Properties

Label 504.2.bk.c.451.3
Level $504$
Weight $2$
Character 504.451
Analytic conductor $4.024$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(19,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.3
Character \(\chi\) \(=\) 504.451
Dual form 504.2.bk.c.19.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34597 - 0.434022i) q^{2} +(1.62325 + 1.16836i) q^{4} +(-1.44142 - 2.49662i) q^{5} +(-2.63862 - 0.194181i) q^{7} +(-1.67775 - 2.27710i) q^{8} +(0.856518 + 3.98597i) q^{10} +(-2.91340 + 5.04616i) q^{11} +1.04841 q^{13} +(3.46721 + 1.40658i) q^{14} +(1.26988 + 3.79307i) q^{16} +(5.91062 + 3.41250i) q^{17} +(-0.589961 + 0.340614i) q^{19} +(0.577155 - 5.73673i) q^{20} +(6.11148 - 5.52748i) q^{22} +(1.85937 - 1.07351i) q^{23} +(-1.65540 + 2.86723i) q^{25} +(-1.41112 - 0.455033i) q^{26} +(-4.05626 - 3.39805i) q^{28} +6.61515i q^{29} +(-1.91558 + 3.31788i) q^{31} +(-0.0629331 - 5.65650i) q^{32} +(-6.47439 - 7.15845i) q^{34} +(3.31857 + 6.86751i) q^{35} +(-2.06185 + 1.19041i) q^{37} +(0.941902 - 0.202399i) q^{38} +(-3.26670 + 7.47095i) q^{40} -1.19919i q^{41} +1.34319 q^{43} +(-10.6249 + 4.78728i) q^{44} +(-2.96857 + 0.637896i) q^{46} +(5.52670 + 9.57253i) q^{47} +(6.92459 + 1.02474i) q^{49} +(3.47255 - 3.14072i) q^{50} +(1.70183 + 1.22492i) q^{52} +(-6.99615 - 4.03923i) q^{53} +16.7978 q^{55} +(3.98476 + 6.33417i) q^{56} +(2.87112 - 8.90377i) q^{58} +(-6.81625 - 3.93537i) q^{59} +(1.63471 + 2.83140i) q^{61} +(4.01834 - 3.63435i) q^{62} +(-2.37034 + 7.64078i) q^{64} +(-1.51120 - 2.61747i) q^{65} +(-6.65629 + 11.5290i) q^{67} +(5.60739 + 12.4451i) q^{68} +(-1.48603 - 10.6838i) q^{70} +1.08533i q^{71} +(4.88878 + 2.82254i) q^{73} +(3.29184 - 0.707361i) q^{74} +(-1.35561 - 0.136384i) q^{76} +(8.66721 - 12.7491i) q^{77} +(-10.9630 + 6.32946i) q^{79} +(7.63942 - 8.63782i) q^{80} +(-0.520474 + 1.61406i) q^{82} +0.482042i q^{83} -19.6754i q^{85} +(-1.80789 - 0.582976i) q^{86} +(16.3785 - 1.83207i) q^{88} +(-10.7308 + 6.19543i) q^{89} +(-2.76635 - 0.203581i) q^{91} +(4.27246 + 0.429839i) q^{92} +(-3.28406 - 15.2830i) q^{94} +(1.70077 + 0.981939i) q^{95} +3.63532i q^{97} +(-8.87550 - 4.38468i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 2 q^{4} - 16 q^{8} - 18 q^{10} - 8 q^{11} + 10 q^{14} + 6 q^{16} - 20 q^{22} - 16 q^{25} + 30 q^{26} - 14 q^{28} + 12 q^{32} + 24 q^{35} + 18 q^{38} - 30 q^{40} - 16 q^{43} - 24 q^{44}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34597 0.434022i −0.951742 0.306900i
\(3\) 0 0
\(4\) 1.62325 + 1.16836i 0.811625 + 0.584179i
\(5\) −1.44142 2.49662i −0.644624 1.11652i −0.984388 0.176010i \(-0.943681\pi\)
0.339765 0.940511i \(-0.389653\pi\)
\(6\) 0 0
\(7\) −2.63862 0.194181i −0.997303 0.0733933i
\(8\) −1.67775 2.27710i −0.593172 0.805075i
\(9\) 0 0
\(10\) 0.856518 + 3.98597i 0.270855 + 1.26047i
\(11\) −2.91340 + 5.04616i −0.878423 + 1.52147i −0.0253527 + 0.999679i \(0.508071\pi\)
−0.853071 + 0.521795i \(0.825262\pi\)
\(12\) 0 0
\(13\) 1.04841 0.290776 0.145388 0.989375i \(-0.453557\pi\)
0.145388 + 0.989375i \(0.453557\pi\)
\(14\) 3.46721 + 1.40658i 0.926651 + 0.375924i
\(15\) 0 0
\(16\) 1.26988 + 3.79307i 0.317469 + 0.948269i
\(17\) 5.91062 + 3.41250i 1.43354 + 0.827652i 0.997388 0.0722232i \(-0.0230094\pi\)
0.436147 + 0.899875i \(0.356343\pi\)
\(18\) 0 0
\(19\) −0.589961 + 0.340614i −0.135346 + 0.0781423i −0.566144 0.824306i \(-0.691566\pi\)
0.430798 + 0.902448i \(0.358232\pi\)
\(20\) 0.577155 5.73673i 0.129056 1.28277i
\(21\) 0 0
\(22\) 6.11148 5.52748i 1.30297 1.17846i
\(23\) 1.85937 1.07351i 0.387705 0.223841i −0.293460 0.955971i \(-0.594807\pi\)
0.681165 + 0.732130i \(0.261474\pi\)
\(24\) 0 0
\(25\) −1.65540 + 2.86723i −0.331079 + 0.573446i
\(26\) −1.41112 0.455033i −0.276744 0.0892393i
\(27\) 0 0
\(28\) −4.05626 3.39805i −0.766561 0.642172i
\(29\) 6.61515i 1.22840i 0.789149 + 0.614201i \(0.210522\pi\)
−0.789149 + 0.614201i \(0.789478\pi\)
\(30\) 0 0
\(31\) −1.91558 + 3.31788i −0.344048 + 0.595909i −0.985180 0.171522i \(-0.945132\pi\)
0.641132 + 0.767430i \(0.278465\pi\)
\(32\) −0.0629331 5.65650i −0.0111251 0.999938i
\(33\) 0 0
\(34\) −6.47439 7.15845i −1.11035 1.22766i
\(35\) 3.31857 + 6.86751i 0.560940 + 1.16082i
\(36\) 0 0
\(37\) −2.06185 + 1.19041i −0.338966 + 0.195702i −0.659814 0.751429i \(-0.729365\pi\)
0.320849 + 0.947130i \(0.396032\pi\)
\(38\) 0.941902 0.202399i 0.152797 0.0328335i
\(39\) 0 0
\(40\) −3.26670 + 7.47095i −0.516511 + 1.18126i
\(41\) 1.19919i 0.187281i −0.995606 0.0936407i \(-0.970149\pi\)
0.995606 0.0936407i \(-0.0298505\pi\)
\(42\) 0 0
\(43\) 1.34319 0.204835 0.102418 0.994741i \(-0.467342\pi\)
0.102418 + 0.994741i \(0.467342\pi\)
\(44\) −10.6249 + 4.78728i −1.60176 + 0.721709i
\(45\) 0 0
\(46\) −2.96857 + 0.637896i −0.437692 + 0.0940526i
\(47\) 5.52670 + 9.57253i 0.806152 + 1.39630i 0.915511 + 0.402294i \(0.131787\pi\)
−0.109359 + 0.994002i \(0.534880\pi\)
\(48\) 0 0
\(49\) 6.92459 + 1.02474i 0.989227 + 0.146391i
\(50\) 3.47255 3.14072i 0.491093 0.444165i
\(51\) 0 0
\(52\) 1.70183 + 1.22492i 0.236001 + 0.169865i
\(53\) −6.99615 4.03923i −0.960995 0.554830i −0.0645156 0.997917i \(-0.520550\pi\)
−0.896479 + 0.443086i \(0.853884\pi\)
\(54\) 0 0
\(55\) 16.7978 2.26501
\(56\) 3.98476 + 6.33417i 0.532486 + 0.846439i
\(57\) 0 0
\(58\) 2.87112 8.90377i 0.376997 1.16912i
\(59\) −6.81625 3.93537i −0.887400 0.512341i −0.0143092 0.999898i \(-0.504555\pi\)
−0.873091 + 0.487557i \(0.837888\pi\)
\(60\) 0 0
\(61\) 1.63471 + 2.83140i 0.209303 + 0.362524i 0.951495 0.307663i \(-0.0995471\pi\)
−0.742192 + 0.670187i \(0.766214\pi\)
\(62\) 4.01834 3.63435i 0.510329 0.461563i
\(63\) 0 0
\(64\) −2.37034 + 7.64078i −0.296293 + 0.955097i
\(65\) −1.51120 2.61747i −0.187441 0.324658i
\(66\) 0 0
\(67\) −6.65629 + 11.5290i −0.813195 + 1.40850i 0.0974214 + 0.995243i \(0.468941\pi\)
−0.910617 + 0.413252i \(0.864393\pi\)
\(68\) 5.60739 + 12.4451i 0.679996 + 1.50918i
\(69\) 0 0
\(70\) −1.48603 10.6838i −0.177614 1.27695i
\(71\) 1.08533i 0.128805i 0.997924 + 0.0644027i \(0.0205142\pi\)
−0.997924 + 0.0644027i \(0.979486\pi\)
\(72\) 0 0
\(73\) 4.88878 + 2.82254i 0.572188 + 0.330353i 0.758023 0.652228i \(-0.226166\pi\)
−0.185835 + 0.982581i \(0.559499\pi\)
\(74\) 3.29184 0.707361i 0.382669 0.0822291i
\(75\) 0 0
\(76\) −1.35561 0.136384i −0.155500 0.0156444i
\(77\) 8.66721 12.7491i 0.987720 1.45290i
\(78\) 0 0
\(79\) −10.9630 + 6.32946i −1.23343 + 0.712120i −0.967743 0.251939i \(-0.918932\pi\)
−0.265686 + 0.964060i \(0.585598\pi\)
\(80\) 7.63942 8.63782i 0.854114 0.965738i
\(81\) 0 0
\(82\) −0.520474 + 1.61406i −0.0574767 + 0.178244i
\(83\) 0.482042i 0.0529110i 0.999650 + 0.0264555i \(0.00842203\pi\)
−0.999650 + 0.0264555i \(0.991578\pi\)
\(84\) 0 0
\(85\) 19.6754i 2.13410i
\(86\) −1.80789 0.582976i −0.194950 0.0628639i
\(87\) 0 0
\(88\) 16.3785 1.83207i 1.74596 0.195299i
\(89\) −10.7308 + 6.19543i −1.13746 + 0.656714i −0.945801 0.324747i \(-0.894721\pi\)
−0.191661 + 0.981461i \(0.561388\pi\)
\(90\) 0 0
\(91\) −2.76635 0.203581i −0.289992 0.0213410i
\(92\) 4.27246 + 0.429839i 0.445434 + 0.0448138i
\(93\) 0 0
\(94\) −3.28406 15.2830i −0.338725 1.57632i
\(95\) 1.70077 + 0.981939i 0.174495 + 0.100745i
\(96\) 0 0
\(97\) 3.63532i 0.369111i 0.982822 + 0.184556i \(0.0590846\pi\)
−0.982822 + 0.184556i \(0.940915\pi\)
\(98\) −8.87550 4.38468i −0.896561 0.442920i
\(99\) 0 0
\(100\) −6.03708 + 2.72014i −0.603708 + 0.272014i
\(101\) 1.25234 2.16911i 0.124612 0.215835i −0.796969 0.604020i \(-0.793565\pi\)
0.921581 + 0.388185i \(0.126898\pi\)
\(102\) 0 0
\(103\) 2.31322 + 4.00661i 0.227928 + 0.394783i 0.957194 0.289447i \(-0.0934715\pi\)
−0.729266 + 0.684231i \(0.760138\pi\)
\(104\) −1.75896 2.38733i −0.172480 0.234097i
\(105\) 0 0
\(106\) 7.66346 + 8.47315i 0.744341 + 0.822985i
\(107\) −3.03473 5.25631i −0.293378 0.508146i 0.681228 0.732071i \(-0.261446\pi\)
−0.974606 + 0.223925i \(0.928113\pi\)
\(108\) 0 0
\(109\) −12.6132 7.28224i −1.20813 0.697513i −0.245777 0.969326i \(-0.579043\pi\)
−0.962350 + 0.271814i \(0.912377\pi\)
\(110\) −22.6092 7.29060i −2.15570 0.695132i
\(111\) 0 0
\(112\) −2.61418 10.2551i −0.247017 0.969011i
\(113\) 3.82875 0.360179 0.180089 0.983650i \(-0.442361\pi\)
0.180089 + 0.983650i \(0.442361\pi\)
\(114\) 0 0
\(115\) −5.36027 3.09475i −0.499847 0.288587i
\(116\) −7.72887 + 10.7380i −0.717607 + 0.997002i
\(117\) 0 0
\(118\) 7.46641 + 8.25527i 0.687339 + 0.759959i
\(119\) −14.9332 10.1520i −1.36893 0.930632i
\(120\) 0 0
\(121\) −11.4758 19.8767i −1.04326 1.80697i
\(122\) −0.971374 4.52047i −0.0879441 0.409265i
\(123\) 0 0
\(124\) −6.98593 + 3.14766i −0.627355 + 0.282668i
\(125\) −4.86972 −0.435561
\(126\) 0 0
\(127\) 0.550415i 0.0488415i −0.999702 0.0244207i \(-0.992226\pi\)
0.999702 0.0244207i \(-0.00777413\pi\)
\(128\) 6.50667 9.25545i 0.575114 0.818074i
\(129\) 0 0
\(130\) 0.897981 + 4.17893i 0.0787582 + 0.366516i
\(131\) 2.42818 1.40191i 0.212151 0.122486i −0.390159 0.920747i \(-0.627580\pi\)
0.602311 + 0.798262i \(0.294247\pi\)
\(132\) 0 0
\(133\) 1.62282 0.784192i 0.140717 0.0679980i
\(134\) 13.9630 12.6287i 1.20622 1.09095i
\(135\) 0 0
\(136\) −2.14592 19.1844i −0.184011 1.64504i
\(137\) 6.38148 11.0530i 0.545206 0.944325i −0.453387 0.891314i \(-0.649785\pi\)
0.998594 0.0530118i \(-0.0168821\pi\)
\(138\) 0 0
\(139\) 6.11761i 0.518889i −0.965758 0.259444i \(-0.916461\pi\)
0.965758 0.259444i \(-0.0835394\pi\)
\(140\) −2.63685 + 15.0250i −0.222855 + 1.26984i
\(141\) 0 0
\(142\) 0.471059 1.46082i 0.0395304 0.122589i
\(143\) −3.05443 + 5.29044i −0.255425 + 0.442408i
\(144\) 0 0
\(145\) 16.5155 9.53522i 1.37154 0.791857i
\(146\) −5.35508 5.92087i −0.443190 0.490015i
\(147\) 0 0
\(148\) −4.73771 0.476647i −0.389438 0.0391802i
\(149\) −1.75163 + 1.01130i −0.143499 + 0.0828491i −0.570030 0.821624i \(-0.693069\pi\)
0.426532 + 0.904473i \(0.359735\pi\)
\(150\) 0 0
\(151\) 12.1833 + 7.03404i 0.991464 + 0.572422i 0.905712 0.423895i \(-0.139337\pi\)
0.0857523 + 0.996316i \(0.472671\pi\)
\(152\) 1.76542 + 0.771935i 0.143194 + 0.0626122i
\(153\) 0 0
\(154\) −17.1992 + 13.3982i −1.38595 + 1.07965i
\(155\) 11.0446 0.887126
\(156\) 0 0
\(157\) 2.61739 4.53344i 0.208890 0.361808i −0.742475 0.669874i \(-0.766348\pi\)
0.951365 + 0.308065i \(0.0996816\pi\)
\(158\) 17.5029 3.76108i 1.39246 0.299215i
\(159\) 0 0
\(160\) −14.0314 + 8.31053i −1.10928 + 0.657005i
\(161\) −5.11461 + 2.47152i −0.403088 + 0.194783i
\(162\) 0 0
\(163\) −0.488212 0.845609i −0.0382397 0.0662332i 0.846272 0.532751i \(-0.178842\pi\)
−0.884512 + 0.466518i \(0.845508\pi\)
\(164\) 1.40108 1.94658i 0.109406 0.152002i
\(165\) 0 0
\(166\) 0.209217 0.648813i 0.0162384 0.0503576i
\(167\) 2.08267 0.161162 0.0805808 0.996748i \(-0.474322\pi\)
0.0805808 + 0.996748i \(0.474322\pi\)
\(168\) 0 0
\(169\) −11.9008 −0.915449
\(170\) −8.53956 + 26.4824i −0.654954 + 2.03111i
\(171\) 0 0
\(172\) 2.18034 + 1.56933i 0.166249 + 0.119660i
\(173\) 10.6732 + 18.4864i 0.811465 + 1.40550i 0.911839 + 0.410548i \(0.134663\pi\)
−0.100374 + 0.994950i \(0.532004\pi\)
\(174\) 0 0
\(175\) 4.92472 7.24408i 0.372274 0.547601i
\(176\) −22.8401 4.64274i −1.72164 0.349960i
\(177\) 0 0
\(178\) 17.1322 3.68143i 1.28412 0.275935i
\(179\) −3.47487 + 6.01865i −0.259724 + 0.449855i −0.966168 0.257914i \(-0.916965\pi\)
0.706444 + 0.707769i \(0.250298\pi\)
\(180\) 0 0
\(181\) −7.67619 −0.570566 −0.285283 0.958443i \(-0.592088\pi\)
−0.285283 + 0.958443i \(0.592088\pi\)
\(182\) 3.63505 + 1.47467i 0.269448 + 0.109310i
\(183\) 0 0
\(184\) −5.56402 2.43289i −0.410185 0.179355i
\(185\) 5.94398 + 3.43176i 0.437010 + 0.252308i
\(186\) 0 0
\(187\) −34.4400 + 19.8839i −2.51850 + 1.45406i
\(188\) −2.21293 + 21.9958i −0.161394 + 1.60421i
\(189\) 0 0
\(190\) −1.86299 2.05983i −0.135156 0.149436i
\(191\) 15.4238 8.90495i 1.11603 0.644340i 0.175645 0.984454i \(-0.443799\pi\)
0.940384 + 0.340114i \(0.110466\pi\)
\(192\) 0 0
\(193\) 6.89797 11.9476i 0.496527 0.860010i −0.503465 0.864016i \(-0.667942\pi\)
0.999992 + 0.00400574i \(0.00127507\pi\)
\(194\) 1.57781 4.89302i 0.113280 0.351299i
\(195\) 0 0
\(196\) 10.0431 + 9.75380i 0.717362 + 0.696700i
\(197\) 1.13180i 0.0806374i 0.999187 + 0.0403187i \(0.0128373\pi\)
−0.999187 + 0.0403187i \(0.987163\pi\)
\(198\) 0 0
\(199\) −4.26593 + 7.38881i −0.302404 + 0.523779i −0.976680 0.214701i \(-0.931122\pi\)
0.674276 + 0.738479i \(0.264456\pi\)
\(200\) 9.30630 1.04098i 0.658055 0.0736087i
\(201\) 0 0
\(202\) −2.62705 + 2.37601i −0.184838 + 0.167175i
\(203\) 1.28453 17.4548i 0.0901566 1.22509i
\(204\) 0 0
\(205\) −2.99391 + 1.72853i −0.209104 + 0.120726i
\(206\) −1.37456 6.39676i −0.0957698 0.445683i
\(207\) 0 0
\(208\) 1.33135 + 3.97669i 0.0923125 + 0.275734i
\(209\) 3.96939i 0.274568i
\(210\) 0 0
\(211\) 21.2436 1.46247 0.731237 0.682124i \(-0.238944\pi\)
0.731237 + 0.682124i \(0.238944\pi\)
\(212\) −6.63723 14.7307i −0.455846 1.01171i
\(213\) 0 0
\(214\) 1.80329 + 8.39195i 0.123270 + 0.573662i
\(215\) −1.93611 3.35344i −0.132042 0.228703i
\(216\) 0 0
\(217\) 5.69874 8.38264i 0.386856 0.569051i
\(218\) 13.8163 + 15.2761i 0.935758 + 1.03463i
\(219\) 0 0
\(220\) 27.2670 + 19.6258i 1.83834 + 1.32317i
\(221\) 6.19674 + 3.57769i 0.416838 + 0.240662i
\(222\) 0 0
\(223\) 3.12207 0.209069 0.104535 0.994521i \(-0.466665\pi\)
0.104535 + 0.994521i \(0.466665\pi\)
\(224\) −0.932327 + 14.9376i −0.0622937 + 0.998058i
\(225\) 0 0
\(226\) −5.15337 1.66176i −0.342797 0.110539i
\(227\) −4.52649 2.61337i −0.300434 0.173456i 0.342204 0.939626i \(-0.388827\pi\)
−0.642638 + 0.766170i \(0.722160\pi\)
\(228\) 0 0
\(229\) 14.2129 + 24.6175i 0.939215 + 1.62677i 0.766939 + 0.641720i \(0.221779\pi\)
0.172276 + 0.985049i \(0.444888\pi\)
\(230\) 5.87154 + 6.49190i 0.387158 + 0.428063i
\(231\) 0 0
\(232\) 15.0633 11.0985i 0.988957 0.728655i
\(233\) 3.05971 + 5.29957i 0.200448 + 0.347186i 0.948673 0.316259i \(-0.102427\pi\)
−0.748225 + 0.663445i \(0.769094\pi\)
\(234\) 0 0
\(235\) 15.9326 27.5961i 1.03933 1.80017i
\(236\) −6.46656 14.3519i −0.420937 0.934229i
\(237\) 0 0
\(238\) 15.6934 + 20.1456i 1.01725 + 1.30584i
\(239\) 8.83528i 0.571507i 0.958303 + 0.285753i \(0.0922439\pi\)
−0.958303 + 0.285753i \(0.907756\pi\)
\(240\) 0 0
\(241\) 5.15757 + 2.97772i 0.332228 + 0.191812i 0.656830 0.754039i \(-0.271897\pi\)
−0.324602 + 0.945851i \(0.605230\pi\)
\(242\) 6.81913 + 31.7341i 0.438350 + 2.03994i
\(243\) 0 0
\(244\) −0.654550 + 6.50600i −0.0419032 + 0.416504i
\(245\) −7.42288 18.7651i −0.474231 1.19886i
\(246\) 0 0
\(247\) −0.618521 + 0.357103i −0.0393555 + 0.0227219i
\(248\) 10.7690 1.20460i 0.683831 0.0764920i
\(249\) 0 0
\(250\) 6.55448 + 2.11357i 0.414541 + 0.133674i
\(251\) 2.13955i 0.135047i −0.997718 0.0675235i \(-0.978490\pi\)
0.997718 0.0675235i \(-0.0215098\pi\)
\(252\) 0 0
\(253\) 12.5102i 0.786510i
\(254\) −0.238892 + 0.740840i −0.0149894 + 0.0464845i
\(255\) 0 0
\(256\) −12.7748 + 9.63348i −0.798426 + 0.602092i
\(257\) 16.7030 9.64346i 1.04190 0.601543i 0.121531 0.992588i \(-0.461220\pi\)
0.920372 + 0.391045i \(0.127886\pi\)
\(258\) 0 0
\(259\) 5.67158 2.74066i 0.352415 0.170296i
\(260\) 0.605095 6.01444i 0.0375264 0.373000i
\(261\) 0 0
\(262\) −3.87672 + 0.833041i −0.239504 + 0.0514655i
\(263\) −21.0740 12.1671i −1.29948 0.750254i −0.319164 0.947699i \(-0.603402\pi\)
−0.980314 + 0.197446i \(0.936735\pi\)
\(264\) 0 0
\(265\) 23.2889i 1.43063i
\(266\) −2.52462 + 0.351154i −0.154794 + 0.0215306i
\(267\) 0 0
\(268\) −24.2749 + 10.9376i −1.48282 + 0.668118i
\(269\) −10.4505 + 18.1007i −0.637176 + 1.10362i 0.348873 + 0.937170i \(0.386564\pi\)
−0.986050 + 0.166452i \(0.946769\pi\)
\(270\) 0 0
\(271\) −9.99697 17.3153i −0.607273 1.05183i −0.991688 0.128667i \(-0.958930\pi\)
0.384415 0.923160i \(-0.374403\pi\)
\(272\) −5.43810 + 26.7529i −0.329733 + 1.62213i
\(273\) 0 0
\(274\) −13.3865 + 12.1073i −0.808709 + 0.731430i
\(275\) −9.64567 16.7068i −0.581656 1.00746i
\(276\) 0 0
\(277\) −13.2433 7.64600i −0.795710 0.459404i 0.0462586 0.998929i \(-0.485270\pi\)
−0.841969 + 0.539526i \(0.818604\pi\)
\(278\) −2.65518 + 8.23409i −0.159247 + 0.493848i
\(279\) 0 0
\(280\) 10.0703 19.0786i 0.601814 1.14017i
\(281\) −5.59802 −0.333950 −0.166975 0.985961i \(-0.553400\pi\)
−0.166975 + 0.985961i \(0.553400\pi\)
\(282\) 0 0
\(283\) 9.72911 + 5.61710i 0.578335 + 0.333902i 0.760472 0.649371i \(-0.224968\pi\)
−0.182136 + 0.983273i \(0.558301\pi\)
\(284\) −1.26806 + 1.76177i −0.0752454 + 0.104542i
\(285\) 0 0
\(286\) 6.40733 5.79505i 0.378874 0.342669i
\(287\) −0.232859 + 3.16419i −0.0137452 + 0.186776i
\(288\) 0 0
\(289\) 14.7903 + 25.6175i 0.870016 + 1.50691i
\(290\) −26.3678 + 5.66600i −1.54837 + 0.332719i
\(291\) 0 0
\(292\) 4.63797 + 10.2935i 0.271417 + 0.602383i
\(293\) 17.7212 1.03528 0.517642 0.855598i \(-0.326810\pi\)
0.517642 + 0.855598i \(0.326810\pi\)
\(294\) 0 0
\(295\) 22.6901i 1.32107i
\(296\) 6.16993 + 2.69782i 0.358620 + 0.156808i
\(297\) 0 0
\(298\) 2.79656 0.600933i 0.162000 0.0348111i
\(299\) 1.94938 1.12547i 0.112735 0.0650878i
\(300\) 0 0
\(301\) −3.54417 0.260822i −0.204283 0.0150335i
\(302\) −13.3454 14.7554i −0.767941 0.849078i
\(303\) 0 0
\(304\) −2.04115 1.80523i −0.117068 0.103537i
\(305\) 4.71262 8.16250i 0.269844 0.467383i
\(306\) 0 0
\(307\) 20.3724i 1.16271i −0.813649 0.581357i \(-0.802522\pi\)
0.813649 0.581357i \(-0.197478\pi\)
\(308\) 28.9646 10.5686i 1.65041 0.602204i
\(309\) 0 0
\(310\) −14.8657 4.79362i −0.844315 0.272259i
\(311\) −14.4363 + 25.0045i −0.818610 + 1.41787i 0.0880964 + 0.996112i \(0.471922\pi\)
−0.906706 + 0.421762i \(0.861412\pi\)
\(312\) 0 0
\(313\) −4.08718 + 2.35974i −0.231021 + 0.133380i −0.611043 0.791597i \(-0.709250\pi\)
0.380022 + 0.924978i \(0.375916\pi\)
\(314\) −5.49053 + 4.96586i −0.309848 + 0.280240i
\(315\) 0 0
\(316\) −25.1907 2.53436i −1.41709 0.142569i
\(317\) −22.0349 + 12.7218i −1.23760 + 0.714529i −0.968603 0.248612i \(-0.920026\pi\)
−0.268998 + 0.963141i \(0.586692\pi\)
\(318\) 0 0
\(319\) −33.3811 19.2726i −1.86898 1.07906i
\(320\) 22.4928 5.09575i 1.25738 0.284861i
\(321\) 0 0
\(322\) 7.95678 1.10672i 0.443414 0.0616753i
\(323\) −4.64938 −0.258699
\(324\) 0 0
\(325\) −1.73553 + 3.00603i −0.0962700 + 0.166745i
\(326\) 0.290104 + 1.35006i 0.0160674 + 0.0747727i
\(327\) 0 0
\(328\) −2.73066 + 2.01193i −0.150776 + 0.111090i
\(329\) −12.7240 26.3314i −0.701499 1.45170i
\(330\) 0 0
\(331\) 9.85929 + 17.0768i 0.541916 + 0.938625i 0.998794 + 0.0490963i \(0.0156341\pi\)
−0.456878 + 0.889529i \(0.651033\pi\)
\(332\) −0.563198 + 0.782475i −0.0309095 + 0.0429439i
\(333\) 0 0
\(334\) −2.80320 0.903924i −0.153384 0.0494605i
\(335\) 38.3781 2.09682
\(336\) 0 0
\(337\) −24.7720 −1.34942 −0.674709 0.738084i \(-0.735731\pi\)
−0.674709 + 0.738084i \(0.735731\pi\)
\(338\) 16.0181 + 5.16523i 0.871271 + 0.280951i
\(339\) 0 0
\(340\) 22.9879 31.9381i 1.24669 1.73209i
\(341\) −11.1617 19.3326i −0.604440 1.04692i
\(342\) 0 0
\(343\) −18.0723 4.04850i −0.975815 0.218599i
\(344\) −2.25354 3.05858i −0.121503 0.164908i
\(345\) 0 0
\(346\) −6.34217 29.5145i −0.340957 1.58671i
\(347\) −7.49413 + 12.9802i −0.402306 + 0.696815i −0.994004 0.109345i \(-0.965125\pi\)
0.591698 + 0.806160i \(0.298458\pi\)
\(348\) 0 0
\(349\) 27.4546 1.46961 0.734806 0.678278i \(-0.237273\pi\)
0.734806 + 0.678278i \(0.237273\pi\)
\(350\) −9.77259 + 7.61285i −0.522367 + 0.406924i
\(351\) 0 0
\(352\) 28.7270 + 16.1621i 1.53115 + 0.861442i
\(353\) −20.7884 12.0022i −1.10645 0.638811i −0.168544 0.985694i \(-0.553907\pi\)
−0.937908 + 0.346883i \(0.887240\pi\)
\(354\) 0 0
\(355\) 2.70966 1.56442i 0.143814 0.0830310i
\(356\) −24.6572 2.48069i −1.30683 0.131476i
\(357\) 0 0
\(358\) 7.28928 6.59273i 0.385251 0.348437i
\(359\) 11.8249 6.82714i 0.624097 0.360322i −0.154366 0.988014i \(-0.549333\pi\)
0.778462 + 0.627691i \(0.216000\pi\)
\(360\) 0 0
\(361\) −9.26796 + 16.0526i −0.487788 + 0.844873i
\(362\) 10.3319 + 3.33164i 0.543032 + 0.175107i
\(363\) 0 0
\(364\) −4.25262 3.56255i −0.222898 0.186728i
\(365\) 16.2739i 0.851813i
\(366\) 0 0
\(367\) 17.3424 30.0379i 0.905264 1.56796i 0.0847016 0.996406i \(-0.473006\pi\)
0.820562 0.571557i \(-0.193660\pi\)
\(368\) 6.43305 + 5.68950i 0.335346 + 0.296585i
\(369\) 0 0
\(370\) −6.51094 7.19885i −0.338488 0.374251i
\(371\) 17.6758 + 12.0165i 0.917682 + 0.623865i
\(372\) 0 0
\(373\) 5.26744 3.04116i 0.272738 0.157465i −0.357393 0.933954i \(-0.616334\pi\)
0.630131 + 0.776489i \(0.283001\pi\)
\(374\) 54.9851 11.8154i 2.84321 0.610959i
\(375\) 0 0
\(376\) 12.5252 28.6451i 0.645937 1.47726i
\(377\) 6.93538i 0.357190i
\(378\) 0 0
\(379\) 19.0628 0.979189 0.489594 0.871950i \(-0.337145\pi\)
0.489594 + 0.871950i \(0.337145\pi\)
\(380\) 1.61351 + 3.58104i 0.0827715 + 0.183703i
\(381\) 0 0
\(382\) −24.6249 + 5.29148i −1.25992 + 0.270736i
\(383\) 4.12501 + 7.14473i 0.210778 + 0.365079i 0.951958 0.306228i \(-0.0990668\pi\)
−0.741180 + 0.671306i \(0.765733\pi\)
\(384\) 0 0
\(385\) −44.3228 3.26180i −2.25890 0.166237i
\(386\) −14.4700 + 13.0872i −0.736502 + 0.666123i
\(387\) 0 0
\(388\) −4.24736 + 5.90104i −0.215627 + 0.299580i
\(389\) −16.9926 9.81070i −0.861560 0.497422i 0.00297421 0.999996i \(-0.499053\pi\)
−0.864534 + 0.502574i \(0.832387\pi\)
\(390\) 0 0
\(391\) 14.6533 0.741051
\(392\) −9.28427 17.4872i −0.468926 0.883237i
\(393\) 0 0
\(394\) 0.491226 1.52336i 0.0247476 0.0767460i
\(395\) 31.6045 + 18.2469i 1.59019 + 0.918099i
\(396\) 0 0
\(397\) 15.6816 + 27.1613i 0.787035 + 1.36318i 0.927776 + 0.373138i \(0.121718\pi\)
−0.140741 + 0.990047i \(0.544948\pi\)
\(398\) 8.94870 8.09358i 0.448558 0.405694i
\(399\) 0 0
\(400\) −12.9778 2.63801i −0.648889 0.131901i
\(401\) 17.4562 + 30.2350i 0.871722 + 1.50987i 0.860215 + 0.509932i \(0.170330\pi\)
0.0115069 + 0.999934i \(0.496337\pi\)
\(402\) 0 0
\(403\) −2.00831 + 3.47849i −0.100041 + 0.173276i
\(404\) 4.56716 2.05783i 0.227225 0.102381i
\(405\) 0 0
\(406\) −9.30473 + 22.9361i −0.461786 + 1.13830i
\(407\) 13.8725i 0.687636i
\(408\) 0 0
\(409\) 11.8182 + 6.82325i 0.584373 + 0.337388i 0.762869 0.646553i \(-0.223790\pi\)
−0.178496 + 0.983941i \(0.557123\pi\)
\(410\) 4.77992 1.02713i 0.236064 0.0507261i
\(411\) 0 0
\(412\) −0.926229 + 9.20640i −0.0456320 + 0.453567i
\(413\) 17.2213 + 11.7075i 0.847405 + 0.576088i
\(414\) 0 0
\(415\) 1.20348 0.694827i 0.0590763 0.0341077i
\(416\) −0.0659796 5.93033i −0.00323492 0.290758i
\(417\) 0 0
\(418\) −1.72280 + 5.34266i −0.0842650 + 0.261318i
\(419\) 4.22322i 0.206318i −0.994665 0.103159i \(-0.967105\pi\)
0.994665 0.103159i \(-0.0328950\pi\)
\(420\) 0 0
\(421\) 11.6892i 0.569697i −0.958573 0.284849i \(-0.908057\pi\)
0.958573 0.284849i \(-0.0919433\pi\)
\(422\) −28.5932 9.22022i −1.39190 0.448833i
\(423\) 0 0
\(424\) 2.54004 + 22.7077i 0.123355 + 1.10278i
\(425\) −19.5688 + 11.2981i −0.949228 + 0.548037i
\(426\) 0 0
\(427\) −3.76357 7.78842i −0.182132 0.376908i
\(428\) 1.21513 12.0779i 0.0587354 0.583810i
\(429\) 0 0
\(430\) 1.15047 + 5.35393i 0.0554806 + 0.258190i
\(431\) −29.7064 17.1510i −1.43091 0.826136i −0.433719 0.901048i \(-0.642799\pi\)
−0.997190 + 0.0749129i \(0.976132\pi\)
\(432\) 0 0
\(433\) 14.1884i 0.681853i −0.940090 0.340926i \(-0.889259\pi\)
0.940090 0.340926i \(-0.110741\pi\)
\(434\) −11.3086 + 8.80937i −0.542829 + 0.422863i
\(435\) 0 0
\(436\) −11.9661 26.5577i −0.573073 1.27188i
\(437\) −0.731303 + 1.26665i −0.0349830 + 0.0605923i
\(438\) 0 0
\(439\) −14.0252 24.2923i −0.669386 1.15941i −0.978076 0.208247i \(-0.933224\pi\)
0.308691 0.951163i \(-0.400109\pi\)
\(440\) −28.1824 38.2501i −1.34354 1.82350i
\(441\) 0 0
\(442\) −6.78781 7.50498i −0.322863 0.356975i
\(443\) 5.51040 + 9.54430i 0.261807 + 0.453463i 0.966722 0.255828i \(-0.0823482\pi\)
−0.704915 + 0.709292i \(0.749015\pi\)
\(444\) 0 0
\(445\) 30.9352 + 17.8605i 1.46647 + 0.846667i
\(446\) −4.20220 1.35505i −0.198980 0.0641634i
\(447\) 0 0
\(448\) 7.73811 19.7008i 0.365592 0.930775i
\(449\) −30.2270 −1.42650 −0.713250 0.700910i \(-0.752778\pi\)
−0.713250 + 0.700910i \(0.752778\pi\)
\(450\) 0 0
\(451\) 6.05128 + 3.49371i 0.284944 + 0.164512i
\(452\) 6.21502 + 4.47335i 0.292330 + 0.210409i
\(453\) 0 0
\(454\) 4.95825 + 5.48211i 0.232702 + 0.257288i
\(455\) 3.47921 + 7.19996i 0.163108 + 0.337539i
\(456\) 0 0
\(457\) −12.7386 22.0639i −0.595887 1.03211i −0.993421 0.114519i \(-0.963467\pi\)
0.397534 0.917587i \(-0.369866\pi\)
\(458\) −8.44556 39.3030i −0.394635 1.83651i
\(459\) 0 0
\(460\) −5.08527 11.2863i −0.237102 0.526225i
\(461\) 27.9292 1.30079 0.650395 0.759596i \(-0.274603\pi\)
0.650395 + 0.759596i \(0.274603\pi\)
\(462\) 0 0
\(463\) 19.4232i 0.902674i 0.892354 + 0.451337i \(0.149053\pi\)
−0.892354 + 0.451337i \(0.850947\pi\)
\(464\) −25.0918 + 8.40043i −1.16486 + 0.389980i
\(465\) 0 0
\(466\) −1.81813 8.46102i −0.0842233 0.391949i
\(467\) 1.30760 0.754943i 0.0605085 0.0349346i −0.469441 0.882964i \(-0.655544\pi\)
0.529949 + 0.848029i \(0.322211\pi\)
\(468\) 0 0
\(469\) 19.8021 29.1282i 0.914376 1.34501i
\(470\) −33.4221 + 30.2283i −1.54165 + 1.39433i
\(471\) 0 0
\(472\) 2.47473 + 22.1238i 0.113908 + 1.01833i
\(473\) −3.91326 + 6.77797i −0.179932 + 0.311651i
\(474\) 0 0
\(475\) 2.25541i 0.103485i
\(476\) −12.3792 33.9266i −0.567398 1.55502i
\(477\) 0 0
\(478\) 3.83471 11.8920i 0.175396 0.543927i
\(479\) 7.12030 12.3327i 0.325335 0.563496i −0.656245 0.754548i \(-0.727856\pi\)
0.981580 + 0.191051i \(0.0611897\pi\)
\(480\) 0 0
\(481\) −2.16166 + 1.24803i −0.0985631 + 0.0569054i
\(482\) −5.64951 6.24641i −0.257328 0.284516i
\(483\) 0 0
\(484\) 4.59499 45.6727i 0.208863 2.07603i
\(485\) 9.07601 5.24004i 0.412120 0.237938i
\(486\) 0 0
\(487\) 6.40076 + 3.69548i 0.290046 + 0.167458i 0.637963 0.770067i \(-0.279777\pi\)
−0.347916 + 0.937526i \(0.613111\pi\)
\(488\) 3.70475 8.47277i 0.167706 0.383544i
\(489\) 0 0
\(490\) 1.84647 + 28.4789i 0.0834150 + 1.28655i
\(491\) −14.0578 −0.634420 −0.317210 0.948355i \(-0.602746\pi\)
−0.317210 + 0.948355i \(0.602746\pi\)
\(492\) 0 0
\(493\) −22.5742 + 39.0996i −1.01669 + 1.76096i
\(494\) 0.987499 0.212197i 0.0444297 0.00954719i
\(495\) 0 0
\(496\) −15.0175 3.05263i −0.674306 0.137067i
\(497\) 0.210751 2.86378i 0.00945346 0.128458i
\(498\) 0 0
\(499\) −13.4960 23.3757i −0.604162 1.04644i −0.992183 0.124789i \(-0.960175\pi\)
0.388021 0.921651i \(-0.373159\pi\)
\(500\) −7.90477 5.68958i −0.353512 0.254446i
\(501\) 0 0
\(502\) −0.928611 + 2.87976i −0.0414459 + 0.128530i
\(503\) 3.15505 0.140677 0.0703384 0.997523i \(-0.477592\pi\)
0.0703384 + 0.997523i \(0.477592\pi\)
\(504\) 0 0
\(505\) −7.22059 −0.321312
\(506\) 5.42971 16.8383i 0.241380 0.748555i
\(507\) 0 0
\(508\) 0.643082 0.893461i 0.0285322 0.0396409i
\(509\) 10.8815 + 18.8473i 0.482315 + 0.835394i 0.999794 0.0203019i \(-0.00646275\pi\)
−0.517479 + 0.855696i \(0.673129\pi\)
\(510\) 0 0
\(511\) −12.3515 8.39689i −0.546399 0.371457i
\(512\) 21.3756 7.42178i 0.944678 0.327999i
\(513\) 0 0
\(514\) −26.6671 + 5.73031i −1.17624 + 0.252753i
\(515\) 6.66865 11.5504i 0.293856 0.508973i
\(516\) 0 0
\(517\) −64.4060 −2.83257
\(518\) −8.82325 + 1.22724i −0.387672 + 0.0539220i
\(519\) 0 0
\(520\) −3.42484 + 7.83260i −0.150189 + 0.343482i
\(521\) 34.9828 + 20.1973i 1.53262 + 0.884860i 0.999240 + 0.0389867i \(0.0124130\pi\)
0.533383 + 0.845874i \(0.320920\pi\)
\(522\) 0 0
\(523\) 25.4468 14.6917i 1.11271 0.642424i 0.173181 0.984890i \(-0.444595\pi\)
0.939530 + 0.342466i \(0.111262\pi\)
\(524\) 5.57949 + 0.561335i 0.243741 + 0.0245221i
\(525\) 0 0
\(526\) 23.0841 + 25.5230i 1.00651 + 1.11286i
\(527\) −22.6445 + 13.0738i −0.986410 + 0.569504i
\(528\) 0 0
\(529\) −9.19517 + 15.9265i −0.399790 + 0.692457i
\(530\) 10.1079 31.3461i 0.439060 1.36159i
\(531\) 0 0
\(532\) 3.55046 + 0.623100i 0.153932 + 0.0270148i
\(533\) 1.25724i 0.0544570i
\(534\) 0 0
\(535\) −8.74866 + 15.1531i −0.378237 + 0.655126i
\(536\) 37.4203 4.18576i 1.61631 0.180797i
\(537\) 0 0
\(538\) 21.9221 19.8272i 0.945129 0.854813i
\(539\) −25.3451 + 31.9571i −1.09169 + 1.37649i
\(540\) 0 0
\(541\) 26.5848 15.3487i 1.14297 0.659893i 0.195805 0.980643i \(-0.437268\pi\)
0.947164 + 0.320749i \(0.103935\pi\)
\(542\) 5.94038 + 27.6447i 0.255161 + 1.18744i
\(543\) 0 0
\(544\) 18.9308 33.6482i 0.811653 1.44265i
\(545\) 41.9872i 1.79853i
\(546\) 0 0
\(547\) −15.7691 −0.674240 −0.337120 0.941462i \(-0.609453\pi\)
−0.337120 + 0.941462i \(0.609453\pi\)
\(548\) 23.2726 10.4860i 0.994158 0.447939i
\(549\) 0 0
\(550\) 5.73163 + 26.6732i 0.244397 + 1.13735i
\(551\) −2.25322 3.90268i −0.0959902 0.166260i
\(552\) 0 0
\(553\) 30.1561 14.5722i 1.28237 0.619674i
\(554\) 14.5064 + 16.0391i 0.616320 + 0.681437i
\(555\) 0 0
\(556\) 7.14756 9.93041i 0.303124 0.421143i
\(557\) 19.2427 + 11.1098i 0.815340 + 0.470737i 0.848807 0.528703i \(-0.177321\pi\)
−0.0334668 + 0.999440i \(0.510655\pi\)
\(558\) 0 0
\(559\) 1.40822 0.0595612
\(560\) −21.8348 + 21.3085i −0.922689 + 0.900447i
\(561\) 0 0
\(562\) 7.53475 + 2.42967i 0.317834 + 0.102489i
\(563\) −20.7809 11.9978i −0.875809 0.505648i −0.00653450 0.999979i \(-0.502080\pi\)
−0.869274 + 0.494330i \(0.835413\pi\)
\(564\) 0 0
\(565\) −5.51885 9.55893i −0.232180 0.402147i
\(566\) −10.6571 11.7831i −0.447951 0.495280i
\(567\) 0 0
\(568\) 2.47141 1.82091i 0.103698 0.0764038i
\(569\) 0.631897 + 1.09448i 0.0264905 + 0.0458829i 0.878967 0.476883i \(-0.158233\pi\)
−0.852476 + 0.522766i \(0.824900\pi\)
\(570\) 0 0
\(571\) −10.3555 + 17.9363i −0.433365 + 0.750611i −0.997161 0.0753037i \(-0.976007\pi\)
0.563795 + 0.825915i \(0.309341\pi\)
\(572\) −11.1392 + 5.01902i −0.465755 + 0.209856i
\(573\) 0 0
\(574\) 1.68675 4.15783i 0.0704036 0.173544i
\(575\) 7.10831i 0.296437i
\(576\) 0 0
\(577\) −27.2402 15.7271i −1.13402 0.654728i −0.189079 0.981962i \(-0.560550\pi\)
−0.944943 + 0.327234i \(0.893884\pi\)
\(578\) −8.78864 40.8996i −0.365559 1.70120i
\(579\) 0 0
\(580\) 37.9493 + 3.81797i 1.57576 + 0.158533i
\(581\) 0.0936032 1.27192i 0.00388332 0.0527683i
\(582\) 0 0
\(583\) 40.7652 23.5358i 1.68832 0.974752i
\(584\) −1.77493 15.8677i −0.0734472 0.656611i
\(585\) 0 0
\(586\) −23.8521 7.69139i −0.985322 0.317728i
\(587\) 5.93391i 0.244919i −0.992474 0.122459i \(-0.960922\pi\)
0.992474 0.122459i \(-0.0390781\pi\)
\(588\) 0 0
\(589\) 2.60989i 0.107539i
\(590\) 9.84801 30.5401i 0.405436 1.25732i
\(591\) 0 0
\(592\) −7.13360 6.30907i −0.293189 0.259301i
\(593\) 13.6001 7.85199i 0.558487 0.322443i −0.194051 0.980991i \(-0.562163\pi\)
0.752538 + 0.658549i \(0.228829\pi\)
\(594\) 0 0
\(595\) −3.82058 + 51.9158i −0.156628 + 2.12834i
\(596\) −4.02489 0.404932i −0.164866 0.0165867i
\(597\) 0 0
\(598\) −3.11227 + 0.668776i −0.127270 + 0.0273483i
\(599\) −15.0452 8.68632i −0.614728 0.354914i 0.160085 0.987103i \(-0.448823\pi\)
−0.774814 + 0.632190i \(0.782156\pi\)
\(600\) 0 0
\(601\) 43.6846i 1.78193i 0.454069 + 0.890966i \(0.349972\pi\)
−0.454069 + 0.890966i \(0.650028\pi\)
\(602\) 4.65713 + 1.88931i 0.189811 + 0.0770024i
\(603\) 0 0
\(604\) 11.5583 + 25.6525i 0.470300 + 1.04378i
\(605\) −33.0830 + 57.3014i −1.34501 + 2.32963i
\(606\) 0 0
\(607\) 9.60046 + 16.6285i 0.389671 + 0.674929i 0.992405 0.123012i \(-0.0392555\pi\)
−0.602734 + 0.797942i \(0.705922\pi\)
\(608\) 1.96382 + 3.31568i 0.0796432 + 0.134469i
\(609\) 0 0
\(610\) −9.88573 + 8.94106i −0.400262 + 0.362013i
\(611\) 5.79424 + 10.0359i 0.234410 + 0.406010i
\(612\) 0 0
\(613\) 14.8672 + 8.58358i 0.600480 + 0.346688i 0.769231 0.638971i \(-0.220640\pi\)
−0.168750 + 0.985659i \(0.553973\pi\)
\(614\) −8.84207 + 27.4205i −0.356837 + 1.10660i
\(615\) 0 0
\(616\) −43.5724 + 1.65374i −1.75558 + 0.0666310i
\(617\) 16.8150 0.676946 0.338473 0.940976i \(-0.390090\pi\)
0.338473 + 0.940976i \(0.390090\pi\)
\(618\) 0 0
\(619\) −30.1572 17.4113i −1.21212 0.699818i −0.248899 0.968529i \(-0.580069\pi\)
−0.963221 + 0.268712i \(0.913402\pi\)
\(620\) 17.9282 + 12.9041i 0.720013 + 0.518241i
\(621\) 0 0
\(622\) 30.2833 27.3895i 1.21425 1.09822i
\(623\) 29.5175 14.2636i 1.18259 0.571461i
\(624\) 0 0
\(625\) 15.2963 + 26.4940i 0.611852 + 1.05976i
\(626\) 6.52539 1.40220i 0.260807 0.0560430i
\(627\) 0 0
\(628\) 9.54536 4.30087i 0.380901 0.171623i
\(629\) −16.2491 −0.647892
\(630\) 0 0
\(631\) 11.8869i 0.473210i −0.971606 0.236605i \(-0.923965\pi\)
0.971606 0.236605i \(-0.0760346\pi\)
\(632\) 32.8058 + 14.3445i 1.30495 + 0.570593i
\(633\) 0 0
\(634\) 35.1797 7.55953i 1.39717 0.300227i
\(635\) −1.37418 + 0.793381i −0.0545325 + 0.0314844i
\(636\) 0 0
\(637\) 7.25980 + 1.07434i 0.287644 + 0.0425670i
\(638\) 36.5651 + 40.4284i 1.44763 + 1.60057i
\(639\) 0 0
\(640\) −32.4862 2.90365i −1.28413 0.114777i
\(641\) −18.4447 + 31.9472i −0.728523 + 1.26184i 0.228984 + 0.973430i \(0.426460\pi\)
−0.957507 + 0.288409i \(0.906874\pi\)
\(642\) 0 0
\(643\) 10.0475i 0.396235i −0.980178 0.198117i \(-0.936517\pi\)
0.980178 0.198117i \(-0.0634827\pi\)
\(644\) −11.1899 1.96381i −0.440944 0.0773849i
\(645\) 0 0
\(646\) 6.25791 + 2.01794i 0.246214 + 0.0793946i
\(647\) 19.5824 33.9177i 0.769862 1.33344i −0.167775 0.985825i \(-0.553658\pi\)
0.937637 0.347615i \(-0.113008\pi\)
\(648\) 0 0
\(649\) 39.7169 22.9306i 1.55903 0.900104i
\(650\) 3.64065 3.29276i 0.142798 0.129153i
\(651\) 0 0
\(652\) 0.195484 1.94304i 0.00765573 0.0760954i
\(653\) 35.9422 20.7512i 1.40653 0.812058i 0.411475 0.911421i \(-0.365014\pi\)
0.995051 + 0.0993632i \(0.0316806\pi\)
\(654\) 0 0
\(655\) −7.00008 4.04150i −0.273516 0.157914i
\(656\) 4.54860 1.52282i 0.177593 0.0594561i
\(657\) 0 0
\(658\) 5.69772 + 40.9637i 0.222120 + 1.59693i
\(659\) 35.4347 1.38034 0.690170 0.723647i \(-0.257536\pi\)
0.690170 + 0.723647i \(0.257536\pi\)
\(660\) 0 0
\(661\) −11.8165 + 20.4668i −0.459610 + 0.796067i −0.998940 0.0460268i \(-0.985344\pi\)
0.539330 + 0.842094i \(0.318677\pi\)
\(662\) −5.85856 27.2639i −0.227700 1.05964i
\(663\) 0 0
\(664\) 1.09766 0.808744i 0.0425974 0.0313854i
\(665\) −4.29700 2.92121i −0.166630 0.113280i
\(666\) 0 0
\(667\) 7.10140 + 12.3000i 0.274967 + 0.476257i
\(668\) 3.38069 + 2.43330i 0.130803 + 0.0941472i
\(669\) 0 0
\(670\) −51.6556 16.6569i −1.99563 0.643514i
\(671\) −19.0503 −0.735428
\(672\) 0 0
\(673\) 8.69720 0.335253 0.167626 0.985851i \(-0.446390\pi\)
0.167626 + 0.985851i \(0.446390\pi\)
\(674\) 33.3423 + 10.7516i 1.28430 + 0.414137i
\(675\) 0 0
\(676\) −19.3180 13.9044i −0.743001 0.534786i
\(677\) −5.45947 9.45608i −0.209825 0.363427i 0.741835 0.670583i \(-0.233956\pi\)
−0.951659 + 0.307156i \(0.900623\pi\)
\(678\) 0 0
\(679\) 0.705909 9.59223i 0.0270903 0.368116i
\(680\) −44.8028 + 33.0103i −1.71811 + 1.26589i
\(681\) 0 0
\(682\) 6.63247 + 30.8655i 0.253971 + 1.18190i
\(683\) 18.2758 31.6547i 0.699305 1.21123i −0.269402 0.963028i \(-0.586826\pi\)
0.968708 0.248204i \(-0.0798405\pi\)
\(684\) 0 0
\(685\) −36.7936 −1.40581
\(686\) 22.5676 + 13.2929i 0.861636 + 0.507527i
\(687\) 0 0
\(688\) 1.70569 + 5.09484i 0.0650289 + 0.194239i
\(689\) −7.33482 4.23476i −0.279434 0.161332i
\(690\) 0 0
\(691\) −4.59821 + 2.65478i −0.174924 + 0.100993i −0.584906 0.811101i \(-0.698869\pi\)
0.409981 + 0.912094i \(0.365535\pi\)
\(692\) −4.27360 + 42.4782i −0.162458 + 1.61478i
\(693\) 0 0
\(694\) 15.7206 14.2183i 0.596744 0.539720i
\(695\) −15.2733 + 8.81806i −0.579350 + 0.334488i
\(696\) 0 0
\(697\) 4.09222 7.08793i 0.155004 0.268475i
\(698\) −36.9530 11.9159i −1.39869 0.451024i
\(699\) 0 0
\(700\) 16.4577 6.00511i 0.622044 0.226972i
\(701\) 6.16681i 0.232917i 0.993196 + 0.116459i \(0.0371542\pi\)
−0.993196 + 0.116459i \(0.962846\pi\)
\(702\) 0 0
\(703\) 0.810940 1.40459i 0.0305852 0.0529751i
\(704\) −31.6508 34.2218i −1.19288 1.28978i
\(705\) 0 0
\(706\) 22.7712 + 25.1771i 0.857006 + 0.947553i
\(707\) −3.72564 + 5.48028i −0.140117 + 0.206107i
\(708\) 0 0
\(709\) 1.73062 0.999172i 0.0649947 0.0375247i −0.467151 0.884178i \(-0.654719\pi\)
0.532145 + 0.846653i \(0.321386\pi\)
\(710\) −4.32611 + 0.929608i −0.162356 + 0.0348876i
\(711\) 0 0
\(712\) 32.1111 + 14.0407i 1.20342 + 0.526198i
\(713\) 8.22554i 0.308049i
\(714\) 0 0
\(715\) 17.6109 0.658611
\(716\) −12.6725 + 5.70988i −0.473594 + 0.213388i
\(717\) 0 0
\(718\) −18.8791 + 4.05680i −0.704562 + 0.151399i
\(719\) −6.72446 11.6471i −0.250780 0.434364i 0.712961 0.701204i \(-0.247354\pi\)
−0.963741 + 0.266840i \(0.914020\pi\)
\(720\) 0 0
\(721\) −5.32569 11.0211i −0.198339 0.410447i
\(722\) 19.4415 17.5837i 0.723539 0.654399i
\(723\) 0 0
\(724\) −12.4604 8.96854i −0.463086 0.333313i
\(725\) −18.9672 10.9507i −0.704423 0.406699i
\(726\) 0 0
\(727\) −19.6532 −0.728897 −0.364448 0.931224i \(-0.618742\pi\)
−0.364448 + 0.931224i \(0.618742\pi\)
\(728\) 4.17765 + 6.64080i 0.154834 + 0.246124i
\(729\) 0 0
\(730\) −7.06322 + 21.9041i −0.261421 + 0.810706i
\(731\) 7.93911 + 4.58365i 0.293639 + 0.169532i
\(732\) 0 0
\(733\) −12.6139 21.8480i −0.465907 0.806974i 0.533335 0.845904i \(-0.320938\pi\)
−0.999242 + 0.0389298i \(0.987605\pi\)
\(734\) −36.3793 + 32.9030i −1.34279 + 1.21447i
\(735\) 0 0
\(736\) −6.18931 10.4500i −0.228141 0.385190i
\(737\) −38.7849 67.1774i −1.42866 2.47451i
\(738\) 0 0
\(739\) −3.35478 + 5.81064i −0.123407 + 0.213748i −0.921109 0.389304i \(-0.872716\pi\)
0.797702 + 0.603052i \(0.206049\pi\)
\(740\) 5.63904 + 12.5153i 0.207295 + 0.460072i
\(741\) 0 0
\(742\) −18.5756 23.8455i −0.681932 0.875395i
\(743\) 26.0661i 0.956273i 0.878286 + 0.478137i \(0.158688\pi\)
−0.878286 + 0.478137i \(0.841312\pi\)
\(744\) 0 0
\(745\) 5.04967 + 2.91543i 0.185005 + 0.106813i
\(746\) −8.40973 + 1.80711i −0.307902 + 0.0661630i
\(747\) 0 0
\(748\) −79.1363 7.96167i −2.89351 0.291107i
\(749\) 6.98682 + 14.4587i 0.255293 + 0.528308i
\(750\) 0 0
\(751\) 4.94762 2.85651i 0.180541 0.104236i −0.407006 0.913426i \(-0.633427\pi\)
0.587547 + 0.809190i \(0.300094\pi\)
\(752\) −29.2911 + 33.1191i −1.06814 + 1.20773i
\(753\) 0 0
\(754\) 3.01011 9.33479i 0.109622 0.339953i
\(755\) 40.5561i 1.47599i
\(756\) 0 0
\(757\) 4.75364i 0.172774i −0.996262 0.0863869i \(-0.972468\pi\)
0.996262 0.0863869i \(-0.0275321\pi\)
\(758\) −25.6578 8.27366i −0.931935 0.300513i
\(759\) 0 0
\(760\) −0.617485 5.52026i −0.0223985 0.200241i
\(761\) 23.6671 13.6642i 0.857931 0.495327i −0.00538774 0.999985i \(-0.501715\pi\)
0.863319 + 0.504659i \(0.168382\pi\)
\(762\) 0 0
\(763\) 31.8674 + 21.6643i 1.15368 + 0.784300i
\(764\) 35.4409 + 3.56560i 1.28221 + 0.128999i
\(765\) 0 0
\(766\) −2.45116 11.4069i −0.0885639 0.412149i
\(767\) −7.14622 4.12587i −0.258035 0.148977i
\(768\) 0 0
\(769\) 22.7151i 0.819127i 0.912282 + 0.409564i \(0.134319\pi\)
−0.912282 + 0.409564i \(0.865681\pi\)
\(770\) 58.2414 + 23.6274i 2.09887 + 0.851471i
\(771\) 0 0
\(772\) 25.1563 11.3347i 0.905393 0.407945i
\(773\) 9.05937 15.6913i 0.325843 0.564376i −0.655840 0.754900i \(-0.727685\pi\)
0.981683 + 0.190524i \(0.0610187\pi\)
\(774\) 0 0
\(775\) −6.34209 10.9848i −0.227814 0.394586i
\(776\) 8.27799 6.09915i 0.297162 0.218947i
\(777\) 0 0
\(778\) 18.6134 + 20.5800i 0.667324 + 0.737830i
\(779\) 0.408460 + 0.707474i 0.0146346 + 0.0253479i
\(780\) 0 0
\(781\) −5.47676 3.16201i −0.195974 0.113146i
\(782\) −19.7229 6.35988i −0.705290 0.227429i
\(783\) 0 0
\(784\) 4.90648 + 27.5668i 0.175231 + 0.984527i
\(785\) −15.0910 −0.538622
\(786\) 0 0
\(787\) 4.25358 + 2.45581i 0.151624 + 0.0875400i 0.573892 0.818931i \(-0.305433\pi\)
−0.422269 + 0.906471i \(0.638766\pi\)
\(788\) −1.32235 + 1.83719i −0.0471067 + 0.0654473i
\(789\) 0 0
\(790\) −34.6190 38.2767i −1.23169 1.36182i
\(791\) −10.1026 0.743469i −0.359207 0.0264347i
\(792\) 0 0
\(793\) 1.71385 + 2.96847i 0.0608604 + 0.105413i
\(794\) −9.31826 43.3643i −0.330693 1.53894i
\(795\) 0 0
\(796\) −15.5574 + 7.00974i −0.551419 + 0.248454i
\(797\) −23.8384 −0.844398 −0.422199 0.906503i \(-0.638742\pi\)
−0.422199 + 0.906503i \(0.638742\pi\)
\(798\) 0 0
\(799\) 75.4394i 2.66885i
\(800\) 16.3227 + 9.18332i 0.577094 + 0.324679i
\(801\) 0 0
\(802\) −10.3728 48.2717i −0.366276 1.70453i
\(803\) −28.4859 + 16.4464i −1.00525 + 0.580379i
\(804\) 0 0
\(805\) 13.5427 + 9.20672i 0.477319 + 0.324494i
\(806\) 4.21286 3.81028i 0.148392 0.134211i
\(807\) 0 0
\(808\) −7.04038 + 0.787523i −0.247680 + 0.0277050i
\(809\) −0.597915 + 1.03562i −0.0210216 + 0.0364104i −0.876345 0.481684i \(-0.840025\pi\)
0.855323 + 0.518095i \(0.173359\pi\)
\(810\) 0 0
\(811\) 6.44559i 0.226335i 0.993576 + 0.113168i \(0.0360997\pi\)
−0.993576 + 0.113168i \(0.963900\pi\)
\(812\) 22.4786 26.8328i 0.788845 0.941645i
\(813\) 0 0
\(814\) −6.02099 + 18.6720i −0.211036 + 0.654452i
\(815\) −1.40744 + 2.43776i −0.0493005 + 0.0853910i
\(816\) 0 0
\(817\) −0.792433 + 0.457511i −0.0277237 + 0.0160063i
\(818\) −12.9455 14.3132i −0.452628 0.500450i
\(819\) 0 0
\(820\) −6.87941 0.692117i −0.240239 0.0241698i
\(821\) 1.87701 1.08369i 0.0655079 0.0378210i −0.466888 0.884316i \(-0.654625\pi\)
0.532396 + 0.846495i \(0.321292\pi\)
\(822\) 0 0
\(823\) 5.19529 + 2.99950i 0.181096 + 0.104556i 0.587808 0.809001i \(-0.299991\pi\)
−0.406711 + 0.913557i \(0.633325\pi\)
\(824\) 5.24246 11.9895i 0.182630 0.417674i
\(825\) 0 0
\(826\) −18.0980 23.2323i −0.629709 0.808356i
\(827\) −21.0143 −0.730738 −0.365369 0.930863i \(-0.619057\pi\)
−0.365369 + 0.930863i \(0.619057\pi\)
\(828\) 0 0
\(829\) 6.59891 11.4296i 0.229190 0.396968i −0.728379 0.685175i \(-0.759726\pi\)
0.957568 + 0.288207i \(0.0930591\pi\)
\(830\) −1.92141 + 0.412878i −0.0666930 + 0.0143312i
\(831\) 0 0
\(832\) −2.48509 + 8.01066i −0.0861549 + 0.277720i
\(833\) 37.4317 + 29.6870i 1.29693 + 1.02859i
\(834\) 0 0
\(835\) −3.00200 5.19962i −0.103889 0.179940i
\(836\) 4.63766 6.44330i 0.160397 0.222846i
\(837\) 0 0
\(838\) −1.83297 + 5.68430i −0.0633189 + 0.196361i
\(839\) 33.8661 1.16919 0.584594 0.811326i \(-0.301254\pi\)
0.584594 + 0.811326i \(0.301254\pi\)
\(840\) 0 0
\(841\) −14.7602 −0.508973
\(842\) −5.07338 + 15.7333i −0.174840 + 0.542205i
\(843\) 0 0
\(844\) 34.4837 + 24.8202i 1.18698 + 0.854346i
\(845\) 17.1541 + 29.7118i 0.590120 + 1.02212i
\(846\) 0 0
\(847\) 26.4206 + 54.6753i 0.907822 + 1.87867i
\(848\) 6.43684 31.6662i 0.221042 1.08742i
\(849\) 0 0
\(850\) 31.2426 6.71351i 1.07161 0.230272i
\(851\) −2.55582 + 4.42681i −0.0876124 + 0.151749i
\(852\) 0 0
\(853\) 50.0832 1.71482 0.857408 0.514638i \(-0.172074\pi\)
0.857408 + 0.514638i \(0.172074\pi\)
\(854\) 1.68530 + 12.1164i 0.0576696 + 0.414615i
\(855\) 0 0
\(856\) −6.87762 + 15.7291i −0.235072 + 0.537610i
\(857\) −42.6628 24.6314i −1.45734 0.841393i −0.458455 0.888717i \(-0.651597\pi\)
−0.998880 + 0.0473246i \(0.984930\pi\)
\(858\) 0 0
\(859\) −3.38667 + 1.95530i −0.115552 + 0.0667139i −0.556662 0.830739i \(-0.687918\pi\)
0.441110 + 0.897453i \(0.354585\pi\)
\(860\) 0.775232 7.70554i 0.0264352 0.262757i
\(861\) 0 0
\(862\) 32.5399 + 35.9779i 1.10831 + 1.22541i
\(863\) −37.4230 + 21.6062i −1.27390 + 0.735484i −0.975719 0.219027i \(-0.929712\pi\)
−0.298176 + 0.954511i \(0.596378\pi\)
\(864\) 0 0
\(865\) 30.7690 53.2935i 1.04618 1.81203i
\(866\) −6.15810 + 19.0972i −0.209261 + 0.648948i
\(867\) 0 0
\(868\) 19.0444 6.94894i 0.646409 0.235862i
\(869\) 73.7611i 2.50217i
\(870\) 0 0
\(871\) −6.97851 + 12.0871i −0.236458 + 0.409557i
\(872\) 4.57939 + 40.9393i 0.155078 + 1.38638i
\(873\) 0 0
\(874\) 1.53407 1.38747i 0.0518905 0.0469319i
\(875\) 12.8493 + 0.945604i 0.434386 + 0.0319673i
\(876\) 0 0
\(877\) −18.3069 + 10.5695i −0.618182 + 0.356907i −0.776161 0.630535i \(-0.782835\pi\)
0.157979 + 0.987442i \(0.449502\pi\)
\(878\) 8.33401 + 38.7839i 0.281259 + 1.30889i
\(879\) 0 0
\(880\) 21.3311 + 63.7152i 0.719071 + 2.14784i
\(881\) 49.1167i 1.65478i −0.561625 0.827392i \(-0.689823\pi\)
0.561625 0.827392i \(-0.310177\pi\)
\(882\) 0 0
\(883\) 37.8457 1.27361 0.636804 0.771025i \(-0.280256\pi\)
0.636804 + 0.771025i \(0.280256\pi\)
\(884\) 5.87883 + 13.0475i 0.197727 + 0.438835i
\(885\) 0 0
\(886\) −3.27438 15.2379i −0.110005 0.511929i
\(887\) −8.97039 15.5372i −0.301196 0.521687i 0.675211 0.737625i \(-0.264053\pi\)
−0.976407 + 0.215937i \(0.930719\pi\)
\(888\) 0 0
\(889\) −0.106880 + 1.45233i −0.00358464 + 0.0487097i
\(890\) −33.8859 37.4662i −1.13586 1.25587i
\(891\) 0 0
\(892\) 5.06790 + 3.64770i 0.169686 + 0.122134i
\(893\) −6.52108 3.76495i −0.218220 0.125989i
\(894\) 0 0
\(895\) 20.0350 0.669697
\(896\) −18.9658 + 23.1581i −0.633604 + 0.773658i
\(897\) 0 0
\(898\) 40.6845 + 13.1192i 1.35766 + 0.437793i
\(899\) −21.9483 12.6718i −0.732016 0.422629i
\(900\) 0 0
\(901\) −27.5677 47.7487i −0.918413 1.59074i
\(902\) −6.62848 7.32881i −0.220704 0.244023i
\(903\) 0 0
\(904\) −6.42367 8.71844i −0.213648 0.289971i
\(905\) 11.0646 + 19.1645i 0.367801 + 0.637049i
\(906\) 0 0
\(907\) −11.0887 + 19.2062i −0.368194 + 0.637730i −0.989283 0.146009i \(-0.953357\pi\)
0.621089 + 0.783740i \(0.286690\pi\)
\(908\) −4.29427 9.53072i −0.142510 0.316288i
\(909\) 0 0
\(910\) −1.55796 11.2010i −0.0516459 0.371308i
\(911\) 35.2495i 1.16787i 0.811801 + 0.583934i \(0.198487\pi\)
−0.811801 + 0.583934i \(0.801513\pi\)
\(912\) 0 0
\(913\) −2.43246 1.40438i −0.0805027 0.0464783i
\(914\) 7.56951 + 35.2261i 0.250377 + 1.16518i
\(915\) 0 0
\(916\) −5.69094 + 56.5661i −0.188034 + 1.86900i
\(917\) −6.67927 + 3.22760i −0.220569 + 0.106585i
\(918\) 0 0
\(919\) −15.1837 + 8.76632i −0.500864 + 0.289174i −0.729070 0.684439i \(-0.760047\pi\)
0.228206 + 0.973613i \(0.426714\pi\)
\(920\) 1.94611 + 17.3980i 0.0641614 + 0.573597i
\(921\) 0 0
\(922\) −37.5917 12.1219i −1.23802 0.399213i
\(923\) 1.13787i 0.0374535i
\(924\) 0 0
\(925\) 7.88239i 0.259171i
\(926\) 8.43011 26.1430i 0.277031 0.859113i
\(927\) 0 0
\(928\) 37.4186 0.416312i 1.22833 0.0136661i
\(929\) 44.9106 25.9292i 1.47347 0.850708i 0.473916 0.880570i \(-0.342840\pi\)
0.999554 + 0.0298619i \(0.00950676\pi\)
\(930\) 0 0
\(931\) −4.43428 + 1.75406i −0.145328 + 0.0574870i
\(932\) −1.22513 + 12.1774i −0.0401304 + 0.398882i
\(933\) 0 0
\(934\) −2.08765 + 0.448600i −0.0683098 + 0.0146786i
\(935\) 99.2852 + 57.3223i 3.24697 + 1.87464i
\(936\) 0 0
\(937\) 36.9665i 1.20764i −0.797120 0.603821i \(-0.793644\pi\)
0.797120 0.603821i \(-0.206356\pi\)
\(938\) −39.2952 + 30.6110i −1.28303 + 0.999484i
\(939\) 0 0
\(940\) 58.1048 26.1804i 1.89517 0.853909i
\(941\) 26.2751 45.5098i 0.856544 1.48358i −0.0186621 0.999826i \(-0.505941\pi\)
0.875206 0.483751i \(-0.160726\pi\)
\(942\) 0 0
\(943\) −1.28733 2.22973i −0.0419214 0.0726099i
\(944\) 6.27133 30.8520i 0.204114 1.00415i
\(945\) 0 0
\(946\) 8.20891 7.42448i 0.266895 0.241391i
\(947\) 13.4671 + 23.3256i 0.437621 + 0.757982i 0.997505 0.0705889i \(-0.0224879\pi\)
−0.559885 + 0.828571i \(0.689155\pi\)
\(948\) 0 0
\(949\) 5.12543 + 2.95917i 0.166379 + 0.0960588i
\(950\) −0.978897 + 3.03570i −0.0317596 + 0.0984912i
\(951\) 0 0
\(952\) 1.93704 + 51.0368i 0.0627798 + 1.65411i
\(953\) 31.5488 1.02196 0.510982 0.859591i \(-0.329282\pi\)
0.510982 + 0.859591i \(0.329282\pi\)
\(954\) 0 0
\(955\) −44.4645 25.6716i −1.43884 0.830713i
\(956\) −10.3228 + 14.3419i −0.333862 + 0.463849i
\(957\) 0 0
\(958\) −14.9364 + 13.5091i −0.482572 + 0.436458i
\(959\) −18.9846 + 27.9256i −0.613043 + 0.901764i
\(960\) 0 0
\(961\) 8.16112 + 14.1355i 0.263262 + 0.455983i
\(962\) 3.45119 0.741604i 0.111271 0.0239103i
\(963\) 0 0
\(964\) 4.89297 + 10.8595i 0.157592 + 0.349760i
\(965\) −39.7716 −1.28029
\(966\) 0 0
\(967\) 60.7635i 1.95402i −0.213187 0.977011i \(-0.568384\pi\)
0.213187 0.977011i \(-0.431616\pi\)
\(968\) −26.0077 + 59.4795i −0.835918 + 1.91174i
\(969\) 0 0
\(970\) −14.4903 + 3.11372i −0.465255 + 0.0999756i
\(971\) 13.9382 8.04723i 0.447299 0.258248i −0.259390 0.965773i \(-0.583521\pi\)
0.706689 + 0.707525i \(0.250188\pi\)
\(972\) 0 0
\(973\) −1.18792 + 16.1420i −0.0380830 + 0.517489i
\(974\) −7.01129 7.75207i −0.224656 0.248392i
\(975\) 0 0
\(976\) −8.66384 + 9.79612i −0.277323 + 0.313566i
\(977\) −16.3583 + 28.3334i −0.523349 + 0.906467i 0.476282 + 0.879293i \(0.341984\pi\)
−0.999631 + 0.0271741i \(0.991349\pi\)
\(978\) 0 0
\(979\) 72.1991i 2.30749i
\(980\) 9.87519 39.1331i 0.315451 1.25006i
\(981\) 0 0
\(982\) 18.9213 + 6.10140i 0.603804 + 0.194704i
\(983\) −18.5785 + 32.1789i −0.592561 + 1.02635i 0.401325 + 0.915936i \(0.368550\pi\)
−0.993886 + 0.110410i \(0.964783\pi\)
\(984\) 0 0
\(985\) 2.82567 1.63140i 0.0900333 0.0519808i
\(986\) 47.3542 42.8291i 1.50806 1.36396i
\(987\) 0 0
\(988\) −1.42124 0.142987i −0.0452156 0.00454901i
\(989\) 2.49749 1.44193i 0.0794156 0.0458506i
\(990\) 0 0
\(991\) −38.2912 22.1074i −1.21636 0.702266i −0.252223 0.967669i \(-0.581162\pi\)
−0.964137 + 0.265403i \(0.914495\pi\)
\(992\) 18.8882 + 10.6267i 0.599699 + 0.337397i
\(993\) 0 0
\(994\) −1.52661 + 3.76308i −0.0484210 + 0.119358i
\(995\) 24.5960 0.779747
\(996\) 0 0
\(997\) 13.3432 23.1110i 0.422582 0.731934i −0.573609 0.819129i \(-0.694457\pi\)
0.996191 + 0.0871953i \(0.0277904\pi\)
\(998\) 8.01954 + 37.3204i 0.253854 + 1.18136i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bk.c.451.3 32
3.2 odd 2 168.2.t.a.115.14 yes 32
4.3 odd 2 2016.2.bs.c.1711.3 32
7.5 odd 6 inner 504.2.bk.c.19.8 32
8.3 odd 2 inner 504.2.bk.c.451.8 32
8.5 even 2 2016.2.bs.c.1711.14 32
12.11 even 2 672.2.bb.a.367.15 32
21.5 even 6 168.2.t.a.19.9 32
21.11 odd 6 1176.2.p.a.979.8 32
21.17 even 6 1176.2.p.a.979.7 32
24.5 odd 2 672.2.bb.a.367.10 32
24.11 even 2 168.2.t.a.115.9 yes 32
28.19 even 6 2016.2.bs.c.271.14 32
56.5 odd 6 2016.2.bs.c.271.3 32
56.19 even 6 inner 504.2.bk.c.19.3 32
84.11 even 6 4704.2.p.a.3919.25 32
84.47 odd 6 672.2.bb.a.271.10 32
84.59 odd 6 4704.2.p.a.3919.30 32
168.5 even 6 672.2.bb.a.271.15 32
168.11 even 6 1176.2.p.a.979.5 32
168.53 odd 6 4704.2.p.a.3919.29 32
168.59 odd 6 1176.2.p.a.979.6 32
168.101 even 6 4704.2.p.a.3919.26 32
168.131 odd 6 168.2.t.a.19.14 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.9 32 21.5 even 6
168.2.t.a.19.14 yes 32 168.131 odd 6
168.2.t.a.115.9 yes 32 24.11 even 2
168.2.t.a.115.14 yes 32 3.2 odd 2
504.2.bk.c.19.3 32 56.19 even 6 inner
504.2.bk.c.19.8 32 7.5 odd 6 inner
504.2.bk.c.451.3 32 1.1 even 1 trivial
504.2.bk.c.451.8 32 8.3 odd 2 inner
672.2.bb.a.271.10 32 84.47 odd 6
672.2.bb.a.271.15 32 168.5 even 6
672.2.bb.a.367.10 32 24.5 odd 2
672.2.bb.a.367.15 32 12.11 even 2
1176.2.p.a.979.5 32 168.11 even 6
1176.2.p.a.979.6 32 168.59 odd 6
1176.2.p.a.979.7 32 21.17 even 6
1176.2.p.a.979.8 32 21.11 odd 6
2016.2.bs.c.271.3 32 56.5 odd 6
2016.2.bs.c.271.14 32 28.19 even 6
2016.2.bs.c.1711.3 32 4.3 odd 2
2016.2.bs.c.1711.14 32 8.5 even 2
4704.2.p.a.3919.25 32 84.11 even 6
4704.2.p.a.3919.26 32 168.101 even 6
4704.2.p.a.3919.29 32 168.53 odd 6
4704.2.p.a.3919.30 32 84.59 odd 6