0574i 0.706318 + 1.22338i
\(776\) 0.796109 5.46346i 0.0285787 0.196127i
\(777\) 0 0
\(778\) −32.8226 21.1231i −1.17675 0.757301i
\(779\) 18.7060 + 32.3998i 0.670213 + 1.16084i
\(780\) 0 0
\(781\) −5.17518 2.98789i −0.185183 0.106915i
\(782\) −1.54560 0.0746057i −0.0552706 0.00266789i
\(783\) 0 0
\(784\) 13.5110 + 24.5245i 0.482536 + 0.875876i
\(785\) 40.1090 1.43155
\(786\) 0 0
\(787\) 3.88976 + 2.24576i 0.138655 + 0.0800526i 0.567723 0.823220i \(-0.307825\pi\)
−0.429068 + 0.903272i \(0.641158\pi\)
\(788\) 3.37860 34.9155i 0.120358 1.24381i
\(789\) 0 0
\(790\) 8.37763 + 5.39146i 0.298063 + 0.191820i
\(791\) −25.6689 11.9955i −0.912680 0.426510i
\(792\) 0 0
\(793\) −7.02460 12.1670i −0.249451 0.432062i
\(794\) 11.2082 + 21.7746i 0.397763 + 0.772752i
\(795\) 0 0
\(796\) −20.5783 + 28.8209i −0.729378 + 1.02153i
\(797\) 31.7698 1.12534 0.562672 0.826680i \(-0.309773\pi\)
0.562672 + 0.826680i \(0.309773\pi\)
\(798\) 0 0
\(799\) 13.7703i 0.487159i
\(800\) −48.7031 + 50.7560i −1.72191 + 1.79450i
\(801\) 0 0
\(802\) 5.01757 + 9.74786i 0.177177 + 0.344209i
\(803\) −21.5259 + 12.4280i −0.759634 + 0.438575i
\(804\) 0 0
\(805\) 2.96759 + 4.24563i 0.104594 + 0.149639i
\(806\) −3.72890 + 5.79423i −0.131345 + 0.204093i
\(807\) 0 0
\(808\) −24.1528 + 30.5932i −0.849694 + 1.07627i
\(809\) 12.5784 21.7864i 0.442232 0.765969i −0.555623 0.831435i \(-0.687520\pi\)
0.997855 + 0.0654659i \(0.0208534\pi\)
\(810\) 0 0
\(811\) 48.0042i 1.68565i −0.538184 0.842827i \(-0.680890\pi\)
0.538184 0.842827i \(-0.319110\pi\)
\(812\) 8.98672 15.2112i 0.315372 0.533809i
\(813\) 0 0
\(814\) 1.04352 21.6185i 0.0365753 0.757728i
\(815\) 40.5219 70.1859i 1.41942 2.45851i
\(816\) 0 0
\(817\) −20.8985 + 12.0658i −0.731148 + 0.422128i
\(818\) −5.51607 3.54989i −0.192865 0.124119i
\(819\) 0 0
\(820\) 40.3914 18.3844i 1.41053 0.642011i
\(821\) 14.5854 8.42089i 0.509034 0.293891i −0.223402 0.974726i \(-0.571716\pi\)
0.732437 + 0.680835i \(0.238383\pi\)
\(822\) 0 0
\(823\) 17.1163 + 9.88209i 0.596636 + 0.344468i 0.767717 0.640789i \(-0.221393\pi\)
−0.171081 + 0.985257i \(0.554726\pi\)
\(824\) −8.03780 20.1884i −0.280010 0.703295i
\(825\) 0 0
\(826\) −12.1234 19.2598i −0.421829 0.670135i
\(827\) −49.1702 −1.70981 −0.854907 0.518781i \(-0.826386\pi\)
−0.854907 + 0.518781i \(0.826386\pi\)
\(828\) 0 0
\(829\) −7.96007 + 13.7872i −0.276465 + 0.478851i −0.970504 0.241087i \(-0.922496\pi\)
0.694039 + 0.719937i \(0.255829\pi\)
\(830\) −14.3126 + 7.36719i −0.496796 + 0.255719i
\(831\) 0 0
\(832\) −11.8125 3.51719i −0.409524 0.121937i
\(833\) −2.80992 16.0915i −0.0973580 0.557539i
\(834\) 0 0
\(835\) −37.0541 64.1795i −1.28231 2.22102i
\(836\) 2.32032 23.9789i 0.0802498 0.829328i
\(837\) 0 0
\(838\) −0.971071 + 20.1176i −0.0335451 + 0.694951i
\(839\) 38.3305 1.32332 0.661658 0.749806i \(-0.269853\pi\)
0.661658 + 0.749806i \(0.269853\pi\)
\(840\) 0 0
\(841\) 17.8521 0.615589
\(842\) −1.36455 + 28.2692i −0.0470254 + 0.974221i
\(843\) 0 0
\(844\) −8.42166 0.814921i −0.289886 0.0280507i
\(845\) 22.1856 + 38.4266i 0.763207 + 1.32191i
\(846\) 0 0
\(847\) −1.84387 21.2783i −0.0633561 0.731131i
\(848\) 4.71727 + 4.10848i 0.161992 + 0.141086i
\(849\) 0 0
\(850\) 36.4877 18.7815i 1.25152 0.644202i
\(851\) 2.09705 3.63220i 0.0718860 0.124510i
\(852\) 0 0
\(853\) 22.5158 0.770927 0.385463 0.922723i \(-0.374042\pi\)
0.385463 + 0.922723i \(0.374042\pi\)
\(854\) −1.30333 34.0959i −0.0445989 1.16674i
\(855\) 0 0
\(856\) −15.0745 37.8622i −0.515234 1.29410i
\(857\) 11.1913 + 6.46129i 0.382287 + 0.220713i 0.678813 0.734311i \(-0.262495\pi\)
−0.296526 + 0.955025i \(0.595828\pi\)
\(858\) 0 0
\(859\) 20.1418 11.6289i 0.687229 0.396772i −0.115344 0.993326i \(-0.536797\pi\)
0.802573 + 0.596554i \(0.203464\pi\)
\(860\) 11.8583 + 26.0533i 0.404366 + 0.888410i
\(861\) 0 0
\(862\) 16.6293 + 10.7019i 0.566397 + 0.364508i
\(863\) −7.69412 + 4.44220i −0.261911 + 0.151214i −0.625206 0.780460i \(-0.714985\pi\)
0.363295 + 0.931674i \(0.381652\pi\)
\(864\) 0 0
\(865\) −14.9098 + 25.8245i −0.506947 + 0.878059i
\(866\) 0.0671539 1.39122i 0.00228198 0.0472756i
\(867\) 0 0
\(868\) −14.5757 + 8.22154i −0.494731 + 0.279057i
\(869\) 2.88660i 0.0979212i
\(870\) 0 0
\(871\) −5.75667 + 9.97084i −0.195057 + 0.337849i
\(872\) −7.49489 5.91709i −0.253809 0.200378i
\(873\) 0 0
\(874\) 2.52637 3.92565i 0.0854558 0.132787i
\(875\) −74.4135 34.7746i −2.51564 1.17560i
\(876\) 0 0
\(877\) 40.2134 23.2172i 1.35791 0.783990i 0.368569 0.929600i \(-0.379848\pi\)
0.989342 + 0.145610i \(0.0465145\pi\)
\(878\) −4.44901 8.64329i −0.150147 0.291697i
\(879\) 0 0
\(880\) −28.0466 5.47916i −0.945452 0.184703i
\(881\) 27.1901i 0.916058i −0.888937 0.458029i \(-0.848556\pi\)
0.888937 0.458029i \(-0.151444\pi\)
\(882\) 0 0
\(883\) −21.7975 −0.733543 −0.366772 0.930311i \(-0.619537\pi\)
−0.366772 + 0.930311i \(0.619537\pi\)
\(884\) 5.85178 + 4.17820i 0.196817 + 0.140528i
\(885\) 0 0
\(886\) 2.20685 + 4.28735i 0.0741406 + 0.144036i
\(887\) −21.1661 36.6607i −0.710688 1.23095i −0.964599 0.263720i \(-0.915051\pi\)
0.253911 0.967227i \(-0.418283\pi\)
\(888\) 0 0
\(889\) 10.6383 22.7646i 0.356796 0.763502i
\(890\) 10.5405 + 6.78336i 0.353317 + 0.227379i
\(891\) 0 0
\(892\) −2.85730 0.276486i −0.0956694 0.00925744i
\(893\) 35.9777 + 20.7717i 1.20395 + 0.695099i
\(894\) 0 0
\(895\) −99.8629 −3.33805
\(896\) −21.3894 20.9402i −0.714571 0.699563i
\(897\) 0 0
\(898\) −46.6040 2.24956i −1.55520 0.0750689i
\(899\) 9.14454 + 5.27960i 0.304987 + 0.176085i
\(900\) 0 0
\(901\) −1.82473 3.16053i −0.0607906 0.105292i
\(902\) 10.8128 + 6.95864i 0.360027 + 0.231697i
\(903\) 0 0
\(904\) 29.9732 + 4.36755i 0.996892 + 0.145262i
\(905\) −42.9186 74.3371i −1.42666 2.47105i
\(906\) 0 0
\(907\) 22.5605 39.0760i 0.749109 1.29750i −0.199141 0.979971i \(-0.563815\pi\)
0.948250 0.317525i \(-0.102852\pi\)
\(908\) −26.0663 18.6115i −0.865041 0.617643i
\(909\) 0 0
\(910\) −0.919403 24.0522i −0.0304779 0.797322i
\(911\) 36.2714i 1.20173i 0.799352 + 0.600863i \(0.205176\pi\)
−0.799352 + 0.600863i \(0.794824\pi\)
\(912\) 0 0
\(913\) −4.03926 2.33207i −0.133680 0.0771801i
\(914\) 14.7860 + 28.7254i 0.489077 + 0.950152i
\(915\) 0 0
\(916\) −13.4636 29.5801i −0.444849 0.977352i
\(917\) −36.0258 + 3.12181i −1.18968 + 0.103091i
\(918\) 0 0
\(919\) 37.7905 21.8183i 1.24659 0.719721i 0.276164 0.961110i \(-0.410937\pi\)
0.970428 + 0.241390i \(0.0776032\pi\)
\(920\) −4.34635 3.43137i −0.143295 0.113129i
\(921\) 0 0
\(922\) 22.4235 + 1.08238i 0.738478 + 0.0356461i
\(923\) 5.38082i 0.177112i
\(924\) 0 0
\(925\) 111.230i 3.65721i
\(926\) 0.185501 3.84302i 0.00609595 0.126289i
\(927\) 0 0
\(928\) −4.51089 + 18.3408i −0.148077 + 0.602067i
\(929\) −10.2075 + 5.89332i −0.334898 + 0.193354i −0.658014 0.753006i \(-0.728603\pi\)
0.323115 + 0.946360i \(0.395270\pi\)
\(930\) 0 0
\(931\) 46.2809 + 16.9317i 1.51680 + 0.554913i
\(932\) 9.82724 + 21.5909i 0.321902 + 0.707233i
\(933\) 0 0
\(934\) −30.1604 + 15.5247i −0.986880 + 0.507982i
\(935\) 14.4380 + 8.33578i 0.472173 + 0.272609i
\(936\) 0 0
\(937\) 35.0529i 1.14513i 0.819860 + 0.572565i \(0.194051\pi\)
−0.819860 + 0.572565i \(0.805949\pi\)
\(938\) −23.6641 + 14.8958i −0.772661 + 0.486365i
\(939\) 0 0
\(940\) 28.6355 40.1054i 0.933986 1.30809i
\(941\) −14.2985 + 24.7658i −0.466119 + 0.807342i −0.999251 0.0386903i \(-0.987681\pi\)
0.533132 + 0.846032i \(0.321015\pi\)
\(942\) 0 0
\(943\) 1.24585 + 2.15788i 0.0405705 + 0.0702702i
\(944\) 18.3464 + 15.9787i 0.597124 + 0.520061i
\(945\) 0 0
\(946\) −4.48847 + 6.97449i −0.145933 + 0.226760i
\(947\) −25.7444 44.5906i −0.836580 1.44900i −0.892738 0.450577i \(-0.851218\pi\)
0.0561576 0.998422i \(-0.482115\pi\)
\(948\) 0 0
\(949\) 19.3828 + 11.1906i 0.629191 + 0.363264i
\(950\) −5.96915 + 123.662i −0.193665 + 4.01213i
\(951\) 0 0
\(952\) 7.83608 + 15.6060i 0.253969 + 0.505794i
\(953\) 11.8761 0.384706 0.192353 0.981326i \(-0.438388\pi\)
0.192353 + 0.981326i \(0.438388\pi\)
\(954\) 0 0
\(955\) −7.28724 4.20729i −0.235810 0.136145i
\(956\) 0.163078 1.68530i 0.00527431 0.0545064i
\(957\) 0 0
\(958\) −15.1155 + 23.4875i −0.488360 + 0.758848i
\(959\) 25.9989 18.1726i 0.839548 0.586823i
\(960\) 0 0
\(961\) 10.4992 + 18.1852i 0.338684 + 0.586618i
\(962\) −17.3280 + 8.91932i −0.558676 + 0.287571i
\(963\) 0 0
\(964\) −1.43109 1.02180i −0.0460922 0.0329101i
\(965\) −14.9096 −0.479956
\(966\) 0 0
\(967\) 59.2193i 1.90437i −0.305530 0.952183i \(-0.598833\pi\)
0.305530 0.952183i \(-0.401167\pi\)
\(968\) 8.44583 + 21.2132i 0.271459 + 0.681818i
\(969\) 0 0
\(970\) −10.2488 + 5.27544i −0.329070 + 0.169384i
\(971\) 4.53638 2.61908i 0.145579 0.0840503i −0.425441 0.904986i \(-0.639881\pi\)
0.571020 + 0.820936i \(0.306548\pi\)
\(972\) 0 0
\(973\) −7.44782 + 15.9375i −0.238766 + 0.510931i
\(974\) 44.1396 + 28.4062i 1.41432 + 0.910194i
\(975\) 0 0
\(976\) 11.8431 + 34.5006i 0.379089 + 1.10434i
\(977\) −26.6049 + 46.0810i −0.851165 + 1.47426i 0.0289924 + 0.999580i \(0.490770\pi\)
−0.880158 + 0.474682i \(0.842563\pi\)
\(978\) 0 0
\(979\) 3.63183i 0.116074i
\(980\) 25.2787 52.7092i 0.807498 1.68373i
\(981\) 0 0
\(982\) 29.0630 + 1.40286i 0.927438 + 0.0447672i
\(983\) −13.9737 + 24.2032i −0.445693 + 0.771963i −0.998100 0.0616113i \(-0.980376\pi\)
0.552407 + 0.833574i \(0.313709\pi\)
\(984\) 0 0
\(985\) −63.4241 + 36.6179i −2.02086 + 1.16674i
\(986\) 5.96307 9.26583i 0.189903 0.295084i
\(987\) 0 0
\(988\) −19.7434 + 8.98637i −0.628123 + 0.285894i
\(989\) −1.39188 + 0.803601i −0.0442592 + 0.0255530i
\(990\) 0 0
\(991\) −18.7980 10.8530i −0.597139 0.344758i 0.170776 0.985310i \(-0.445372\pi\)
−0.767915 + 0.640552i \(0.778706\pi\)
\(992\) 12.3864 12.9085i 0.393267 0.409844i
\(993\) 0 0
\(994\) −6.09705 + 11.5587i −0.193387 + 0.366621i
\(995\) 73.9349 2.34389
\(996\) 0 0
\(997\) 16.8274 29.1458i 0.532928 0.923058i −0.466333 0.884609i \(-0.654425\pi\)
0.999261 0.0384485i \(-0.0122416\pi\)
\(998\) −0.669990 1.30162i −0.0212082 0.0412021i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bk.c.451.16 32
3.2 odd 2 168.2.t.a.115.1 yes 32
4.3 odd 2 2016.2.bs.c.1711.1 32
7.5 odd 6 inner 504.2.bk.c.19.5 32
8.3 odd 2 inner 504.2.bk.c.451.5 32
8.5 even 2 2016.2.bs.c.1711.16 32
12.11 even 2 672.2.bb.a.367.8 32
21.5 even 6 168.2.t.a.19.12 yes 32
21.11 odd 6 1176.2.p.a.979.18 32
21.17 even 6 1176.2.p.a.979.17 32
24.5 odd 2 672.2.bb.a.367.1 32
24.11 even 2 168.2.t.a.115.12 yes 32
28.19 even 6 2016.2.bs.c.271.16 32
56.5 odd 6 2016.2.bs.c.271.1 32
56.19 even 6 inner 504.2.bk.c.19.16 32
84.11 even 6 4704.2.p.a.3919.6 32
84.47 odd 6 672.2.bb.a.271.1 32
84.59 odd 6 4704.2.p.a.3919.23 32
168.5 even 6 672.2.bb.a.271.8 32
168.11 even 6 1176.2.p.a.979.19 32
168.53 odd 6 4704.2.p.a.3919.24 32
168.59 odd 6 1176.2.p.a.979.20 32
168.101 even 6 4704.2.p.a.3919.5 32
168.131 odd 6 168.2.t.a.19.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.1 32 168.131 odd 6
168.2.t.a.19.12 yes 32 21.5 even 6
168.2.t.a.115.1 yes 32 3.2 odd 2
168.2.t.a.115.12 yes 32 24.11 even 2
504.2.bk.c.19.5 32 7.5 odd 6 inner
504.2.bk.c.19.16 32 56.19 even 6 inner
504.2.bk.c.451.5 32 8.3 odd 2 inner
504.2.bk.c.451.16 32 1.1 even 1 trivial
672.2.bb.a.271.1 32 84.47 odd 6
672.2.bb.a.271.8 32 168.5 even 6
672.2.bb.a.367.1 32 24.5 odd 2
672.2.bb.a.367.8 32 12.11 even 2
1176.2.p.a.979.17 32 21.17 even 6
1176.2.p.a.979.18 32 21.11 odd 6
1176.2.p.a.979.19 32 168.11 even 6
1176.2.p.a.979.20 32 168.59 odd 6
2016.2.bs.c.271.1 32 56.5 odd 6
2016.2.bs.c.271.16 32 28.19 even 6
2016.2.bs.c.1711.1 32 4.3 odd 2
2016.2.bs.c.1711.16 32 8.5 even 2
4704.2.p.a.3919.5 32 168.101 even 6
4704.2.p.a.3919.6 32 84.11 even 6
4704.2.p.a.3919.23 32 84.59 odd 6
4704.2.p.a.3919.24 32 168.53 odd 6