Properties

Label 4704.2.p.a.3919.5
Level $4704$
Weight $2$
Character 4704.3919
Analytic conductor $37.562$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4704,2,Mod(3919,4704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4704, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4704.3919"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4704 = 2^{5} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4704.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.5616291108\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3919.5
Character \(\chi\) \(=\) 4704.3919
Dual form 4704.2.p.a.3919.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -4.17553 q^{5} -1.00000 q^{9} -1.71097 q^{11} -1.54062 q^{13} +4.17553i q^{15} +2.33358i q^{17} +7.04013i q^{19} -0.468884i q^{23} +12.4350 q^{25} +1.00000i q^{27} +3.33885i q^{29} +3.16253 q^{31} +1.71097i q^{33} -8.94486i q^{37} +1.54062i q^{39} +5.31411i q^{41} +3.42772 q^{43} +4.17553 q^{45} -5.90095 q^{47} +2.33358 q^{51} -1.56389i q^{53} +7.14421 q^{55} +7.04013 q^{57} +6.08229i q^{59} -9.11917 q^{61} +6.43291 q^{65} +7.47317 q^{67} -0.468884 q^{69} +3.49263i q^{71} -14.5274i q^{73} -12.4350i q^{75} -1.68711i q^{79} +1.00000 q^{81} +2.72601i q^{83} -9.74391i q^{85} +3.33885 q^{87} -2.12267i q^{89} -3.16253i q^{93} -29.3963i q^{95} +1.95202i q^{97} +1.71097 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{9} + 16 q^{11} + 32 q^{25} + 16 q^{43} + 16 q^{57} - 64 q^{67} + 32 q^{81} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4704\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(1765\) \(3137\) \(4609\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) −4.17553 −1.86735 −0.933677 0.358117i \(-0.883419\pi\)
−0.933677 + 0.358117i \(0.883419\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.71097 −0.515877 −0.257939 0.966161i \(-0.583043\pi\)
−0.257939 + 0.966161i \(0.583043\pi\)
\(12\) 0 0
\(13\) −1.54062 −0.427292 −0.213646 0.976911i \(-0.568534\pi\)
−0.213646 + 0.976911i \(0.568534\pi\)
\(14\) 0 0
\(15\) 4.17553i 1.07812i
\(16\) 0 0
\(17\) 2.33358i 0.565975i 0.959124 + 0.282988i \(0.0913256\pi\)
−0.959124 + 0.282988i \(0.908674\pi\)
\(18\) 0 0
\(19\) 7.04013i 1.61512i 0.589788 + 0.807558i \(0.299211\pi\)
−0.589788 + 0.807558i \(0.700789\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 0.468884i − 0.0977691i −0.998804 0.0488846i \(-0.984433\pi\)
0.998804 0.0488846i \(-0.0155666\pi\)
\(24\) 0 0
\(25\) 12.4350 2.48701
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 3.33885i 0.620009i 0.950735 + 0.310005i \(0.100331\pi\)
−0.950735 + 0.310005i \(0.899669\pi\)
\(30\) 0 0
\(31\) 3.16253 0.568007 0.284003 0.958823i \(-0.408337\pi\)
0.284003 + 0.958823i \(0.408337\pi\)
\(32\) 0 0
\(33\) 1.71097i 0.297842i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 8.94486i − 1.47053i −0.677782 0.735263i \(-0.737059\pi\)
0.677782 0.735263i \(-0.262941\pi\)
\(38\) 0 0
\(39\) 1.54062i 0.246697i
\(40\) 0 0
\(41\) 5.31411i 0.829925i 0.909838 + 0.414963i \(0.136205\pi\)
−0.909838 + 0.414963i \(0.863795\pi\)
\(42\) 0 0
\(43\) 3.42772 0.522722 0.261361 0.965241i \(-0.415829\pi\)
0.261361 + 0.965241i \(0.415829\pi\)
\(44\) 0 0
\(45\) 4.17553 0.622451
\(46\) 0 0
\(47\) −5.90095 −0.860742 −0.430371 0.902652i \(-0.641617\pi\)
−0.430371 + 0.902652i \(0.641617\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.33358 0.326766
\(52\) 0 0
\(53\) − 1.56389i − 0.214817i −0.994215 0.107409i \(-0.965745\pi\)
0.994215 0.107409i \(-0.0342553\pi\)
\(54\) 0 0
\(55\) 7.14421 0.963325
\(56\) 0 0
\(57\) 7.04013 0.932488
\(58\) 0 0
\(59\) 6.08229i 0.791846i 0.918284 + 0.395923i \(0.129575\pi\)
−0.918284 + 0.395923i \(0.870425\pi\)
\(60\) 0 0
\(61\) −9.11917 −1.16759 −0.583795 0.811901i \(-0.698433\pi\)
−0.583795 + 0.811901i \(0.698433\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.43291 0.797905
\(66\) 0 0
\(67\) 7.47317 0.912993 0.456496 0.889725i \(-0.349104\pi\)
0.456496 + 0.889725i \(0.349104\pi\)
\(68\) 0 0
\(69\) −0.468884 −0.0564470
\(70\) 0 0
\(71\) 3.49263i 0.414499i 0.978288 + 0.207249i \(0.0664512\pi\)
−0.978288 + 0.207249i \(0.933549\pi\)
\(72\) 0 0
\(73\) − 14.5274i − 1.70031i −0.526534 0.850154i \(-0.676509\pi\)
0.526534 0.850154i \(-0.323491\pi\)
\(74\) 0 0
\(75\) − 12.4350i − 1.43587i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 1.68711i − 0.189815i −0.995486 0.0949075i \(-0.969744\pi\)
0.995486 0.0949075i \(-0.0302555\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.72601i 0.299219i 0.988745 + 0.149609i \(0.0478016\pi\)
−0.988745 + 0.149609i \(0.952198\pi\)
\(84\) 0 0
\(85\) − 9.74391i − 1.05688i
\(86\) 0 0
\(87\) 3.33885 0.357962
\(88\) 0 0
\(89\) − 2.12267i − 0.225003i −0.993652 0.112501i \(-0.964114\pi\)
0.993652 0.112501i \(-0.0358863\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 3.16253i − 0.327939i
\(94\) 0 0
\(95\) − 29.3963i − 3.01599i
\(96\) 0 0
\(97\) 1.95202i 0.198198i 0.995078 + 0.0990990i \(0.0315960\pi\)
−0.995078 + 0.0990990i \(0.968404\pi\)
\(98\) 0 0
\(99\) 1.71097 0.171959
\(100\) 0 0
\(101\) −13.7809 −1.37125 −0.685625 0.727955i \(-0.740471\pi\)
−0.685625 + 0.727955i \(0.740471\pi\)
\(102\) 0 0
\(103\) −7.68258 −0.756987 −0.378494 0.925604i \(-0.623558\pi\)
−0.378494 + 0.925604i \(0.623558\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.4083 1.39290 0.696450 0.717605i \(-0.254762\pi\)
0.696450 + 0.717605i \(0.254762\pi\)
\(108\) 0 0
\(109\) − 3.37612i − 0.323373i −0.986842 0.161687i \(-0.948307\pi\)
0.986842 0.161687i \(-0.0516934\pi\)
\(110\) 0 0
\(111\) −8.94486 −0.849009
\(112\) 0 0
\(113\) −10.7090 −1.00742 −0.503710 0.863873i \(-0.668032\pi\)
−0.503710 + 0.863873i \(0.668032\pi\)
\(114\) 0 0
\(115\) 1.95784i 0.182569i
\(116\) 0 0
\(117\) 1.54062 0.142431
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.07258 −0.733871
\(122\) 0 0
\(123\) 5.31411 0.479157
\(124\) 0 0
\(125\) −31.0452 −2.77677
\(126\) 0 0
\(127\) 9.49738i 0.842757i 0.906885 + 0.421378i \(0.138454\pi\)
−0.906885 + 0.421378i \(0.861546\pi\)
\(128\) 0 0
\(129\) − 3.42772i − 0.301794i
\(130\) 0 0
\(131\) − 13.6675i − 1.19414i −0.802191 0.597068i \(-0.796332\pi\)
0.802191 0.597068i \(-0.203668\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 4.17553i − 0.359372i
\(136\) 0 0
\(137\) −11.9892 −1.02431 −0.512153 0.858894i \(-0.671152\pi\)
−0.512153 + 0.858894i \(0.671152\pi\)
\(138\) 0 0
\(139\) − 6.64909i − 0.563968i −0.959419 0.281984i \(-0.909007\pi\)
0.959419 0.281984i \(-0.0909925\pi\)
\(140\) 0 0
\(141\) 5.90095i 0.496950i
\(142\) 0 0
\(143\) 2.63596 0.220430
\(144\) 0 0
\(145\) − 13.9415i − 1.15778i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 8.11897i − 0.665132i −0.943080 0.332566i \(-0.892086\pi\)
0.943080 0.332566i \(-0.107914\pi\)
\(150\) 0 0
\(151\) 1.23604i 0.100587i 0.998734 + 0.0502937i \(0.0160157\pi\)
−0.998734 + 0.0502937i \(0.983984\pi\)
\(152\) 0 0
\(153\) − 2.33358i − 0.188658i
\(154\) 0 0
\(155\) −13.2052 −1.06067
\(156\) 0 0
\(157\) 9.60572 0.766620 0.383310 0.923620i \(-0.374784\pi\)
0.383310 + 0.923620i \(0.374784\pi\)
\(158\) 0 0
\(159\) −1.56389 −0.124025
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 19.4092 1.52025 0.760123 0.649779i \(-0.225138\pi\)
0.760123 + 0.649779i \(0.225138\pi\)
\(164\) 0 0
\(165\) − 7.14421i − 0.556176i
\(166\) 0 0
\(167\) 17.7482 1.37340 0.686699 0.726942i \(-0.259059\pi\)
0.686699 + 0.726942i \(0.259059\pi\)
\(168\) 0 0
\(169\) −10.6265 −0.817422
\(170\) 0 0
\(171\) − 7.04013i − 0.538372i
\(172\) 0 0
\(173\) −7.14150 −0.542958 −0.271479 0.962444i \(-0.587513\pi\)
−0.271479 + 0.962444i \(0.587513\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.08229 0.457173
\(178\) 0 0
\(179\) −23.9162 −1.78758 −0.893791 0.448483i \(-0.851964\pi\)
−0.893791 + 0.448483i \(0.851964\pi\)
\(180\) 0 0
\(181\) 20.5572 1.52800 0.764002 0.645214i \(-0.223232\pi\)
0.764002 + 0.645214i \(0.223232\pi\)
\(182\) 0 0
\(183\) 9.11917i 0.674109i
\(184\) 0 0
\(185\) 37.3495i 2.74599i
\(186\) 0 0
\(187\) − 3.99268i − 0.291974i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 2.01521i − 0.145816i −0.997339 0.0729079i \(-0.976772\pi\)
0.997339 0.0729079i \(-0.0232279\pi\)
\(192\) 0 0
\(193\) −3.57070 −0.257025 −0.128512 0.991708i \(-0.541020\pi\)
−0.128512 + 0.991708i \(0.541020\pi\)
\(194\) 0 0
\(195\) − 6.43291i − 0.460671i
\(196\) 0 0
\(197\) − 17.5393i − 1.24962i −0.780775 0.624812i \(-0.785176\pi\)
0.780775 0.624812i \(-0.214824\pi\)
\(198\) 0 0
\(199\) −17.7067 −1.25520 −0.627598 0.778537i \(-0.715962\pi\)
−0.627598 + 0.778537i \(0.715962\pi\)
\(200\) 0 0
\(201\) − 7.47317i − 0.527117i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 22.1892i − 1.54976i
\(206\) 0 0
\(207\) 0.468884i 0.0325897i
\(208\) 0 0
\(209\) − 12.0455i − 0.833201i
\(210\) 0 0
\(211\) 4.23050 0.291240 0.145620 0.989341i \(-0.453482\pi\)
0.145620 + 0.989341i \(0.453482\pi\)
\(212\) 0 0
\(213\) 3.49263 0.239311
\(214\) 0 0
\(215\) −14.3125 −0.976106
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −14.5274 −0.981673
\(220\) 0 0
\(221\) − 3.59516i − 0.241837i
\(222\) 0 0
\(223\) 1.43532 0.0961162 0.0480581 0.998845i \(-0.484697\pi\)
0.0480581 + 0.998845i \(0.484697\pi\)
\(224\) 0 0
\(225\) −12.4350 −0.829003
\(226\) 0 0
\(227\) − 16.0144i − 1.06291i −0.847086 0.531455i \(-0.821645\pi\)
0.847086 0.531455i \(-0.178355\pi\)
\(228\) 0 0
\(229\) 16.2500 1.07383 0.536914 0.843637i \(-0.319590\pi\)
0.536914 + 0.843637i \(0.319590\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.8611 0.777045 0.388522 0.921439i \(-0.372986\pi\)
0.388522 + 0.921439i \(0.372986\pi\)
\(234\) 0 0
\(235\) 24.6396 1.60731
\(236\) 0 0
\(237\) −1.68711 −0.109590
\(238\) 0 0
\(239\) 0.846585i 0.0547610i 0.999625 + 0.0273805i \(0.00871657\pi\)
−0.999625 + 0.0273805i \(0.991283\pi\)
\(240\) 0 0
\(241\) − 0.879217i − 0.0566354i −0.999599 0.0283177i \(-0.990985\pi\)
0.999599 0.0283177i \(-0.00901501\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 10.8462i − 0.690126i
\(248\) 0 0
\(249\) 2.72601 0.172754
\(250\) 0 0
\(251\) − 18.1441i − 1.14524i −0.819820 0.572622i \(-0.805926\pi\)
0.819820 0.572622i \(-0.194074\pi\)
\(252\) 0 0
\(253\) 0.802247i 0.0504368i
\(254\) 0 0
\(255\) −9.74391 −0.610188
\(256\) 0 0
\(257\) − 18.3484i − 1.14454i −0.820064 0.572271i \(-0.806062\pi\)
0.820064 0.572271i \(-0.193938\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) − 3.33885i − 0.206670i
\(262\) 0 0
\(263\) 3.48770i 0.215061i 0.994202 + 0.107531i \(0.0342943\pi\)
−0.994202 + 0.107531i \(0.965706\pi\)
\(264\) 0 0
\(265\) 6.53008i 0.401140i
\(266\) 0 0
\(267\) −2.12267 −0.129905
\(268\) 0 0
\(269\) −14.7121 −0.897012 −0.448506 0.893780i \(-0.648044\pi\)
−0.448506 + 0.893780i \(0.648044\pi\)
\(270\) 0 0
\(271\) 19.9028 1.20901 0.604504 0.796602i \(-0.293371\pi\)
0.604504 + 0.796602i \(0.293371\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −21.2760 −1.28299
\(276\) 0 0
\(277\) − 26.4466i − 1.58902i −0.607251 0.794510i \(-0.707728\pi\)
0.607251 0.794510i \(-0.292272\pi\)
\(278\) 0 0
\(279\) −3.16253 −0.189336
\(280\) 0 0
\(281\) −20.2837 −1.21003 −0.605013 0.796216i \(-0.706832\pi\)
−0.605013 + 0.796216i \(0.706832\pi\)
\(282\) 0 0
\(283\) − 6.58671i − 0.391539i −0.980650 0.195770i \(-0.937280\pi\)
0.980650 0.195770i \(-0.0627205\pi\)
\(284\) 0 0
\(285\) −29.3963 −1.74128
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 11.5544 0.679672
\(290\) 0 0
\(291\) 1.95202 0.114430
\(292\) 0 0
\(293\) 12.9438 0.756187 0.378094 0.925767i \(-0.376580\pi\)
0.378094 + 0.925767i \(0.376580\pi\)
\(294\) 0 0
\(295\) − 25.3968i − 1.47866i
\(296\) 0 0
\(297\) − 1.71097i − 0.0992806i
\(298\) 0 0
\(299\) 0.722374i 0.0417759i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 13.7809i 0.791692i
\(304\) 0 0
\(305\) 38.0774 2.18030
\(306\) 0 0
\(307\) − 11.8773i − 0.677871i −0.940810 0.338936i \(-0.889933\pi\)
0.940810 0.338936i \(-0.110067\pi\)
\(308\) 0 0
\(309\) 7.68258i 0.437047i
\(310\) 0 0
\(311\) 11.8370 0.671214 0.335607 0.942002i \(-0.391059\pi\)
0.335607 + 0.942002i \(0.391059\pi\)
\(312\) 0 0
\(313\) 14.8243i 0.837921i 0.908004 + 0.418961i \(0.137605\pi\)
−0.908004 + 0.418961i \(0.862395\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.78361i 0.381006i 0.981687 + 0.190503i \(0.0610118\pi\)
−0.981687 + 0.190503i \(0.938988\pi\)
\(318\) 0 0
\(319\) − 5.71268i − 0.319848i
\(320\) 0 0
\(321\) − 14.4083i − 0.804191i
\(322\) 0 0
\(323\) −16.4287 −0.914116
\(324\) 0 0
\(325\) −19.1577 −1.06268
\(326\) 0 0
\(327\) −3.37612 −0.186700
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.74570 0.260847 0.130424 0.991458i \(-0.458366\pi\)
0.130424 + 0.991458i \(0.458366\pi\)
\(332\) 0 0
\(333\) 8.94486i 0.490175i
\(334\) 0 0
\(335\) −31.2044 −1.70488
\(336\) 0 0
\(337\) 16.5173 0.899754 0.449877 0.893090i \(-0.351468\pi\)
0.449877 + 0.893090i \(0.351468\pi\)
\(338\) 0 0
\(339\) 10.7090i 0.581634i
\(340\) 0 0
\(341\) −5.41099 −0.293022
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.95784 0.105407
\(346\) 0 0
\(347\) 19.0997 1.02533 0.512663 0.858590i \(-0.328659\pi\)
0.512663 + 0.858590i \(0.328659\pi\)
\(348\) 0 0
\(349\) −2.49767 −0.133697 −0.0668485 0.997763i \(-0.521294\pi\)
−0.0668485 + 0.997763i \(0.521294\pi\)
\(350\) 0 0
\(351\) − 1.54062i − 0.0822323i
\(352\) 0 0
\(353\) − 25.7580i − 1.37096i −0.728091 0.685481i \(-0.759592\pi\)
0.728091 0.685481i \(-0.240408\pi\)
\(354\) 0 0
\(355\) − 14.5836i − 0.774016i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 33.2203i − 1.75330i −0.481126 0.876651i \(-0.659772\pi\)
0.481126 0.876651i \(-0.340228\pi\)
\(360\) 0 0
\(361\) −30.5634 −1.60860
\(362\) 0 0
\(363\) 8.07258i 0.423701i
\(364\) 0 0
\(365\) 60.6597i 3.17507i
\(366\) 0 0
\(367\) −4.35167 −0.227155 −0.113578 0.993529i \(-0.536231\pi\)
−0.113578 + 0.993529i \(0.536231\pi\)
\(368\) 0 0
\(369\) − 5.31411i − 0.276642i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12.8107i 0.663310i 0.943401 + 0.331655i \(0.107607\pi\)
−0.943401 + 0.331655i \(0.892393\pi\)
\(374\) 0 0
\(375\) 31.0452i 1.60317i
\(376\) 0 0
\(377\) − 5.14391i − 0.264925i
\(378\) 0 0
\(379\) 24.0807 1.23694 0.618472 0.785807i \(-0.287752\pi\)
0.618472 + 0.785807i \(0.287752\pi\)
\(380\) 0 0
\(381\) 9.49738 0.486566
\(382\) 0 0
\(383\) −17.5647 −0.897512 −0.448756 0.893654i \(-0.648133\pi\)
−0.448756 + 0.893654i \(0.648133\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.42772 −0.174241
\(388\) 0 0
\(389\) 27.5999i 1.39937i 0.714451 + 0.699685i \(0.246676\pi\)
−0.714451 + 0.699685i \(0.753324\pi\)
\(390\) 0 0
\(391\) 1.09418 0.0553349
\(392\) 0 0
\(393\) −13.6675 −0.689435
\(394\) 0 0
\(395\) 7.04459i 0.354452i
\(396\) 0 0
\(397\) −17.3170 −0.869115 −0.434558 0.900644i \(-0.643095\pi\)
−0.434558 + 0.900644i \(0.643095\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.75232 0.387132 0.193566 0.981087i \(-0.437995\pi\)
0.193566 + 0.981087i \(0.437995\pi\)
\(402\) 0 0
\(403\) −4.87226 −0.242705
\(404\) 0 0
\(405\) −4.17553 −0.207484
\(406\) 0 0
\(407\) 15.3044i 0.758611i
\(408\) 0 0
\(409\) − 4.63836i − 0.229352i −0.993403 0.114676i \(-0.963417\pi\)
0.993403 0.114676i \(-0.0365830\pi\)
\(410\) 0 0
\(411\) 11.9892i 0.591383i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 11.3826i − 0.558747i
\(416\) 0 0
\(417\) −6.64909 −0.325607
\(418\) 0 0
\(419\) − 14.2419i − 0.695760i −0.937539 0.347880i \(-0.886902\pi\)
0.937539 0.347880i \(-0.113098\pi\)
\(420\) 0 0
\(421\) − 20.0126i − 0.975356i −0.873024 0.487678i \(-0.837844\pi\)
0.873024 0.487678i \(-0.162156\pi\)
\(422\) 0 0
\(423\) 5.90095 0.286914
\(424\) 0 0
\(425\) 29.0181i 1.40759i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) − 2.63596i − 0.127265i
\(430\) 0 0
\(431\) 13.9833i 0.673552i 0.941585 + 0.336776i \(0.109336\pi\)
−0.941585 + 0.336776i \(0.890664\pi\)
\(432\) 0 0
\(433\) 0.984888i 0.0473307i 0.999720 + 0.0236653i \(0.00753362\pi\)
−0.999720 + 0.0236653i \(0.992466\pi\)
\(434\) 0 0
\(435\) −13.9415 −0.668442
\(436\) 0 0
\(437\) 3.30101 0.157908
\(438\) 0 0
\(439\) −6.87387 −0.328072 −0.164036 0.986454i \(-0.552451\pi\)
−0.164036 + 0.986454i \(0.552451\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.40966 −0.161998 −0.0809989 0.996714i \(-0.525811\pi\)
−0.0809989 + 0.996714i \(0.525811\pi\)
\(444\) 0 0
\(445\) 8.86327i 0.420159i
\(446\) 0 0
\(447\) −8.11897 −0.384014
\(448\) 0 0
\(449\) 32.9924 1.55701 0.778503 0.627641i \(-0.215979\pi\)
0.778503 + 0.627641i \(0.215979\pi\)
\(450\) 0 0
\(451\) − 9.09229i − 0.428139i
\(452\) 0 0
\(453\) 1.23604 0.0580742
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.8449 −1.06864 −0.534319 0.845283i \(-0.679432\pi\)
−0.534319 + 0.845283i \(0.679432\pi\)
\(458\) 0 0
\(459\) −2.33358 −0.108922
\(460\) 0 0
\(461\) −15.8743 −0.739338 −0.369669 0.929164i \(-0.620529\pi\)
−0.369669 + 0.929164i \(0.620529\pi\)
\(462\) 0 0
\(463\) − 2.72059i − 0.126436i −0.998000 0.0632182i \(-0.979864\pi\)
0.998000 0.0632182i \(-0.0201364\pi\)
\(464\) 0 0
\(465\) 13.2052i 0.612377i
\(466\) 0 0
\(467\) 23.9861i 1.10994i 0.831869 + 0.554972i \(0.187271\pi\)
−0.831869 + 0.554972i \(0.812729\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) − 9.60572i − 0.442608i
\(472\) 0 0
\(473\) −5.86472 −0.269660
\(474\) 0 0
\(475\) 87.5443i 4.01681i
\(476\) 0 0
\(477\) 1.56389i 0.0716058i
\(478\) 0 0
\(479\) 19.7502 0.902411 0.451205 0.892420i \(-0.350994\pi\)
0.451205 + 0.892420i \(0.350994\pi\)
\(480\) 0 0
\(481\) 13.7807i 0.628344i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 8.15073i − 0.370106i
\(486\) 0 0
\(487\) − 37.1161i − 1.68189i −0.541119 0.840946i \(-0.681999\pi\)
0.541119 0.840946i \(-0.318001\pi\)
\(488\) 0 0
\(489\) − 19.4092i − 0.877715i
\(490\) 0 0
\(491\) 20.5746 0.928517 0.464259 0.885700i \(-0.346321\pi\)
0.464259 + 0.885700i \(0.346321\pi\)
\(492\) 0 0
\(493\) −7.79146 −0.350910
\(494\) 0 0
\(495\) −7.14421 −0.321108
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.03516 −0.0463400 −0.0231700 0.999732i \(-0.507376\pi\)
−0.0231700 + 0.999732i \(0.507376\pi\)
\(500\) 0 0
\(501\) − 17.7482i − 0.792931i
\(502\) 0 0
\(503\) −19.7898 −0.882382 −0.441191 0.897413i \(-0.645444\pi\)
−0.441191 + 0.897413i \(0.645444\pi\)
\(504\) 0 0
\(505\) 57.5425 2.56061
\(506\) 0 0
\(507\) 10.6265i 0.471939i
\(508\) 0 0
\(509\) 4.23698 0.187801 0.0939004 0.995582i \(-0.470066\pi\)
0.0939004 + 0.995582i \(0.470066\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −7.04013 −0.310829
\(514\) 0 0
\(515\) 32.0788 1.41356
\(516\) 0 0
\(517\) 10.0963 0.444037
\(518\) 0 0
\(519\) 7.14150i 0.313477i
\(520\) 0 0
\(521\) − 38.8638i − 1.70265i −0.524637 0.851326i \(-0.675799\pi\)
0.524637 0.851326i \(-0.324201\pi\)
\(522\) 0 0
\(523\) 17.1105i 0.748191i 0.927390 + 0.374095i \(0.122047\pi\)
−0.927390 + 0.374095i \(0.877953\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.38000i 0.321478i
\(528\) 0 0
\(529\) 22.7801 0.990441
\(530\) 0 0
\(531\) − 6.08229i − 0.263949i
\(532\) 0 0
\(533\) − 8.18704i − 0.354620i
\(534\) 0 0
\(535\) −60.1621 −2.60104
\(536\) 0 0
\(537\) 23.9162i 1.03206i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 43.4921i 1.86987i 0.354819 + 0.934935i \(0.384543\pi\)
−0.354819 + 0.934935i \(0.615457\pi\)
\(542\) 0 0
\(543\) − 20.5572i − 0.882193i
\(544\) 0 0
\(545\) 14.0971i 0.603852i
\(546\) 0 0
\(547\) −10.8290 −0.463016 −0.231508 0.972833i \(-0.574366\pi\)
−0.231508 + 0.972833i \(0.574366\pi\)
\(548\) 0 0
\(549\) 9.11917 0.389197
\(550\) 0 0
\(551\) −23.5059 −1.00139
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 37.3495 1.58540
\(556\) 0 0
\(557\) 8.13137i 0.344537i 0.985050 + 0.172269i \(0.0551097\pi\)
−0.985050 + 0.172269i \(0.944890\pi\)
\(558\) 0 0
\(559\) −5.28082 −0.223355
\(560\) 0 0
\(561\) −3.99268 −0.168571
\(562\) 0 0
\(563\) − 22.6414i − 0.954222i −0.878843 0.477111i \(-0.841684\pi\)
0.878843 0.477111i \(-0.158316\pi\)
\(564\) 0 0
\(565\) 44.7158 1.88121
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.2971 −0.850898 −0.425449 0.904982i \(-0.639884\pi\)
−0.425449 + 0.904982i \(0.639884\pi\)
\(570\) 0 0
\(571\) −36.7637 −1.53851 −0.769257 0.638940i \(-0.779373\pi\)
−0.769257 + 0.638940i \(0.779373\pi\)
\(572\) 0 0
\(573\) −2.01521 −0.0841868
\(574\) 0 0
\(575\) − 5.83059i − 0.243153i
\(576\) 0 0
\(577\) 1.61560i 0.0672584i 0.999434 + 0.0336292i \(0.0107065\pi\)
−0.999434 + 0.0336292i \(0.989293\pi\)
\(578\) 0 0
\(579\) 3.57070i 0.148393i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.67578i 0.110819i
\(584\) 0 0
\(585\) −6.43291 −0.265968
\(586\) 0 0
\(587\) 3.68747i 0.152198i 0.997100 + 0.0760991i \(0.0242465\pi\)
−0.997100 + 0.0760991i \(0.975753\pi\)
\(588\) 0 0
\(589\) 22.2646i 0.917396i
\(590\) 0 0
\(591\) −17.5393 −0.721471
\(592\) 0 0
\(593\) − 37.3870i − 1.53530i −0.640869 0.767650i \(-0.721426\pi\)
0.640869 0.767650i \(-0.278574\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.7067i 0.724688i
\(598\) 0 0
\(599\) 9.94700i 0.406423i 0.979135 + 0.203212i \(0.0651379\pi\)
−0.979135 + 0.203212i \(0.934862\pi\)
\(600\) 0 0
\(601\) 35.9296i 1.46560i 0.680445 + 0.732799i \(0.261786\pi\)
−0.680445 + 0.732799i \(0.738214\pi\)
\(602\) 0 0
\(603\) −7.47317 −0.304331
\(604\) 0 0
\(605\) 33.7073 1.37040
\(606\) 0 0
\(607\) 29.8710 1.21242 0.606212 0.795303i \(-0.292688\pi\)
0.606212 + 0.795303i \(0.292688\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.09113 0.367788
\(612\) 0 0
\(613\) − 37.8926i − 1.53047i −0.643752 0.765234i \(-0.722623\pi\)
0.643752 0.765234i \(-0.277377\pi\)
\(614\) 0 0
\(615\) −22.1892 −0.894756
\(616\) 0 0
\(617\) 39.0332 1.57142 0.785709 0.618597i \(-0.212298\pi\)
0.785709 + 0.618597i \(0.212298\pi\)
\(618\) 0 0
\(619\) 24.8651i 0.999413i 0.866195 + 0.499706i \(0.166559\pi\)
−0.866195 + 0.499706i \(0.833441\pi\)
\(620\) 0 0
\(621\) 0.468884 0.0188157
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 67.4550 2.69820
\(626\) 0 0
\(627\) −12.0455 −0.481049
\(628\) 0 0
\(629\) 20.8735 0.832281
\(630\) 0 0
\(631\) − 43.3823i − 1.72702i −0.504330 0.863511i \(-0.668260\pi\)
0.504330 0.863511i \(-0.331740\pi\)
\(632\) 0 0
\(633\) − 4.23050i − 0.168147i
\(634\) 0 0
\(635\) − 39.6566i − 1.57372i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 3.49263i − 0.138166i
\(640\) 0 0
\(641\) 6.65118 0.262706 0.131353 0.991336i \(-0.458068\pi\)
0.131353 + 0.991336i \(0.458068\pi\)
\(642\) 0 0
\(643\) 18.1066i 0.714055i 0.934094 + 0.357027i \(0.116210\pi\)
−0.934094 + 0.357027i \(0.883790\pi\)
\(644\) 0 0
\(645\) 14.3125i 0.563555i
\(646\) 0 0
\(647\) 49.2843 1.93757 0.968783 0.247911i \(-0.0797440\pi\)
0.968783 + 0.247911i \(0.0797440\pi\)
\(648\) 0 0
\(649\) − 10.4066i − 0.408495i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.5289i 0.999025i 0.866307 + 0.499512i \(0.166487\pi\)
−0.866307 + 0.499512i \(0.833513\pi\)
\(654\) 0 0
\(655\) 57.0691i 2.22987i
\(656\) 0 0
\(657\) 14.5274i 0.566769i
\(658\) 0 0
\(659\) 12.0942 0.471125 0.235562 0.971859i \(-0.424307\pi\)
0.235562 + 0.971859i \(0.424307\pi\)
\(660\) 0 0
\(661\) 10.8508 0.422048 0.211024 0.977481i \(-0.432320\pi\)
0.211024 + 0.977481i \(0.432320\pi\)
\(662\) 0 0
\(663\) −3.59516 −0.139624
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.56553 0.0606177
\(668\) 0 0
\(669\) − 1.43532i − 0.0554927i
\(670\) 0 0
\(671\) 15.6026 0.602333
\(672\) 0 0
\(673\) −48.1931 −1.85771 −0.928854 0.370446i \(-0.879205\pi\)
−0.928854 + 0.370446i \(0.879205\pi\)
\(674\) 0 0
\(675\) 12.4350i 0.478625i
\(676\) 0 0
\(677\) −5.12187 −0.196849 −0.0984246 0.995145i \(-0.531380\pi\)
−0.0984246 + 0.995145i \(0.531380\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −16.0144 −0.613672
\(682\) 0 0
\(683\) −23.4381 −0.896835 −0.448418 0.893824i \(-0.648012\pi\)
−0.448418 + 0.893824i \(0.648012\pi\)
\(684\) 0 0
\(685\) 50.0612 1.91274
\(686\) 0 0
\(687\) − 16.2500i − 0.619975i
\(688\) 0 0
\(689\) 2.40937i 0.0917897i
\(690\) 0 0
\(691\) 13.8026i 0.525075i 0.964922 + 0.262537i \(0.0845593\pi\)
−0.964922 + 0.262537i \(0.915441\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 27.7635i 1.05313i
\(696\) 0 0
\(697\) −12.4009 −0.469717
\(698\) 0 0
\(699\) − 11.8611i − 0.448627i
\(700\) 0 0
\(701\) 11.8718i 0.448393i 0.974544 + 0.224196i \(0.0719757\pi\)
−0.974544 + 0.224196i \(0.928024\pi\)
\(702\) 0 0
\(703\) 62.9730 2.37507
\(704\) 0 0
\(705\) − 24.6396i − 0.927980i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 31.3202i − 1.17625i −0.808768 0.588127i \(-0.799865\pi\)
0.808768 0.588127i \(-0.200135\pi\)
\(710\) 0 0
\(711\) 1.68711i 0.0632717i
\(712\) 0 0
\(713\) − 1.48286i − 0.0555335i
\(714\) 0 0
\(715\) −11.0065 −0.411621
\(716\) 0 0
\(717\) 0.846585 0.0316163
\(718\) 0 0
\(719\) 25.2547 0.941840 0.470920 0.882176i \(-0.343922\pi\)
0.470920 + 0.882176i \(0.343922\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −0.879217 −0.0326984
\(724\) 0 0
\(725\) 41.5187i 1.54197i
\(726\) 0 0
\(727\) −17.9342 −0.665144 −0.332572 0.943078i \(-0.607916\pi\)
−0.332572 + 0.943078i \(0.607916\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 7.99884i 0.295848i
\(732\) 0 0
\(733\) 12.3356 0.455625 0.227813 0.973705i \(-0.426843\pi\)
0.227813 + 0.973705i \(0.426843\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.7864 −0.470992
\(738\) 0 0
\(739\) −43.4925 −1.59990 −0.799949 0.600068i \(-0.795140\pi\)
−0.799949 + 0.600068i \(0.795140\pi\)
\(740\) 0 0
\(741\) −10.8462 −0.398444
\(742\) 0 0
\(743\) 32.8397i 1.20477i 0.798205 + 0.602386i \(0.205783\pi\)
−0.798205 + 0.602386i \(0.794217\pi\)
\(744\) 0 0
\(745\) 33.9010i 1.24204i
\(746\) 0 0
\(747\) − 2.72601i − 0.0997396i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.80656i 0.321356i 0.987007 + 0.160678i \(0.0513680\pi\)
−0.987007 + 0.160678i \(0.948632\pi\)
\(752\) 0 0
\(753\) −18.1441 −0.661206
\(754\) 0 0
\(755\) − 5.16112i − 0.187832i
\(756\) 0 0
\(757\) − 16.9328i − 0.615433i −0.951478 0.307717i \(-0.900435\pi\)
0.951478 0.307717i \(-0.0995649\pi\)
\(758\) 0 0
\(759\) 0.802247 0.0291197
\(760\) 0 0
\(761\) − 12.5987i − 0.456704i −0.973579 0.228352i \(-0.926666\pi\)
0.973579 0.228352i \(-0.0733336\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 9.74391i 0.352292i
\(766\) 0 0
\(767\) − 9.37051i − 0.338350i
\(768\) 0 0
\(769\) − 16.0445i − 0.578581i −0.957241 0.289291i \(-0.906581\pi\)
0.957241 0.289291i \(-0.0934194\pi\)
\(770\) 0 0
\(771\) −18.3484 −0.660802
\(772\) 0 0
\(773\) 18.3134 0.658688 0.329344 0.944210i \(-0.393172\pi\)
0.329344 + 0.944210i \(0.393172\pi\)
\(774\) 0 0
\(775\) 39.3261 1.41264
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −37.4120 −1.34043
\(780\) 0 0
\(781\) − 5.97579i − 0.213830i
\(782\) 0 0
\(783\) −3.33885 −0.119321
\(784\) 0 0
\(785\) −40.1090 −1.43155
\(786\) 0 0
\(787\) − 4.49151i − 0.160105i −0.996791 0.0800526i \(-0.974491\pi\)
0.996791 0.0800526i \(-0.0255088\pi\)
\(788\) 0 0
\(789\) 3.48770 0.124166
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 14.0492 0.498902
\(794\) 0 0
\(795\) 6.53008 0.231598
\(796\) 0 0
\(797\) −31.7698 −1.12534 −0.562672 0.826680i \(-0.690227\pi\)
−0.562672 + 0.826680i \(0.690227\pi\)
\(798\) 0 0
\(799\) − 13.7703i − 0.487159i
\(800\) 0 0
\(801\) 2.12267i 0.0750009i
\(802\) 0 0
\(803\) 24.8560i 0.877150i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 14.7121i 0.517890i
\(808\) 0 0
\(809\) 25.1568 0.884464 0.442232 0.896901i \(-0.354187\pi\)
0.442232 + 0.896901i \(0.354187\pi\)
\(810\) 0 0
\(811\) − 48.0042i − 1.68565i −0.538184 0.842827i \(-0.680890\pi\)
0.538184 0.842827i \(-0.319110\pi\)
\(812\) 0 0
\(813\) − 19.9028i − 0.698021i
\(814\) 0 0
\(815\) −81.0437 −2.83884
\(816\) 0 0
\(817\) 24.1316i 0.844257i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.8418i 0.587782i 0.955839 + 0.293891i \(0.0949503\pi\)
−0.955839 + 0.293891i \(0.905050\pi\)
\(822\) 0 0
\(823\) − 19.7642i − 0.688936i −0.938798 0.344468i \(-0.888059\pi\)
0.938798 0.344468i \(-0.111941\pi\)
\(824\) 0 0
\(825\) 21.2760i 0.740735i
\(826\) 0 0
\(827\) −49.1702 −1.70981 −0.854907 0.518781i \(-0.826386\pi\)
−0.854907 + 0.518781i \(0.826386\pi\)
\(828\) 0 0
\(829\) 15.9201 0.552929 0.276465 0.961024i \(-0.410837\pi\)
0.276465 + 0.961024i \(0.410837\pi\)
\(830\) 0 0
\(831\) −26.4466 −0.917421
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −74.1081 −2.56462
\(836\) 0 0
\(837\) 3.16253i 0.109313i
\(838\) 0 0
\(839\) 38.3305 1.32332 0.661658 0.749806i \(-0.269853\pi\)
0.661658 + 0.749806i \(0.269853\pi\)
\(840\) 0 0
\(841\) 17.8521 0.615589
\(842\) 0 0
\(843\) 20.2837i 0.698609i
\(844\) 0 0
\(845\) 44.3712 1.52641
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −6.58671 −0.226055
\(850\) 0 0
\(851\) −4.19410 −0.143772
\(852\) 0 0
\(853\) 22.5158 0.770927 0.385463 0.922723i \(-0.374042\pi\)
0.385463 + 0.922723i \(0.374042\pi\)
\(854\) 0 0
\(855\) 29.3963i 1.00533i
\(856\) 0 0
\(857\) − 12.9226i − 0.441427i −0.975339 0.220713i \(-0.929161\pi\)
0.975339 0.220713i \(-0.0708385\pi\)
\(858\) 0 0
\(859\) 23.2577i 0.793544i 0.917917 + 0.396772i \(0.129870\pi\)
−0.917917 + 0.396772i \(0.870130\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.88440i 0.302428i 0.988501 + 0.151214i \(0.0483183\pi\)
−0.988501 + 0.151214i \(0.951682\pi\)
\(864\) 0 0
\(865\) 29.8195 1.01389
\(866\) 0 0
\(867\) − 11.5544i − 0.392409i
\(868\) 0 0
\(869\) 2.88660i 0.0979212i
\(870\) 0 0
\(871\) −11.5133 −0.390114
\(872\) 0 0
\(873\) − 1.95202i − 0.0660660i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 46.4345i − 1.56798i −0.620773 0.783990i \(-0.713181\pi\)
0.620773 0.783990i \(-0.286819\pi\)
\(878\) 0 0
\(879\) − 12.9438i − 0.436585i
\(880\) 0 0
\(881\) − 27.1901i − 0.916058i −0.888937 0.458029i \(-0.848556\pi\)
0.888937 0.458029i \(-0.151444\pi\)
\(882\) 0 0
\(883\) 21.7975 0.733543 0.366772 0.930311i \(-0.380463\pi\)
0.366772 + 0.930311i \(0.380463\pi\)
\(884\) 0 0
\(885\) −25.3968 −0.853703
\(886\) 0 0
\(887\) 42.3322 1.42138 0.710688 0.703508i \(-0.248384\pi\)
0.710688 + 0.703508i \(0.248384\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.71097 −0.0573197
\(892\) 0 0
\(893\) − 41.5434i − 1.39020i
\(894\) 0 0
\(895\) 99.8629 3.33805
\(896\) 0 0
\(897\) 0.722374 0.0241194
\(898\) 0 0
\(899\) 10.5592i 0.352169i
\(900\) 0 0
\(901\) 3.64946 0.121581
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −85.8371 −2.85332
\(906\) 0 0
\(907\) 45.1210 1.49822 0.749109 0.662446i \(-0.230482\pi\)
0.749109 + 0.662446i \(0.230482\pi\)
\(908\) 0 0
\(909\) 13.7809 0.457083
\(910\) 0 0
\(911\) − 36.2714i − 1.20173i −0.799352 0.600863i \(-0.794824\pi\)
0.799352 0.600863i \(-0.205176\pi\)
\(912\) 0 0
\(913\) − 4.66413i − 0.154360i
\(914\) 0 0
\(915\) − 38.0774i − 1.25880i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 43.6367i 1.43944i 0.694264 + 0.719721i \(0.255730\pi\)
−0.694264 + 0.719721i \(0.744270\pi\)
\(920\) 0 0
\(921\) −11.8773 −0.391369
\(922\) 0 0
\(923\) − 5.38082i − 0.177112i
\(924\) 0 0
\(925\) − 111.230i − 3.65721i
\(926\) 0 0
\(927\) 7.68258 0.252329
\(928\) 0 0
\(929\) − 11.7866i − 0.386707i −0.981129 0.193354i \(-0.938064\pi\)
0.981129 0.193354i \(-0.0619365\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) − 11.8370i − 0.387525i
\(934\) 0 0
\(935\) 16.6716i 0.545218i
\(936\) 0 0
\(937\) − 35.0529i − 1.14513i −0.819860 0.572565i \(-0.805949\pi\)
0.819860 0.572565i \(-0.194051\pi\)
\(938\) 0 0
\(939\) 14.8243 0.483774
\(940\) 0 0
\(941\) −28.5971 −0.932238 −0.466119 0.884722i \(-0.654348\pi\)
−0.466119 + 0.884722i \(0.654348\pi\)
\(942\) 0 0
\(943\) 2.49170 0.0811410
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 51.4888 1.67316 0.836580 0.547845i \(-0.184552\pi\)
0.836580 + 0.547845i \(0.184552\pi\)
\(948\) 0 0
\(949\) 22.3813i 0.726528i
\(950\) 0 0
\(951\) 6.78361 0.219974
\(952\) 0 0
\(953\) −11.8761 −0.384706 −0.192353 0.981326i \(-0.561612\pi\)
−0.192353 + 0.981326i \(0.561612\pi\)
\(954\) 0 0
\(955\) 8.41458i 0.272290i
\(956\) 0 0
\(957\) −5.71268 −0.184665
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −20.9984 −0.677369
\(962\) 0 0
\(963\) −14.4083 −0.464300
\(964\) 0 0
\(965\) 14.9096 0.479956
\(966\) 0 0
\(967\) − 59.2193i − 1.90437i −0.305530 0.952183i \(-0.598833\pi\)
0.305530 0.952183i \(-0.401167\pi\)
\(968\) 0 0
\(969\) 16.4287i 0.527765i
\(970\) 0 0
\(971\) − 5.23816i − 0.168101i −0.996462 0.0840503i \(-0.973214\pi\)
0.996462 0.0840503i \(-0.0267857\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 19.1577i 0.613537i
\(976\) 0 0
\(977\) −53.2097 −1.70233 −0.851165 0.524898i \(-0.824103\pi\)
−0.851165 + 0.524898i \(0.824103\pi\)
\(978\) 0 0
\(979\) 3.63183i 0.116074i
\(980\) 0 0
\(981\) 3.37612i 0.107791i
\(982\) 0 0
\(983\) 27.9475 0.891386 0.445693 0.895186i \(-0.352957\pi\)
0.445693 + 0.895186i \(0.352957\pi\)
\(984\) 0 0
\(985\) 73.2359i 2.33349i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1.60720i − 0.0511061i
\(990\) 0 0
\(991\) 21.7061i 0.689516i 0.938692 + 0.344758i \(0.112039\pi\)
−0.938692 + 0.344758i \(0.887961\pi\)
\(992\) 0 0
\(993\) − 4.74570i − 0.150600i
\(994\) 0 0
\(995\) 73.9349 2.34389
\(996\) 0 0
\(997\) −33.6547 −1.06586 −0.532928 0.846161i \(-0.678908\pi\)
−0.532928 + 0.846161i \(0.678908\pi\)
\(998\) 0 0
\(999\) 8.94486 0.283003
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4704.2.p.a.3919.5 32
4.3 odd 2 1176.2.p.a.979.20 32
7.4 even 3 672.2.bb.a.271.8 32
7.5 odd 6 672.2.bb.a.367.1 32
7.6 odd 2 inner 4704.2.p.a.3919.24 32
8.3 odd 2 inner 4704.2.p.a.3919.23 32
8.5 even 2 1176.2.p.a.979.17 32
21.5 even 6 2016.2.bs.c.1711.16 32
21.11 odd 6 2016.2.bs.c.271.1 32
28.11 odd 6 168.2.t.a.19.1 32
28.19 even 6 168.2.t.a.115.12 yes 32
28.27 even 2 1176.2.p.a.979.19 32
56.5 odd 6 168.2.t.a.115.1 yes 32
56.11 odd 6 672.2.bb.a.271.1 32
56.13 odd 2 1176.2.p.a.979.18 32
56.19 even 6 672.2.bb.a.367.8 32
56.27 even 2 inner 4704.2.p.a.3919.6 32
56.53 even 6 168.2.t.a.19.12 yes 32
84.11 even 6 504.2.bk.c.19.16 32
84.47 odd 6 504.2.bk.c.451.5 32
168.5 even 6 504.2.bk.c.451.16 32
168.11 even 6 2016.2.bs.c.271.16 32
168.53 odd 6 504.2.bk.c.19.5 32
168.131 odd 6 2016.2.bs.c.1711.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.1 32 28.11 odd 6
168.2.t.a.19.12 yes 32 56.53 even 6
168.2.t.a.115.1 yes 32 56.5 odd 6
168.2.t.a.115.12 yes 32 28.19 even 6
504.2.bk.c.19.5 32 168.53 odd 6
504.2.bk.c.19.16 32 84.11 even 6
504.2.bk.c.451.5 32 84.47 odd 6
504.2.bk.c.451.16 32 168.5 even 6
672.2.bb.a.271.1 32 56.11 odd 6
672.2.bb.a.271.8 32 7.4 even 3
672.2.bb.a.367.1 32 7.5 odd 6
672.2.bb.a.367.8 32 56.19 even 6
1176.2.p.a.979.17 32 8.5 even 2
1176.2.p.a.979.18 32 56.13 odd 2
1176.2.p.a.979.19 32 28.27 even 2
1176.2.p.a.979.20 32 4.3 odd 2
2016.2.bs.c.271.1 32 21.11 odd 6
2016.2.bs.c.271.16 32 168.11 even 6
2016.2.bs.c.1711.1 32 168.131 odd 6
2016.2.bs.c.1711.16 32 21.5 even 6
4704.2.p.a.3919.5 32 1.1 even 1 trivial
4704.2.p.a.3919.6 32 56.27 even 2 inner
4704.2.p.a.3919.23 32 8.3 odd 2 inner
4704.2.p.a.3919.24 32 7.6 odd 2 inner