Properties

Label 1176.2.p.a.979.5
Level $1176$
Weight $2$
Character 1176.979
Analytic conductor $9.390$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1176,2,Mod(979,1176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1176, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1176.979"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 979.5
Character \(\chi\) \(=\) 1176.979
Dual form 1176.2.p.a.979.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04886 - 0.948630i) q^{2} +1.00000i q^{3} +(0.200203 + 1.98995i) q^{4} +2.88284 q^{5} +(0.948630 - 1.04886i) q^{6} +(1.67775 - 2.27710i) q^{8} -1.00000 q^{9} +(-3.02369 - 2.73475i) q^{10} -5.82680 q^{11} +(-1.98995 + 0.200203i) q^{12} -1.04841 q^{13} +2.88284i q^{15} +(-3.91984 + 0.796791i) q^{16} +6.82499i q^{17} +(1.04886 + 0.948630i) q^{18} -0.681229i q^{19} +(0.577155 + 5.73673i) q^{20} +(6.11148 + 5.52748i) q^{22} +2.14701i q^{23} +(2.27710 + 1.67775i) q^{24} +3.31079 q^{25} +(1.09963 + 0.994552i) q^{26} -1.00000i q^{27} +6.61515i q^{29} +(2.73475 - 3.02369i) q^{30} -3.83116 q^{31} +(4.86721 + 2.88275i) q^{32} -5.82680i q^{33} +(6.47439 - 7.15845i) q^{34} +(-0.200203 - 1.98995i) q^{36} +2.38082i q^{37} +(-0.646234 + 0.714512i) q^{38} -1.04841i q^{39} +(4.83668 - 6.56452i) q^{40} +1.19919i q^{41} +1.34319 q^{43} +(-1.16655 - 11.5951i) q^{44} -2.88284 q^{45} +(2.03672 - 2.25191i) q^{46} -11.0534 q^{47} +(-0.796791 - 3.91984i) q^{48} +(-3.47255 - 3.14072i) q^{50} -6.82499 q^{51} +(-0.209895 - 2.08629i) q^{52} +8.07845i q^{53} +(-0.948630 + 1.04886i) q^{54} -16.7978 q^{55} +0.681229 q^{57} +(6.27533 - 6.93835i) q^{58} -7.87073i q^{59} +(-5.73673 + 0.577155i) q^{60} +3.26942 q^{61} +(4.01834 + 3.63435i) q^{62} +(-2.37034 - 7.64078i) q^{64} -3.02240 q^{65} +(-5.52748 + 6.11148i) q^{66} +13.3126 q^{67} +(-13.5814 + 1.36639i) q^{68} -2.14701 q^{69} +1.08533i q^{71} +(-1.67775 + 2.27710i) q^{72} -5.64507i q^{73} +(2.25851 - 2.49714i) q^{74} +3.31079i q^{75} +(1.35561 - 0.136384i) q^{76} +(-0.994552 + 1.09963i) q^{78} +12.6589i q^{79} +(-11.3003 + 2.29703i) q^{80} +1.00000 q^{81} +(1.13758 - 1.25778i) q^{82} -0.482042i q^{83} +19.6754i q^{85} +(-1.40882 - 1.27419i) q^{86} -6.61515 q^{87} +(-9.77589 + 13.2682i) q^{88} +12.3909i q^{89} +(3.02369 + 2.73475i) q^{90} +(-4.27246 + 0.429839i) q^{92} -3.83116i q^{93} +(11.5934 + 10.4856i) q^{94} -1.96388i q^{95} +(-2.88275 + 4.86721i) q^{96} +3.63532i q^{97} +5.82680 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} + 4 q^{4} + 16 q^{8} - 32 q^{9} - 16 q^{11} - 12 q^{16} - 4 q^{18} - 20 q^{22} + 32 q^{25} + 16 q^{30} + 24 q^{32} - 4 q^{36} - 16 q^{43} - 48 q^{44} - 16 q^{46} + 76 q^{50} + 16 q^{57} + 12 q^{58}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04886 0.948630i −0.741654 0.670782i
\(3\) 1.00000i 0.577350i
\(4\) 0.200203 + 1.98995i 0.100102 + 0.994977i
\(5\) 2.88284 1.28925 0.644624 0.764500i \(-0.277014\pi\)
0.644624 + 0.764500i \(0.277014\pi\)
\(6\) 0.948630 1.04886i 0.387276 0.428194i
\(7\) 0 0
\(8\) 1.67775 2.27710i 0.593172 0.805075i
\(9\) −1.00000 −0.333333
\(10\) −3.02369 2.73475i −0.956176 0.864805i
\(11\) −5.82680 −1.75685 −0.878423 0.477883i \(-0.841404\pi\)
−0.878423 + 0.477883i \(0.841404\pi\)
\(12\) −1.98995 + 0.200203i −0.574450 + 0.0577937i
\(13\) −1.04841 −0.290776 −0.145388 0.989375i \(-0.546443\pi\)
−0.145388 + 0.989375i \(0.546443\pi\)
\(14\) 0 0
\(15\) 2.88284i 0.744347i
\(16\) −3.91984 + 0.796791i −0.979959 + 0.199198i
\(17\) 6.82499i 1.65530i 0.561241 + 0.827652i \(0.310324\pi\)
−0.561241 + 0.827652i \(0.689676\pi\)
\(18\) 1.04886 + 0.948630i 0.247218 + 0.223594i
\(19\) 0.681229i 0.156285i −0.996942 0.0781423i \(-0.975101\pi\)
0.996942 0.0781423i \(-0.0248989\pi\)
\(20\) 0.577155 + 5.73673i 0.129056 + 1.28277i
\(21\) 0 0
\(22\) 6.11148 + 5.52748i 1.30297 + 1.17846i
\(23\) 2.14701i 0.447683i 0.974626 + 0.223841i \(0.0718598\pi\)
−0.974626 + 0.223841i \(0.928140\pi\)
\(24\) 2.27710 + 1.67775i 0.464811 + 0.342468i
\(25\) 3.31079 0.662159
\(26\) 1.09963 + 0.994552i 0.215655 + 0.195048i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 6.61515i 1.22840i 0.789149 + 0.614201i \(0.210522\pi\)
−0.789149 + 0.614201i \(0.789478\pi\)
\(30\) 2.73475 3.02369i 0.499295 0.552048i
\(31\) −3.83116 −0.688096 −0.344048 0.938952i \(-0.611798\pi\)
−0.344048 + 0.938952i \(0.611798\pi\)
\(32\) 4.86721 + 2.88275i 0.860409 + 0.509604i
\(33\) 5.82680i 1.01432i
\(34\) 6.47439 7.15845i 1.11035 1.22766i
\(35\) 0 0
\(36\) −0.200203 1.98995i −0.0333672 0.331659i
\(37\) 2.38082i 0.391404i 0.980663 + 0.195702i \(0.0626985\pi\)
−0.980663 + 0.195702i \(0.937302\pi\)
\(38\) −0.646234 + 0.714512i −0.104833 + 0.115909i
\(39\) 1.04841i 0.167880i
\(40\) 4.83668 6.56452i 0.764746 1.03794i
\(41\) 1.19919i 0.187281i 0.995606 + 0.0936407i \(0.0298505\pi\)
−0.995606 + 0.0936407i \(0.970149\pi\)
\(42\) 0 0
\(43\) 1.34319 0.204835 0.102418 0.994741i \(-0.467342\pi\)
0.102418 + 0.994741i \(0.467342\pi\)
\(44\) −1.16655 11.5951i −0.175863 1.74802i
\(45\) −2.88284 −0.429749
\(46\) 2.03672 2.25191i 0.300298 0.332026i
\(47\) −11.0534 −1.61230 −0.806152 0.591708i \(-0.798454\pi\)
−0.806152 + 0.591708i \(0.798454\pi\)
\(48\) −0.796791 3.91984i −0.115007 0.565780i
\(49\) 0 0
\(50\) −3.47255 3.14072i −0.491093 0.444165i
\(51\) −6.82499 −0.955690
\(52\) −0.209895 2.08629i −0.0291072 0.289316i
\(53\) 8.07845i 1.10966i 0.831963 + 0.554830i \(0.187217\pi\)
−0.831963 + 0.554830i \(0.812783\pi\)
\(54\) −0.948630 + 1.04886i −0.129092 + 0.142731i
\(55\) −16.7978 −2.26501
\(56\) 0 0
\(57\) 0.681229 0.0902310
\(58\) 6.27533 6.93835i 0.823991 0.911050i
\(59\) 7.87073i 1.02468i −0.858782 0.512341i \(-0.828778\pi\)
0.858782 0.512341i \(-0.171222\pi\)
\(60\) −5.73673 + 0.577155i −0.740609 + 0.0745104i
\(61\) 3.26942 0.418607 0.209303 0.977851i \(-0.432880\pi\)
0.209303 + 0.977851i \(0.432880\pi\)
\(62\) 4.01834 + 3.63435i 0.510329 + 0.461563i
\(63\) 0 0
\(64\) −2.37034 7.64078i −0.296293 0.955097i
\(65\) −3.02240 −0.374883
\(66\) −5.52748 + 6.11148i −0.680385 + 0.752272i
\(67\) 13.3126 1.62639 0.813195 0.581991i \(-0.197726\pi\)
0.813195 + 0.581991i \(0.197726\pi\)
\(68\) −13.5814 + 1.36639i −1.64699 + 0.165699i
\(69\) −2.14701 −0.258470
\(70\) 0 0
\(71\) 1.08533i 0.128805i 0.997924 + 0.0644027i \(0.0205142\pi\)
−0.997924 + 0.0644027i \(0.979486\pi\)
\(72\) −1.67775 + 2.27710i −0.197724 + 0.268358i
\(73\) 5.64507i 0.660706i −0.943858 0.330353i \(-0.892832\pi\)
0.943858 0.330353i \(-0.107168\pi\)
\(74\) 2.25851 2.49714i 0.262547 0.290286i
\(75\) 3.31079i 0.382298i
\(76\) 1.35561 0.136384i 0.155500 0.0156444i
\(77\) 0 0
\(78\) −0.994552 + 1.09963i −0.112611 + 0.124509i
\(79\) 12.6589i 1.42424i 0.702057 + 0.712120i \(0.252265\pi\)
−0.702057 + 0.712120i \(0.747735\pi\)
\(80\) −11.3003 + 2.29703i −1.26341 + 0.256815i
\(81\) 1.00000 0.111111
\(82\) 1.13758 1.25778i 0.125625 0.138898i
\(83\) 0.482042i 0.0529110i −0.999650 0.0264555i \(-0.991578\pi\)
0.999650 0.0264555i \(-0.00842203\pi\)
\(84\) 0 0
\(85\) 19.6754i 2.13410i
\(86\) −1.40882 1.27419i −0.151917 0.137400i
\(87\) −6.61515 −0.709218
\(88\) −9.77589 + 13.2682i −1.04211 + 1.41439i
\(89\) 12.3909i 1.31343i 0.754140 + 0.656714i \(0.228054\pi\)
−0.754140 + 0.656714i \(0.771946\pi\)
\(90\) 3.02369 + 2.73475i 0.318725 + 0.288268i
\(91\) 0 0
\(92\) −4.27246 + 0.429839i −0.445434 + 0.0448138i
\(93\) 3.83116i 0.397272i
\(94\) 11.5934 + 10.4856i 1.19577 + 1.08151i
\(95\) 1.96388i 0.201490i
\(96\) −2.88275 + 4.86721i −0.294220 + 0.496758i
\(97\) 3.63532i 0.369111i 0.982822 + 0.184556i \(0.0590846\pi\)
−0.982822 + 0.184556i \(0.940915\pi\)
\(98\) 0 0
\(99\) 5.82680 0.585616
\(100\) 0.662832 + 6.58833i 0.0662832 + 0.658833i
\(101\) −2.50468 −0.249225 −0.124612 0.992206i \(-0.539769\pi\)
−0.124612 + 0.992206i \(0.539769\pi\)
\(102\) 7.15845 + 6.47439i 0.708792 + 0.641060i
\(103\) 4.62644 0.455857 0.227928 0.973678i \(-0.426805\pi\)
0.227928 + 0.973678i \(0.426805\pi\)
\(104\) −1.75896 + 2.38733i −0.172480 + 0.234097i
\(105\) 0 0
\(106\) 7.66346 8.47315i 0.744341 0.822985i
\(107\) −6.06946 −0.586757 −0.293378 0.955996i \(-0.594780\pi\)
−0.293378 + 0.955996i \(0.594780\pi\)
\(108\) 1.98995 0.200203i 0.191483 0.0192646i
\(109\) 14.5645i 1.39503i −0.716573 0.697513i \(-0.754290\pi\)
0.716573 0.697513i \(-0.245710\pi\)
\(110\) 17.6185 + 15.9349i 1.67985 + 1.51933i
\(111\) −2.38082 −0.225977
\(112\) 0 0
\(113\) −3.82875 −0.360179 −0.180089 0.983650i \(-0.557639\pi\)
−0.180089 + 0.983650i \(0.557639\pi\)
\(114\) −0.714512 0.646234i −0.0669202 0.0605254i
\(115\) 6.18950i 0.577174i
\(116\) −13.1638 + 1.32438i −1.22223 + 0.122965i
\(117\) 1.04841 0.0969254
\(118\) −7.46641 + 8.25527i −0.687339 + 0.759959i
\(119\) 0 0
\(120\) 6.56452 + 4.83668i 0.599256 + 0.441526i
\(121\) 22.9516 2.08651
\(122\) −3.42916 3.10147i −0.310461 0.280794i
\(123\) −1.19919 −0.108127
\(124\) −0.767011 7.62383i −0.0688796 0.684640i
\(125\) −4.86972 −0.435561
\(126\) 0 0
\(127\) 0.550415i 0.0488415i 0.999702 + 0.0244207i \(0.00777413\pi\)
−0.999702 + 0.0244207i \(0.992226\pi\)
\(128\) −4.76212 + 10.2627i −0.420916 + 0.907100i
\(129\) 1.34319i 0.118262i
\(130\) 3.17007 + 2.86714i 0.278033 + 0.251465i
\(131\) 2.80383i 0.244971i −0.992470 0.122486i \(-0.960913\pi\)
0.992470 0.122486i \(-0.0390866\pi\)
\(132\) 11.5951 1.16655i 1.00922 0.101535i
\(133\) 0 0
\(134\) −13.9630 12.6287i −1.20622 1.09095i
\(135\) 2.88284i 0.248116i
\(136\) 15.5412 + 11.4506i 1.33264 + 0.981881i
\(137\) 12.7630 1.09041 0.545206 0.838302i \(-0.316451\pi\)
0.545206 + 0.838302i \(0.316451\pi\)
\(138\) 2.25191 + 2.03672i 0.191695 + 0.173377i
\(139\) 6.11761i 0.518889i −0.965758 0.259444i \(-0.916461\pi\)
0.965758 0.259444i \(-0.0835394\pi\)
\(140\) 0 0
\(141\) 11.0534i 0.930864i
\(142\) 1.02958 1.13836i 0.0864004 0.0955290i
\(143\) 6.10887 0.510849
\(144\) 3.91984 0.796791i 0.326653 0.0663993i
\(145\) 19.0704i 1.58371i
\(146\) −5.35508 + 5.92087i −0.443190 + 0.490015i
\(147\) 0 0
\(148\) −4.73771 + 0.476647i −0.389438 + 0.0391802i
\(149\) 2.02260i 0.165698i −0.996562 0.0828491i \(-0.973598\pi\)
0.996562 0.0828491i \(-0.0264019\pi\)
\(150\) 3.14072 3.47255i 0.256439 0.283533i
\(151\) 14.0681i 1.14484i 0.819959 + 0.572422i \(0.193996\pi\)
−0.819959 + 0.572422i \(0.806004\pi\)
\(152\) −1.55122 1.14293i −0.125821 0.0927037i
\(153\) 6.82499i 0.551768i
\(154\) 0 0
\(155\) −11.0446 −0.887126
\(156\) 2.08629 0.209895i 0.167037 0.0168050i
\(157\) 5.23477 0.417780 0.208890 0.977939i \(-0.433015\pi\)
0.208890 + 0.977939i \(0.433015\pi\)
\(158\) 12.0086 13.2774i 0.955356 1.05629i
\(159\) −8.07845 −0.640663
\(160\) 14.0314 + 8.31053i 1.10928 + 0.657005i
\(161\) 0 0
\(162\) −1.04886 0.948630i −0.0824060 0.0745314i
\(163\) 0.976425 0.0764795 0.0382397 0.999269i \(-0.487825\pi\)
0.0382397 + 0.999269i \(0.487825\pi\)
\(164\) −2.38633 + 0.240081i −0.186341 + 0.0187472i
\(165\) 16.7978i 1.30770i
\(166\) −0.457280 + 0.505594i −0.0354918 + 0.0392417i
\(167\) 2.08267 0.161162 0.0805808 0.996748i \(-0.474322\pi\)
0.0805808 + 0.996748i \(0.474322\pi\)
\(168\) 0 0
\(169\) −11.9008 −0.915449
\(170\) 18.6647 20.6367i 1.43151 1.58276i
\(171\) 0.681229i 0.0520949i
\(172\) 0.268912 + 2.67290i 0.0205043 + 0.203806i
\(173\) −21.3463 −1.62293 −0.811465 0.584402i \(-0.801329\pi\)
−0.811465 + 0.584402i \(0.801329\pi\)
\(174\) 6.93835 + 6.27533i 0.525995 + 0.475731i
\(175\) 0 0
\(176\) 22.8401 4.64274i 1.72164 0.349960i
\(177\) 7.87073 0.591600
\(178\) 11.7543 12.9962i 0.881025 0.974110i
\(179\) −6.94974 −0.519448 −0.259724 0.965683i \(-0.583632\pi\)
−0.259724 + 0.965683i \(0.583632\pi\)
\(180\) −0.577155 5.73673i −0.0430186 0.427591i
\(181\) 7.67619 0.570566 0.285283 0.958443i \(-0.407912\pi\)
0.285283 + 0.958443i \(0.407912\pi\)
\(182\) 0 0
\(183\) 3.26942i 0.241683i
\(184\) 4.88895 + 3.60214i 0.360418 + 0.265553i
\(185\) 6.86352i 0.504616i
\(186\) −3.63435 + 4.01834i −0.266483 + 0.294639i
\(187\) 39.7679i 2.90812i
\(188\) −2.21293 21.9958i −0.161394 1.60421i
\(189\) 0 0
\(190\) −1.86299 + 2.05983i −0.135156 + 0.149436i
\(191\) 17.8099i 1.28868i 0.764739 + 0.644340i \(0.222868\pi\)
−0.764739 + 0.644340i \(0.777132\pi\)
\(192\) 7.64078 2.37034i 0.551426 0.171065i
\(193\) −13.7959 −0.993054 −0.496527 0.868021i \(-0.665392\pi\)
−0.496527 + 0.868021i \(0.665392\pi\)
\(194\) 3.44858 3.81294i 0.247593 0.273753i
\(195\) 3.02240i 0.216439i
\(196\) 0 0
\(197\) 1.13180i 0.0806374i 0.999187 + 0.0403187i \(0.0128373\pi\)
−0.999187 + 0.0403187i \(0.987163\pi\)
\(198\) −6.11148 5.52748i −0.434324 0.392821i
\(199\) −8.53186 −0.604808 −0.302404 0.953180i \(-0.597789\pi\)
−0.302404 + 0.953180i \(0.597789\pi\)
\(200\) 5.55467 7.53900i 0.392774 0.533088i
\(201\) 13.3126i 0.938997i
\(202\) 2.62705 + 2.37601i 0.184838 + 0.167175i
\(203\) 0 0
\(204\) −1.36639 13.5814i −0.0956662 0.950890i
\(205\) 3.45707i 0.241452i
\(206\) −4.85247 4.38878i −0.338088 0.305781i
\(207\) 2.14701i 0.149228i
\(208\) 4.10959 0.835363i 0.284949 0.0579220i
\(209\) 3.96939i 0.274568i
\(210\) 0 0
\(211\) 21.2436 1.46247 0.731237 0.682124i \(-0.238944\pi\)
0.731237 + 0.682124i \(0.238944\pi\)
\(212\) −16.0758 + 1.61733i −1.10409 + 0.111079i
\(213\) −1.08533 −0.0743658
\(214\) 6.36600 + 5.75767i 0.435171 + 0.393586i
\(215\) 3.87222 0.264083
\(216\) −2.27710 1.67775i −0.154937 0.114156i
\(217\) 0 0
\(218\) −13.8163 + 15.2761i −0.935758 + 1.03463i
\(219\) 5.64507 0.381459
\(220\) −3.36297 33.4268i −0.226731 2.25363i
\(221\) 7.15538i 0.481323i
\(222\) 2.49714 + 2.25851i 0.167597 + 0.151581i
\(223\) −3.12207 −0.209069 −0.104535 0.994521i \(-0.533335\pi\)
−0.104535 + 0.994521i \(0.533335\pi\)
\(224\) 0 0
\(225\) −3.31079 −0.220720
\(226\) 4.01581 + 3.63207i 0.267128 + 0.241602i
\(227\) 5.22675i 0.346911i −0.984842 0.173456i \(-0.944507\pi\)
0.984842 0.173456i \(-0.0554933\pi\)
\(228\) 0.136384 + 1.35561i 0.00903227 + 0.0897778i
\(229\) 28.4258 1.87843 0.939215 0.343329i \(-0.111554\pi\)
0.939215 + 0.343329i \(0.111554\pi\)
\(230\) 5.87154 6.49190i 0.387158 0.428063i
\(231\) 0 0
\(232\) 15.0633 + 11.0985i 0.988957 + 0.728655i
\(233\) 6.11941 0.400896 0.200448 0.979704i \(-0.435760\pi\)
0.200448 + 0.979704i \(0.435760\pi\)
\(234\) −1.09963 0.994552i −0.0718851 0.0650159i
\(235\) −31.8652 −2.07866
\(236\) 15.6624 1.57575i 1.01954 0.102572i
\(237\) −12.6589 −0.822286
\(238\) 0 0
\(239\) 8.83528i 0.571507i 0.958303 + 0.285753i \(0.0922439\pi\)
−0.958303 + 0.285753i \(0.907756\pi\)
\(240\) −2.29703 11.3003i −0.148272 0.729430i
\(241\) 5.95545i 0.383624i −0.981432 0.191812i \(-0.938564\pi\)
0.981432 0.191812i \(-0.0614364\pi\)
\(242\) −24.0730 21.7726i −1.54747 1.39959i
\(243\) 1.00000i 0.0641500i
\(244\) 0.654550 + 6.50600i 0.0419032 + 0.416504i
\(245\) 0 0
\(246\) 1.25778 + 1.13758i 0.0801928 + 0.0725297i
\(247\) 0.714206i 0.0454439i
\(248\) −6.42770 + 8.72392i −0.408160 + 0.553969i
\(249\) 0.482042 0.0305482
\(250\) 5.10764 + 4.61956i 0.323035 + 0.292167i
\(251\) 2.13955i 0.135047i 0.997718 + 0.0675235i \(0.0215098\pi\)
−0.997718 + 0.0675235i \(0.978490\pi\)
\(252\) 0 0
\(253\) 12.5102i 0.786510i
\(254\) 0.522140 0.577307i 0.0327620 0.0362235i
\(255\) −19.6754 −1.23212
\(256\) 14.7302 6.24658i 0.920640 0.390411i
\(257\) 19.2869i 1.20309i −0.798841 0.601543i \(-0.794553\pi\)
0.798841 0.601543i \(-0.205447\pi\)
\(258\) 1.27419 1.40882i 0.0793278 0.0877092i
\(259\) 0 0
\(260\) −0.605095 6.01444i −0.0375264 0.373000i
\(261\) 6.61515i 0.409467i
\(262\) −2.65979 + 2.94081i −0.164323 + 0.181684i
\(263\) 24.3341i 1.50051i 0.661150 + 0.750254i \(0.270069\pi\)
−0.661150 + 0.750254i \(0.729931\pi\)
\(264\) −13.2682 9.77589i −0.816601 0.601664i
\(265\) 23.2889i 1.43063i
\(266\) 0 0
\(267\) −12.3909 −0.758308
\(268\) 2.66522 + 26.4914i 0.162804 + 1.61822i
\(269\) 20.9009 1.27435 0.637176 0.770718i \(-0.280102\pi\)
0.637176 + 0.770718i \(0.280102\pi\)
\(270\) −2.73475 + 3.02369i −0.166432 + 0.184016i
\(271\) −19.9939 −1.21455 −0.607273 0.794493i \(-0.707736\pi\)
−0.607273 + 0.794493i \(0.707736\pi\)
\(272\) −5.43810 26.7529i −0.329733 1.62213i
\(273\) 0 0
\(274\) −13.3865 12.1073i −0.808709 0.731430i
\(275\) −19.2913 −1.16331
\(276\) −0.429839 4.27246i −0.0258733 0.257172i
\(277\) 15.2920i 0.918807i −0.888228 0.459404i \(-0.848063\pi\)
0.888228 0.459404i \(-0.151937\pi\)
\(278\) −5.80335 + 6.41650i −0.348062 + 0.384836i
\(279\) 3.83116 0.229365
\(280\) 0 0
\(281\) 5.59802 0.333950 0.166975 0.985961i \(-0.446600\pi\)
0.166975 + 0.985961i \(0.446600\pi\)
\(282\) −10.4856 + 11.5934i −0.624407 + 0.690379i
\(283\) 11.2342i 0.667804i −0.942608 0.333902i \(-0.891635\pi\)
0.942608 0.333902i \(-0.108365\pi\)
\(284\) −2.15976 + 0.217287i −0.128158 + 0.0128936i
\(285\) 1.96388 0.116330
\(286\) −6.40733 5.79505i −0.378874 0.342669i
\(287\) 0 0
\(288\) −4.86721 2.88275i −0.286803 0.169868i
\(289\) −29.5806 −1.74003
\(290\) 18.0908 20.0022i 1.06233 1.17457i
\(291\) −3.63532 −0.213106
\(292\) 11.2334 1.13016i 0.657387 0.0661378i
\(293\) 17.7212 1.03528 0.517642 0.855598i \(-0.326810\pi\)
0.517642 + 0.855598i \(0.326810\pi\)
\(294\) 0 0
\(295\) 22.6901i 1.32107i
\(296\) 5.42135 + 3.99440i 0.315109 + 0.232170i
\(297\) 5.82680i 0.338105i
\(298\) −1.91870 + 2.12142i −0.111147 + 0.122891i
\(299\) 2.25095i 0.130176i
\(300\) −6.58833 + 0.662832i −0.380377 + 0.0382686i
\(301\) 0 0
\(302\) 13.3454 14.7554i 0.767941 0.849078i
\(303\) 2.50468i 0.143890i
\(304\) 0.542797 + 2.67031i 0.0311316 + 0.153153i
\(305\) 9.42524 0.539688
\(306\) −6.47439 + 7.15845i −0.370116 + 0.409221i
\(307\) 20.3724i 1.16271i −0.813649 0.581357i \(-0.802522\pi\)
0.813649 0.581357i \(-0.197478\pi\)
\(308\) 0 0
\(309\) 4.62644i 0.263189i
\(310\) 11.5842 + 10.4773i 0.657941 + 0.595069i
\(311\) 28.8727 1.63722 0.818610 0.574350i \(-0.194745\pi\)
0.818610 + 0.574350i \(0.194745\pi\)
\(312\) −2.38733 1.75896i −0.135156 0.0995816i
\(313\) 4.71947i 0.266760i −0.991065 0.133380i \(-0.957417\pi\)
0.991065 0.133380i \(-0.0425831\pi\)
\(314\) −5.49053 4.96586i −0.309848 0.280240i
\(315\) 0 0
\(316\) −25.1907 + 2.53436i −1.41709 + 0.142569i
\(317\) 25.4437i 1.42906i −0.699606 0.714529i \(-0.746641\pi\)
0.699606 0.714529i \(-0.253359\pi\)
\(318\) 8.47315 + 7.66346i 0.475150 + 0.429746i
\(319\) 38.5452i 2.15811i
\(320\) −6.83333 22.0272i −0.381995 1.23136i
\(321\) 6.06946i 0.338764i
\(322\) 0 0
\(323\) 4.64938 0.258699
\(324\) 0.200203 + 1.98995i 0.0111224 + 0.110553i
\(325\) −3.47107 −0.192540
\(326\) −1.02413 0.926266i −0.0567213 0.0513011i
\(327\) 14.5645 0.805418
\(328\) 2.73066 + 2.01193i 0.150776 + 0.111090i
\(329\) 0 0
\(330\) −15.9349 + 17.6185i −0.877185 + 0.969864i
\(331\) −19.7186 −1.08383 −0.541916 0.840433i \(-0.682301\pi\)
−0.541916 + 0.840433i \(0.682301\pi\)
\(332\) 0.959242 0.0965065i 0.0526453 0.00529648i
\(333\) 2.38082i 0.130468i
\(334\) −2.18442 1.97568i −0.119526 0.108104i
\(335\) 38.3781 2.09682
\(336\) 0 0
\(337\) −24.7720 −1.34942 −0.674709 0.738084i \(-0.735731\pi\)
−0.674709 + 0.738084i \(0.735731\pi\)
\(338\) 12.4823 + 11.2895i 0.678947 + 0.614067i
\(339\) 3.82875i 0.207949i
\(340\) −39.1531 + 3.93908i −2.12338 + 0.213627i
\(341\) 22.3234 1.20888
\(342\) 0.646234 0.714512i 0.0349443 0.0386364i
\(343\) 0 0
\(344\) 2.25354 3.05858i 0.121503 0.164908i
\(345\) −6.18950 −0.333232
\(346\) 22.3892 + 20.2497i 1.20365 + 1.08863i
\(347\) −14.9883 −0.804612 −0.402306 0.915505i \(-0.631791\pi\)
−0.402306 + 0.915505i \(0.631791\pi\)
\(348\) −1.32438 13.1638i −0.0709940 0.705656i
\(349\) −27.4546 −1.46961 −0.734806 0.678278i \(-0.762727\pi\)
−0.734806 + 0.678278i \(0.762727\pi\)
\(350\) 0 0
\(351\) 1.04841i 0.0559599i
\(352\) −28.3603 16.7972i −1.51161 0.895296i
\(353\) 24.0043i 1.27762i −0.769364 0.638811i \(-0.779427\pi\)
0.769364 0.638811i \(-0.220573\pi\)
\(354\) −8.25527 7.46641i −0.438763 0.396835i
\(355\) 3.12885i 0.166062i
\(356\) −24.6572 + 2.48069i −1.30683 + 0.131476i
\(357\) 0 0
\(358\) 7.28928 + 6.59273i 0.385251 + 0.348437i
\(359\) 13.6543i 0.720645i 0.932828 + 0.360322i \(0.117333\pi\)
−0.932828 + 0.360322i \(0.882667\pi\)
\(360\) −4.83668 + 6.56452i −0.254915 + 0.345980i
\(361\) 18.5359 0.975575
\(362\) −8.05122 7.28186i −0.423163 0.382726i
\(363\) 22.9516i 1.20465i
\(364\) 0 0
\(365\) 16.2739i 0.851813i
\(366\) 3.10147 3.42916i 0.162117 0.179245i
\(367\) 34.6847 1.81053 0.905264 0.424849i \(-0.139673\pi\)
0.905264 + 0.424849i \(0.139673\pi\)
\(368\) −1.71072 8.41594i −0.0891774 0.438711i
\(369\) 1.19919i 0.0624272i
\(370\) 6.51094 7.19885i 0.338488 0.374251i
\(371\) 0 0
\(372\) 7.62383 0.767011i 0.395277 0.0397676i
\(373\) 6.08232i 0.314931i −0.987525 0.157465i \(-0.949668\pi\)
0.987525 0.157465i \(-0.0503322\pi\)
\(374\) −37.7250 + 41.7108i −1.95071 + 2.15682i
\(375\) 4.86972i 0.251471i
\(376\) −18.5448 + 25.1697i −0.956374 + 1.29803i
\(377\) 6.93538i 0.357190i
\(378\) 0 0
\(379\) 19.0628 0.979189 0.489594 0.871950i \(-0.337145\pi\)
0.489594 + 0.871950i \(0.337145\pi\)
\(380\) 3.90803 0.393175i 0.200477 0.0201694i
\(381\) −0.550415 −0.0281986
\(382\) 16.8950 18.6800i 0.864424 0.955754i
\(383\) −8.25003 −0.421557 −0.210778 0.977534i \(-0.567600\pi\)
−0.210778 + 0.977534i \(0.567600\pi\)
\(384\) −10.2627 4.76212i −0.523714 0.243016i
\(385\) 0 0
\(386\) 14.4700 + 13.0872i 0.736502 + 0.666123i
\(387\) −1.34319 −0.0682784
\(388\) −7.23413 + 0.727804i −0.367257 + 0.0369487i
\(389\) 19.6214i 0.994844i 0.867509 + 0.497422i \(0.165720\pi\)
−0.867509 + 0.497422i \(0.834280\pi\)
\(390\) −2.86714 + 3.17007i −0.145183 + 0.160523i
\(391\) −14.6533 −0.741051
\(392\) 0 0
\(393\) 2.80383 0.141434
\(394\) 1.07366 1.18710i 0.0540901 0.0598050i
\(395\) 36.4937i 1.83620i
\(396\) 1.16655 + 11.5951i 0.0586211 + 0.582674i
\(397\) 31.3631 1.57407 0.787035 0.616908i \(-0.211615\pi\)
0.787035 + 0.616908i \(0.211615\pi\)
\(398\) 8.94870 + 8.09358i 0.448558 + 0.405694i
\(399\) 0 0
\(400\) −12.9778 + 2.63801i −0.648889 + 0.131901i
\(401\) 34.9124 1.74344 0.871722 0.490002i \(-0.163004\pi\)
0.871722 + 0.490002i \(0.163004\pi\)
\(402\) 12.6287 13.9630i 0.629863 0.696411i
\(403\) 4.01662 0.200082
\(404\) −0.501444 4.98419i −0.0249478 0.247973i
\(405\) 2.88284 0.143250
\(406\) 0 0
\(407\) 13.8725i 0.687636i
\(408\) −11.4506 + 15.5412i −0.566889 + 0.769403i
\(409\) 13.6465i 0.674776i −0.941366 0.337388i \(-0.890457\pi\)
0.941366 0.337388i \(-0.109543\pi\)
\(410\) 3.27948 3.62597i 0.161962 0.179074i
\(411\) 12.7630i 0.629550i
\(412\) 0.926229 + 9.20640i 0.0456320 + 0.453567i
\(413\) 0 0
\(414\) −2.03672 + 2.25191i −0.100099 + 0.110675i
\(415\) 1.38965i 0.0682154i
\(416\) −5.10282 3.02230i −0.250187 0.148181i
\(417\) 6.11761 0.299581
\(418\) 3.76548 4.16332i 0.184175 0.203635i
\(419\) 4.22322i 0.206318i 0.994665 + 0.103159i \(0.0328950\pi\)
−0.994665 + 0.103159i \(0.967105\pi\)
\(420\) 0 0
\(421\) 11.6892i 0.569697i 0.958573 + 0.284849i \(0.0919433\pi\)
−0.958573 + 0.284849i \(0.908057\pi\)
\(422\) −22.2816 20.1524i −1.08465 0.981001i
\(423\) 11.0534 0.537435
\(424\) 18.3954 + 13.5536i 0.893361 + 0.658220i
\(425\) 22.5962i 1.09607i
\(426\) 1.13836 + 1.02958i 0.0551537 + 0.0498833i
\(427\) 0 0
\(428\) −1.21513 12.0779i −0.0587354 0.583810i
\(429\) 6.10887i 0.294939i
\(430\) −4.06141 3.67330i −0.195858 0.177142i
\(431\) 34.3020i 1.65227i 0.563471 + 0.826136i \(0.309465\pi\)
−0.563471 + 0.826136i \(0.690535\pi\)
\(432\) 0.796791 + 3.91984i 0.0383356 + 0.188593i
\(433\) 14.1884i 0.681853i −0.940090 0.340926i \(-0.889259\pi\)
0.940090 0.340926i \(-0.110741\pi\)
\(434\) 0 0
\(435\) −19.0704 −0.914358
\(436\) 28.9827 2.91586i 1.38802 0.139644i
\(437\) 1.46261 0.0699659
\(438\) −5.92087 5.35508i −0.282910 0.255876i
\(439\) −28.0504 −1.33877 −0.669386 0.742915i \(-0.733443\pi\)
−0.669386 + 0.742915i \(0.733443\pi\)
\(440\) −28.1824 + 38.2501i −1.34354 + 1.82350i
\(441\) 0 0
\(442\) −6.78781 + 7.50498i −0.322863 + 0.356975i
\(443\) 11.0208 0.523614 0.261807 0.965120i \(-0.415682\pi\)
0.261807 + 0.965120i \(0.415682\pi\)
\(444\) −0.476647 4.73771i −0.0226207 0.224842i
\(445\) 35.7209i 1.69333i
\(446\) 3.27461 + 2.96169i 0.155057 + 0.140240i
\(447\) 2.02260 0.0956659
\(448\) 0 0
\(449\) 30.2270 1.42650 0.713250 0.700910i \(-0.247222\pi\)
0.713250 + 0.700910i \(0.247222\pi\)
\(450\) 3.47255 + 3.14072i 0.163698 + 0.148055i
\(451\) 6.98742i 0.329025i
\(452\) −0.766529 7.61904i −0.0360545 0.358370i
\(453\) −14.0681 −0.660976
\(454\) −4.95825 + 5.48211i −0.232702 + 0.257288i
\(455\) 0 0
\(456\) 1.14293 1.55122i 0.0535225 0.0726427i
\(457\) 25.4772 1.19177 0.595887 0.803068i \(-0.296801\pi\)
0.595887 + 0.803068i \(0.296801\pi\)
\(458\) −29.8146 26.9656i −1.39315 1.26002i
\(459\) 6.82499 0.318563
\(460\) −12.3168 + 1.23916i −0.574275 + 0.0577761i
\(461\) 27.9292 1.30079 0.650395 0.759596i \(-0.274603\pi\)
0.650395 + 0.759596i \(0.274603\pi\)
\(462\) 0 0
\(463\) 19.4232i 0.902674i −0.892354 0.451337i \(-0.850947\pi\)
0.892354 0.451337i \(-0.149053\pi\)
\(464\) −5.27089 25.9303i −0.244695 1.20378i
\(465\) 11.0446i 0.512182i
\(466\) −6.41839 5.80506i −0.297326 0.268914i
\(467\) 1.50989i 0.0698691i −0.999390 0.0349346i \(-0.988878\pi\)
0.999390 0.0349346i \(-0.0111223\pi\)
\(468\) 0.209895 + 2.08629i 0.00970240 + 0.0964386i
\(469\) 0 0
\(470\) 33.4221 + 30.2283i 1.54165 + 1.39433i
\(471\) 5.23477i 0.241206i
\(472\) −17.9224 13.2051i −0.824946 0.607813i
\(473\) −7.82653 −0.359864
\(474\) 13.2774 + 12.0086i 0.609852 + 0.551575i
\(475\) 2.25541i 0.103485i
\(476\) 0 0
\(477\) 8.07845i 0.369887i
\(478\) 8.38141 9.26695i 0.383357 0.423861i
\(479\) −14.2406 −0.650669 −0.325335 0.945599i \(-0.605477\pi\)
−0.325335 + 0.945599i \(0.605477\pi\)
\(480\) −8.31053 + 14.0314i −0.379322 + 0.640443i
\(481\) 2.49607i 0.113811i
\(482\) −5.64951 + 6.24641i −0.257328 + 0.284516i
\(483\) 0 0
\(484\) 4.59499 + 45.6727i 0.208863 + 2.07603i
\(485\) 10.4801i 0.475876i
\(486\) 0.948630 1.04886i 0.0430307 0.0475771i
\(487\) 7.39097i 0.334917i 0.985879 + 0.167458i \(0.0535560\pi\)
−0.985879 + 0.167458i \(0.946444\pi\)
\(488\) 5.48526 7.44479i 0.248306 0.337010i
\(489\) 0.976425i 0.0441555i
\(490\) 0 0
\(491\) 14.0578 0.634420 0.317210 0.948355i \(-0.397254\pi\)
0.317210 + 0.948355i \(0.397254\pi\)
\(492\) −0.240081 2.38633i −0.0108237 0.107584i
\(493\) −45.1484 −2.03338
\(494\) 0.677517 0.749100i 0.0304829 0.0337036i
\(495\) 16.7978 0.755003
\(496\) 15.0175 3.05263i 0.674306 0.137067i
\(497\) 0 0
\(498\) −0.505594 0.457280i −0.0226562 0.0204912i
\(499\) 26.9919 1.20832 0.604162 0.796861i \(-0.293508\pi\)
0.604162 + 0.796861i \(0.293508\pi\)
\(500\) −0.974934 9.69052i −0.0436004 0.433373i
\(501\) 2.08267i 0.0930467i
\(502\) 2.02964 2.24408i 0.0905871 0.100158i
\(503\) 3.15505 0.140677 0.0703384 0.997523i \(-0.477592\pi\)
0.0703384 + 0.997523i \(0.477592\pi\)
\(504\) 0 0
\(505\) −7.22059 −0.321312
\(506\) −11.8676 + 13.1214i −0.527577 + 0.583319i
\(507\) 11.9008i 0.528535i
\(508\) −1.09530 + 0.110195i −0.0485961 + 0.00488911i
\(509\) −21.7630 −0.964630 −0.482315 0.875998i \(-0.660204\pi\)
−0.482315 + 0.875998i \(0.660204\pi\)
\(510\) 20.6367 + 18.6647i 0.913808 + 0.826485i
\(511\) 0 0
\(512\) −21.3756 7.42178i −0.944678 0.327999i
\(513\) −0.681229 −0.0300770
\(514\) −18.2962 + 20.2292i −0.807009 + 0.892273i
\(515\) 13.3373 0.587712
\(516\) −2.67290 + 0.268912i −0.117668 + 0.0118382i
\(517\) 64.4060 2.83257
\(518\) 0 0
\(519\) 21.3463i 0.936999i
\(520\) −5.07082 + 6.88230i −0.222370 + 0.301809i
\(521\) 40.3946i 1.76972i 0.465856 + 0.884860i \(0.345746\pi\)
−0.465856 + 0.884860i \(0.654254\pi\)
\(522\) −6.27533 + 6.93835i −0.274664 + 0.303683i
\(523\) 29.3834i 1.28485i 0.766349 + 0.642424i \(0.222071\pi\)
−0.766349 + 0.642424i \(0.777929\pi\)
\(524\) 5.57949 0.561335i 0.243741 0.0245221i
\(525\) 0 0
\(526\) 23.0841 25.5230i 1.00651 1.11286i
\(527\) 26.1476i 1.13901i
\(528\) 4.64274 + 22.8401i 0.202050 + 0.993988i
\(529\) 18.3903 0.799580
\(530\) 22.0926 24.4268i 0.959640 1.06103i
\(531\) 7.87073i 0.341561i
\(532\) 0 0
\(533\) 1.25724i 0.0544570i
\(534\) 12.9962 + 11.7543i 0.562402 + 0.508660i
\(535\) −17.4973 −0.756475
\(536\) 22.3351 30.3140i 0.964730 1.30937i
\(537\) 6.94974i 0.299903i
\(538\) −21.9221 19.8272i −0.945129 0.854813i
\(539\) 0 0
\(540\) 5.73673 0.577155i 0.246870 0.0248368i
\(541\) 30.6975i 1.31979i −0.751359 0.659893i \(-0.770601\pi\)
0.751359 0.659893i \(-0.229399\pi\)
\(542\) 20.9708 + 18.9668i 0.900773 + 0.814696i
\(543\) 7.67619i 0.329417i
\(544\) −19.6748 + 33.2187i −0.843549 + 1.42424i
\(545\) 41.9872i 1.79853i
\(546\) 0 0
\(547\) −15.7691 −0.674240 −0.337120 0.941462i \(-0.609453\pi\)
−0.337120 + 0.941462i \(0.609453\pi\)
\(548\) 2.55519 + 25.3977i 0.109152 + 1.08494i
\(549\) −3.26942 −0.139536
\(550\) 20.2339 + 18.3003i 0.862775 + 0.780329i
\(551\) 4.50643 0.191980
\(552\) −3.60214 + 4.88895i −0.153317 + 0.208088i
\(553\) 0 0
\(554\) −14.5064 + 16.0391i −0.616320 + 0.681437i
\(555\) −6.86352 −0.291340
\(556\) 12.1738 1.22477i 0.516283 0.0519416i
\(557\) 22.2196i 0.941474i −0.882274 0.470737i \(-0.843988\pi\)
0.882274 0.470737i \(-0.156012\pi\)
\(558\) −4.01834 3.63435i −0.170110 0.153854i
\(559\) −1.40822 −0.0595612
\(560\) 0 0
\(561\) 39.7679 1.67900
\(562\) −5.87153 5.31045i −0.247675 0.224008i
\(563\) 23.9957i 1.01130i −0.862740 0.505648i \(-0.831253\pi\)
0.862740 0.505648i \(-0.168747\pi\)
\(564\) 21.9958 2.21293i 0.926189 0.0931811i
\(565\) −11.0377 −0.464359
\(566\) −10.6571 + 11.7831i −0.447951 + 0.495280i
\(567\) 0 0
\(568\) 2.47141 + 1.82091i 0.103698 + 0.0764038i
\(569\) 1.26379 0.0529810 0.0264905 0.999649i \(-0.491567\pi\)
0.0264905 + 0.999649i \(0.491567\pi\)
\(570\) −2.05983 1.86299i −0.0862767 0.0780322i
\(571\) 20.7111 0.866731 0.433365 0.901218i \(-0.357326\pi\)
0.433365 + 0.901218i \(0.357326\pi\)
\(572\) 1.22302 + 12.1564i 0.0511369 + 0.508283i
\(573\) −17.8099 −0.744019
\(574\) 0 0
\(575\) 7.10831i 0.296437i
\(576\) 2.37034 + 7.64078i 0.0987643 + 0.318366i
\(577\) 31.4542i 1.30946i 0.755864 + 0.654728i \(0.227217\pi\)
−0.755864 + 0.654728i \(0.772783\pi\)
\(578\) 31.0258 + 28.0610i 1.29050 + 1.16718i
\(579\) 13.7959i 0.573340i
\(580\) −37.9493 + 3.81797i −1.57576 + 0.158533i
\(581\) 0 0
\(582\) 3.81294 + 3.44858i 0.158051 + 0.142948i
\(583\) 47.0715i 1.94950i
\(584\) −12.8544 9.47099i −0.531918 0.391912i
\(585\) 3.02240 0.124961
\(586\) −18.5870 16.8108i −0.767822 0.694450i
\(587\) 5.93391i 0.244919i 0.992474 + 0.122459i \(0.0390781\pi\)
−0.992474 + 0.122459i \(0.960922\pi\)
\(588\) 0 0
\(589\) 2.60989i 0.107539i
\(590\) −21.5245 + 23.7987i −0.886150 + 0.979776i
\(591\) −1.13180 −0.0465560
\(592\) −1.89701 9.33241i −0.0779667 0.383560i
\(593\) 15.7040i 0.644885i −0.946589 0.322443i \(-0.895496\pi\)
0.946589 0.322443i \(-0.104504\pi\)
\(594\) 5.52748 6.11148i 0.226795 0.250757i
\(595\) 0 0
\(596\) 4.02489 0.404932i 0.164866 0.0165867i
\(597\) 8.53186i 0.349186i
\(598\) −2.13531 + 2.36092i −0.0873195 + 0.0965452i
\(599\) 17.3726i 0.709827i 0.934899 + 0.354914i \(0.115490\pi\)
−0.934899 + 0.354914i \(0.884510\pi\)
\(600\) 7.53900 + 5.55467i 0.307778 + 0.226768i
\(601\) 43.6846i 1.78193i 0.454069 + 0.890966i \(0.349972\pi\)
−0.454069 + 0.890966i \(0.650028\pi\)
\(602\) 0 0
\(603\) −13.3126 −0.542130
\(604\) −27.9948 + 2.81648i −1.13909 + 0.114601i
\(605\) 66.1659 2.69003
\(606\) −2.37601 + 2.62705i −0.0965188 + 0.106716i
\(607\) 19.2009 0.779341 0.389671 0.920954i \(-0.372589\pi\)
0.389671 + 0.920954i \(0.372589\pi\)
\(608\) 1.96382 3.31568i 0.0796432 0.134469i
\(609\) 0 0
\(610\) −9.88573 8.94106i −0.400262 0.362013i
\(611\) 11.5885 0.468820
\(612\) 13.5814 1.36639i 0.548997 0.0552329i
\(613\) 17.1672i 0.693375i 0.937981 + 0.346688i \(0.112694\pi\)
−0.937981 + 0.346688i \(0.887306\pi\)
\(614\) −19.3259 + 21.3677i −0.779928 + 0.862331i
\(615\) −3.45707 −0.139402
\(616\) 0 0
\(617\) −16.8150 −0.676946 −0.338473 0.940976i \(-0.609910\pi\)
−0.338473 + 0.940976i \(0.609910\pi\)
\(618\) 4.38878 4.85247i 0.176543 0.195195i
\(619\) 34.8225i 1.39964i 0.714322 + 0.699818i \(0.246735\pi\)
−0.714322 + 0.699818i \(0.753265\pi\)
\(620\) −2.21117 21.9783i −0.0888028 0.882670i
\(621\) 2.14701 0.0861566
\(622\) −30.2833 27.3895i −1.21425 1.09822i
\(623\) 0 0
\(624\) 0.835363 + 4.10959i 0.0334413 + 0.164515i
\(625\) −30.5926 −1.22370
\(626\) −4.47703 + 4.95005i −0.178938 + 0.197844i
\(627\) −3.96939 −0.158522
\(628\) 1.04802 + 10.4170i 0.0418205 + 0.415682i
\(629\) −16.2491 −0.647892
\(630\) 0 0
\(631\) 11.8869i 0.473210i 0.971606 + 0.236605i \(0.0760346\pi\)
−0.971606 + 0.236605i \(0.923965\pi\)
\(632\) 28.8256 + 21.2385i 1.14662 + 0.844820i
\(633\) 21.2436i 0.844359i
\(634\) −24.1366 + 26.6868i −0.958587 + 1.05987i
\(635\) 1.58676i 0.0629687i
\(636\) −1.61733 16.0758i −0.0641315 0.637445i
\(637\) 0 0
\(638\) −36.5651 + 40.4284i −1.44763 + 1.60057i
\(639\) 1.08533i 0.0429351i
\(640\) −13.7284 + 29.5857i −0.542664 + 1.16948i
\(641\) −36.8895 −1.45705 −0.728523 0.685021i \(-0.759793\pi\)
−0.728523 + 0.685021i \(0.759793\pi\)
\(642\) −5.75767 + 6.36600i −0.227237 + 0.251246i
\(643\) 10.0475i 0.396235i −0.980178 0.198117i \(-0.936517\pi\)
0.980178 0.198117i \(-0.0634827\pi\)
\(644\) 0 0
\(645\) 3.87222i 0.152469i
\(646\) −4.87654 4.41054i −0.191865 0.173530i
\(647\) −39.1647 −1.53972 −0.769862 0.638210i \(-0.779675\pi\)
−0.769862 + 0.638210i \(0.779675\pi\)
\(648\) 1.67775 2.27710i 0.0659081 0.0894528i
\(649\) 45.8612i 1.80021i
\(650\) 3.64065 + 3.29276i 0.142798 + 0.129153i
\(651\) 0 0
\(652\) 0.195484 + 1.94304i 0.00765573 + 0.0760954i
\(653\) 41.5024i 1.62412i 0.583577 + 0.812058i \(0.301653\pi\)
−0.583577 + 0.812058i \(0.698347\pi\)
\(654\) −15.2761 13.8163i −0.597342 0.540260i
\(655\) 8.08300i 0.315829i
\(656\) −0.955501 4.70062i −0.0373061 0.183528i
\(657\) 5.64507i 0.220235i
\(658\) 0 0
\(659\) −35.4347 −1.38034 −0.690170 0.723647i \(-0.742464\pi\)
−0.690170 + 0.723647i \(0.742464\pi\)
\(660\) 33.4268 3.36297i 1.30114 0.130903i
\(661\) −23.6331 −0.919219 −0.459610 0.888121i \(-0.652011\pi\)
−0.459610 + 0.888121i \(0.652011\pi\)
\(662\) 20.6820 + 18.7056i 0.803828 + 0.727015i
\(663\) 7.15538 0.277892
\(664\) −1.09766 0.808744i −0.0425974 0.0313854i
\(665\) 0 0
\(666\) −2.25851 + 2.49714i −0.0875156 + 0.0967620i
\(667\) −14.2028 −0.549935
\(668\) 0.416957 + 4.14441i 0.0161325 + 0.160352i
\(669\) 3.12207i 0.120706i
\(670\) −40.2532 36.4066i −1.55511 1.40651i
\(671\) −19.0503 −0.735428
\(672\) 0 0
\(673\) 8.69720 0.335253 0.167626 0.985851i \(-0.446390\pi\)
0.167626 + 0.985851i \(0.446390\pi\)
\(674\) 25.9823 + 23.4995i 1.00080 + 0.905166i
\(675\) 3.31079i 0.127433i
\(676\) −2.38259 23.6821i −0.0916380 0.910851i
\(677\) 10.9189 0.419649 0.209825 0.977739i \(-0.432711\pi\)
0.209825 + 0.977739i \(0.432711\pi\)
\(678\) −3.63207 + 4.01581i −0.139489 + 0.154226i
\(679\) 0 0
\(680\) 44.8028 + 33.0103i 1.71811 + 1.26589i
\(681\) 5.22675 0.200289
\(682\) −23.4141 21.1766i −0.896570 0.810895i
\(683\) 36.5517 1.39861 0.699305 0.714823i \(-0.253493\pi\)
0.699305 + 0.714823i \(0.253493\pi\)
\(684\) −1.35561 + 0.136384i −0.0518332 + 0.00521478i
\(685\) 36.7936 1.40581
\(686\) 0 0
\(687\) 28.4258i 1.08451i
\(688\) −5.26510 + 1.07025i −0.200730 + 0.0408027i
\(689\) 8.46952i 0.322663i
\(690\) 6.49190 + 5.87154i 0.247143 + 0.223526i
\(691\) 5.30956i 0.201985i −0.994887 0.100993i \(-0.967798\pi\)
0.994887 0.100993i \(-0.0322018\pi\)
\(692\) −4.27360 42.4782i −0.162458 1.61478i
\(693\) 0 0
\(694\) 15.7206 + 14.2183i 0.596744 + 0.539720i
\(695\) 17.6361i 0.668976i
\(696\) −11.0985 + 15.0633i −0.420689 + 0.570974i
\(697\) −8.18444 −0.310008
\(698\) 28.7960 + 26.0443i 1.08994 + 0.985789i
\(699\) 6.11941i 0.231457i
\(700\) 0 0
\(701\) 6.16681i 0.232917i 0.993196 + 0.116459i \(0.0371542\pi\)
−0.993196 + 0.116459i \(0.962846\pi\)
\(702\) 0.994552 1.09963i 0.0375369 0.0415029i
\(703\) 1.62188 0.0611704
\(704\) 13.8115 + 44.5213i 0.520541 + 1.67796i
\(705\) 31.8652i 1.20011i
\(706\) −22.7712 + 25.1771i −0.857006 + 0.947553i
\(707\) 0 0
\(708\) 1.57575 + 15.6624i 0.0592202 + 0.588629i
\(709\) 1.99834i 0.0750494i −0.999296 0.0375247i \(-0.988053\pi\)
0.999296 0.0375247i \(-0.0119473\pi\)
\(710\) 2.96812 3.28171i 0.111391 0.123161i
\(711\) 12.6589i 0.474747i
\(712\) 28.2152 + 20.7887i 1.05741 + 0.779090i
\(713\) 8.22554i 0.308049i
\(714\) 0 0
\(715\) 17.6109 0.658611
\(716\) −1.39136 13.8297i −0.0519976 0.516839i
\(717\) −8.83528 −0.329960
\(718\) 12.9528 14.3214i 0.483396 0.534469i
\(719\) 13.4489 0.501560 0.250780 0.968044i \(-0.419313\pi\)
0.250780 + 0.968044i \(0.419313\pi\)
\(720\) 11.3003 2.29703i 0.421137 0.0856051i
\(721\) 0 0
\(722\) −19.4415 17.5837i −0.723539 0.654399i
\(723\) 5.95545 0.221485
\(724\) 1.53680 + 15.2753i 0.0571147 + 0.567701i
\(725\) 21.9014i 0.813398i
\(726\) 21.7726 24.0730i 0.808056 0.893432i
\(727\) 19.6532 0.728897 0.364448 0.931224i \(-0.381258\pi\)
0.364448 + 0.931224i \(0.381258\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) −15.4379 + 17.0690i −0.571381 + 0.631751i
\(731\) 9.16729i 0.339065i
\(732\) −6.50600 + 0.654550i −0.240469 + 0.0241928i
\(733\) −25.2279 −0.931814 −0.465907 0.884834i \(-0.654272\pi\)
−0.465907 + 0.884834i \(0.654272\pi\)
\(734\) −36.3793 32.9030i −1.34279 1.21447i
\(735\) 0 0
\(736\) −6.18931 + 10.4500i −0.228141 + 0.385190i
\(737\) −77.5698 −2.85732
\(738\) −1.13758 + 1.25778i −0.0418750 + 0.0462994i
\(739\) 6.70955 0.246815 0.123407 0.992356i \(-0.460618\pi\)
0.123407 + 0.992356i \(0.460618\pi\)
\(740\) −13.6581 + 1.37410i −0.502082 + 0.0505129i
\(741\) −0.714206 −0.0262370
\(742\) 0 0
\(743\) 26.0661i 0.956273i 0.878286 + 0.478137i \(0.158688\pi\)
−0.878286 + 0.478137i \(0.841312\pi\)
\(744\) −8.72392 6.42770i −0.319834 0.235651i
\(745\) 5.83085i 0.213626i
\(746\) −5.76987 + 6.37949i −0.211250 + 0.233570i
\(747\) 0.482042i 0.0176370i
\(748\) 79.1363 7.96167i 2.89351 0.291107i
\(749\) 0 0
\(750\) −4.61956 + 5.10764i −0.168682 + 0.186505i
\(751\) 5.71302i 0.208471i −0.994553 0.104236i \(-0.966760\pi\)
0.994553 0.104236i \(-0.0332396\pi\)
\(752\) 43.3275 8.80725i 1.57999 0.321167i
\(753\) −2.13955 −0.0779694
\(754\) −6.57911 + 7.27422i −0.239597 + 0.264912i
\(755\) 40.5561i 1.47599i
\(756\) 0 0
\(757\) 4.75364i 0.172774i 0.996262 + 0.0863869i \(0.0275321\pi\)
−0.996262 + 0.0863869i \(0.972468\pi\)
\(758\) −19.9941 18.0835i −0.726219 0.656823i
\(759\) 12.5102 0.454092
\(760\) −4.47194 3.29489i −0.162214 0.119518i
\(761\) 27.3284i 0.990654i −0.868707 0.495327i \(-0.835048\pi\)
0.868707 0.495327i \(-0.164952\pi\)
\(762\) 0.577307 + 0.522140i 0.0209136 + 0.0189151i
\(763\) 0 0
\(764\) −35.4409 + 3.56560i −1.28221 + 0.128999i
\(765\) 19.6754i 0.711366i
\(766\) 8.65310 + 7.82622i 0.312649 + 0.282773i
\(767\) 8.25174i 0.297953i
\(768\) 6.24658 + 14.7302i 0.225404 + 0.531532i
\(769\) 22.7151i 0.819127i 0.912282 + 0.409564i \(0.134319\pi\)
−0.912282 + 0.409564i \(0.865681\pi\)
\(770\) 0 0
\(771\) 19.2869 0.694602
\(772\) −2.76199 27.4533i −0.0994064 0.988066i
\(773\) −18.1187 −0.651685 −0.325843 0.945424i \(-0.605648\pi\)
−0.325843 + 0.945424i \(0.605648\pi\)
\(774\) 1.40882 + 1.27419i 0.0506390 + 0.0458000i
\(775\) −12.6842 −0.455629
\(776\) 8.27799 + 6.09915i 0.297162 + 0.218947i
\(777\) 0 0
\(778\) 18.6134 20.5800i 0.667324 0.737830i
\(779\) 0.816920 0.0292692
\(780\) 6.01444 0.605095i 0.215351 0.0216659i
\(781\) 6.32402i 0.226291i
\(782\) 15.3693 + 13.9006i 0.549604 + 0.497084i
\(783\) 6.61515 0.236406
\(784\) 0 0
\(785\) 15.0910 0.538622
\(786\) −2.94081 2.65979i −0.104895 0.0948717i
\(787\) 4.91161i 0.175080i −0.996161 0.0875400i \(-0.972099\pi\)
0.996161 0.0875400i \(-0.0279006\pi\)
\(788\) −2.25223 + 0.226590i −0.0802324 + 0.00807194i
\(789\) −24.3341 −0.866319
\(790\) 34.6190 38.2767i 1.23169 1.36182i
\(791\) 0 0
\(792\) 9.77589 13.2682i 0.347371 0.471465i
\(793\) −3.42769 −0.121721
\(794\) −32.8954 29.7520i −1.16742 1.05586i
\(795\) −23.2889 −0.825973
\(796\) −1.70811 16.9780i −0.0605423 0.601770i
\(797\) −23.8384 −0.844398 −0.422199 0.906503i \(-0.638742\pi\)
−0.422199 + 0.906503i \(0.638742\pi\)
\(798\) 0 0
\(799\) 75.4394i 2.66885i
\(800\) 16.1143 + 9.54420i 0.569728 + 0.337439i
\(801\) 12.3909i 0.437809i
\(802\) −36.6181 33.1190i −1.29303 1.16947i
\(803\) 32.8927i 1.16076i
\(804\) −26.4914 + 2.66522i −0.934281 + 0.0939952i
\(805\) 0 0
\(806\) −4.21286 3.81028i −0.148392 0.134211i
\(807\) 20.9009i 0.735748i
\(808\) −4.20221 + 5.70339i −0.147833 + 0.200645i
\(809\) −1.19583 −0.0420431 −0.0210216 0.999779i \(-0.506692\pi\)
−0.0210216 + 0.999779i \(0.506692\pi\)
\(810\) −3.02369 2.73475i −0.106242 0.0960894i
\(811\) 6.44559i 0.226335i 0.993576 + 0.113168i \(0.0360997\pi\)
−0.993576 + 0.113168i \(0.963900\pi\)
\(812\) 0 0
\(813\) 19.9939i 0.701218i
\(814\) −13.1599 + 14.5503i −0.461254 + 0.509988i
\(815\) 2.81488 0.0986010
\(816\) 26.7529 5.43810i 0.936538 0.190371i
\(817\) 0.915023i 0.0320126i
\(818\) −12.9455 + 14.3132i −0.452628 + 0.500450i
\(819\) 0 0
\(820\) −6.87941 + 0.692117i −0.240239 + 0.0241698i
\(821\) 2.16738i 0.0756420i 0.999285 + 0.0378210i \(0.0120417\pi\)
−0.999285 + 0.0378210i \(0.987958\pi\)
\(822\) 12.1073 13.3865i 0.422291 0.466909i
\(823\) 5.99900i 0.209112i 0.994519 + 0.104556i \(0.0333422\pi\)
−0.994519 + 0.104556i \(0.966658\pi\)
\(824\) 7.76199 10.5349i 0.270402 0.366999i
\(825\) 19.2913i 0.671638i
\(826\) 0 0
\(827\) 21.0143 0.730738 0.365369 0.930863i \(-0.380943\pi\)
0.365369 + 0.930863i \(0.380943\pi\)
\(828\) 4.27246 0.429839i 0.148478 0.0149379i
\(829\) 13.1978 0.458379 0.229190 0.973382i \(-0.426392\pi\)
0.229190 + 0.973382i \(0.426392\pi\)
\(830\) −1.31827 + 1.45755i −0.0457577 + 0.0505922i
\(831\) 15.2920 0.530474
\(832\) 2.48509 + 8.01066i 0.0861549 + 0.277720i
\(833\) 0 0
\(834\) −6.41650 5.80335i −0.222185 0.200953i
\(835\) 6.00400 0.207777
\(836\) −7.89890 + 0.794684i −0.273189 + 0.0274847i
\(837\) 3.83116i 0.132424i
\(838\) 4.00627 4.42955i 0.138394 0.153016i
\(839\) 33.8661 1.16919 0.584594 0.811326i \(-0.301254\pi\)
0.584594 + 0.811326i \(0.301254\pi\)
\(840\) 0 0
\(841\) −14.7602 −0.508973
\(842\) 11.0887 12.2603i 0.382143 0.422518i
\(843\) 5.59802i 0.192806i
\(844\) 4.25305 + 42.2739i 0.146396 + 1.45513i
\(845\) −34.3083 −1.18024
\(846\) −11.5934 10.4856i −0.398591 0.360502i
\(847\) 0 0
\(848\) −6.43684 31.6662i −0.221042 1.08742i
\(849\) 11.2342 0.385557
\(850\) 21.4354 23.7001i 0.735228 0.812908i
\(851\) −5.11164 −0.175225
\(852\) −0.217287 2.15976i −0.00744414 0.0739923i
\(853\) −50.0832 −1.71482 −0.857408 0.514638i \(-0.827926\pi\)
−0.857408 + 0.514638i \(0.827926\pi\)
\(854\) 0 0
\(855\) 1.96388i 0.0671632i
\(856\) −10.1830 + 13.8208i −0.348048 + 0.472384i
\(857\) 49.2628i 1.68279i −0.540424 0.841393i \(-0.681736\pi\)
0.540424 0.841393i \(-0.318264\pi\)
\(858\) 5.79505 6.40733i 0.197840 0.218743i
\(859\) 3.91059i 0.133428i −0.997772 0.0667139i \(-0.978749\pi\)
0.997772 0.0667139i \(-0.0212515\pi\)
\(860\) 0.775232 + 7.70554i 0.0264352 + 0.262757i
\(861\) 0 0
\(862\) 32.5399 35.9779i 1.10831 1.22541i
\(863\) 43.2124i 1.47097i −0.677542 0.735484i \(-0.736955\pi\)
0.677542 0.735484i \(-0.263045\pi\)
\(864\) 2.88275 4.86721i 0.0980733 0.165586i
\(865\) −61.5381 −2.09236
\(866\) −13.4596 + 14.8817i −0.457375 + 0.505699i
\(867\) 29.5806i 1.00461i
\(868\) 0 0
\(869\) 73.7611i 2.50217i
\(870\) 20.0022 + 18.0908i 0.678137 + 0.613335i
\(871\) −13.9570 −0.472916
\(872\) −33.1648 24.4355i −1.12310 0.827490i
\(873\) 3.63532i 0.123037i
\(874\) −1.53407 1.38747i −0.0518905 0.0469319i
\(875\) 0 0
\(876\) 1.13016 + 11.2334i 0.0381846 + 0.379543i
\(877\) 21.1390i 0.713815i 0.934140 + 0.356907i \(0.116169\pi\)
−0.934140 + 0.356907i \(0.883831\pi\)
\(878\) 29.4208 + 26.6094i 0.992905 + 0.898024i
\(879\) 17.7212i 0.597721i
\(880\) 65.8445 13.3843i 2.21962 0.451185i
\(881\) 49.1167i 1.65478i 0.561625 + 0.827392i \(0.310177\pi\)
−0.561625 + 0.827392i \(0.689823\pi\)
\(882\) 0 0
\(883\) 37.8457 1.27361 0.636804 0.771025i \(-0.280256\pi\)
0.636804 + 0.771025i \(0.280256\pi\)
\(884\) 14.2389 1.43253i 0.478906 0.0481813i
\(885\) 22.6901 0.762719
\(886\) −11.5593 10.4547i −0.388341 0.351231i
\(887\) 17.9408 0.602393 0.301196 0.953562i \(-0.402614\pi\)
0.301196 + 0.953562i \(0.402614\pi\)
\(888\) −3.99440 + 5.42135i −0.134043 + 0.181929i
\(889\) 0 0
\(890\) 33.8859 37.4662i 1.13586 1.25587i
\(891\) −5.82680 −0.195205
\(892\) −0.625049 6.21278i −0.0209282 0.208019i
\(893\) 7.52989i 0.251978i
\(894\) −2.12142 1.91870i −0.0709510 0.0641710i
\(895\) −20.0350 −0.669697
\(896\) 0 0
\(897\) 2.25095 0.0751569
\(898\) −31.7038 28.6742i −1.05797 0.956871i
\(899\) 25.3437i 0.845259i
\(900\) −0.662832 6.58833i −0.0220944 0.219611i
\(901\) −55.1354 −1.83683
\(902\) −6.62848 + 7.32881i −0.220704 + 0.244023i
\(903\) 0 0
\(904\) −6.42367 + 8.71844i −0.213648 + 0.289971i
\(905\) 22.1293 0.735601
\(906\) 14.7554 + 13.3454i 0.490216 + 0.443371i
\(907\) 22.1774 0.736388 0.368194 0.929749i \(-0.379976\pi\)
0.368194 + 0.929749i \(0.379976\pi\)
\(908\) 10.4010 1.04641i 0.345169 0.0347264i
\(909\) 2.50468 0.0830748
\(910\) 0 0
\(911\) 35.2495i 1.16787i 0.811801 + 0.583934i \(0.198487\pi\)
−0.811801 + 0.583934i \(0.801513\pi\)
\(912\) −2.67031 + 0.542797i −0.0884227 + 0.0179738i
\(913\) 2.80877i 0.0929566i
\(914\) −26.7220 24.1685i −0.883884 0.799421i
\(915\) 9.42524i 0.311589i
\(916\) 5.69094 + 56.5661i 0.188034 + 1.86900i
\(917\) 0 0
\(918\) −7.15845 6.47439i −0.236264 0.213687i
\(919\) 17.5326i 0.578348i 0.957277 + 0.289174i \(0.0933806\pi\)
−0.957277 + 0.289174i \(0.906619\pi\)
\(920\) 14.0941 + 10.3844i 0.464669 + 0.342364i
\(921\) 20.3724 0.671293
\(922\) −29.2937 26.4944i −0.964737 0.872547i
\(923\) 1.13787i 0.0374535i
\(924\) 0 0
\(925\) 7.88239i 0.259171i
\(926\) −18.4255 + 20.3722i −0.605498 + 0.669472i
\(927\) −4.62644 −0.151952
\(928\) −19.0698 + 32.1973i −0.625998 + 1.05693i
\(929\) 51.8583i 1.70142i −0.525638 0.850708i \(-0.676173\pi\)
0.525638 0.850708i \(-0.323827\pi\)
\(930\) −10.4773 + 11.5842i −0.343563 + 0.379862i
\(931\) 0 0
\(932\) 1.22513 + 12.1774i 0.0401304 + 0.398882i
\(933\) 28.8727i 0.945249i
\(934\) −1.43232 + 1.58365i −0.0468670 + 0.0518187i
\(935\) 114.645i 3.74928i
\(936\) 1.75896 2.38733i 0.0574935 0.0780323i
\(937\) 36.9665i 1.20764i −0.797120 0.603821i \(-0.793644\pi\)
0.797120 0.603821i \(-0.206356\pi\)
\(938\) 0 0
\(939\) 4.71947 0.154014
\(940\) −6.37953 63.4104i −0.208077 2.06822i
\(941\) −52.5502 −1.71309 −0.856544 0.516075i \(-0.827393\pi\)
−0.856544 + 0.516075i \(0.827393\pi\)
\(942\) 4.96586 5.49053i 0.161796 0.178891i
\(943\) −2.57467 −0.0838427
\(944\) 6.27133 + 30.8520i 0.204114 + 1.00415i
\(945\) 0 0
\(946\) 8.20891 + 7.42448i 0.266895 + 0.241391i
\(947\) 26.9341 0.875242 0.437621 0.899160i \(-0.355821\pi\)
0.437621 + 0.899160i \(0.355821\pi\)
\(948\) −2.53436 25.1907i −0.0823122 0.818156i
\(949\) 5.91834i 0.192118i
\(950\) −2.13955 + 2.36560i −0.0694161 + 0.0767503i
\(951\) 25.4437 0.825067
\(952\) 0 0
\(953\) −31.5488 −1.02196 −0.510982 0.859591i \(-0.670718\pi\)
−0.510982 + 0.859591i \(0.670718\pi\)
\(954\) −7.66346 + 8.47315i −0.248114 + 0.274328i
\(955\) 51.3432i 1.66143i
\(956\) −17.5818 + 1.76885i −0.568636 + 0.0572088i
\(957\) 38.5452 1.24599
\(958\) 14.9364 + 13.5091i 0.482572 + 0.436458i
\(959\) 0 0
\(960\) 22.0272 6.83333i 0.710924 0.220545i
\(961\) −16.3222 −0.526524
\(962\) −2.36784 + 2.61802i −0.0763424 + 0.0844083i
\(963\) 6.06946 0.195586
\(964\) 11.8511 1.19230i 0.381697 0.0384014i
\(965\) −39.7716 −1.28029
\(966\) 0 0
\(967\) 60.7635i 1.95402i 0.213187 + 0.977011i \(0.431616\pi\)
−0.213187 + 0.977011i \(0.568384\pi\)
\(968\) 38.5070 52.2631i 1.23766 1.67980i
\(969\) 4.64938i 0.149360i
\(970\) 9.94171 10.9921i 0.319209 0.352935i
\(971\) 16.0945i 0.516496i −0.966079 0.258248i \(-0.916855\pi\)
0.966079 0.258248i \(-0.0831452\pi\)
\(972\) −1.98995 + 0.200203i −0.0638278 + 0.00642153i
\(973\) 0 0
\(974\) 7.01129 7.75207i 0.224656 0.248392i
\(975\) 3.47107i 0.111163i
\(976\) −12.8156 + 2.60505i −0.410218 + 0.0833855i
\(977\) −32.7166 −1.04670 −0.523349 0.852119i \(-0.675318\pi\)
−0.523349 + 0.852119i \(0.675318\pi\)
\(978\) 0.926266 1.02413i 0.0296187 0.0327481i
\(979\) 72.1991i 2.30749i
\(980\) 0 0
\(981\) 14.5645i 0.465008i
\(982\) −14.7446 13.3357i −0.470520 0.425558i
\(983\) 37.1569 1.18512 0.592561 0.805525i \(-0.298117\pi\)
0.592561 + 0.805525i \(0.298117\pi\)
\(984\) −2.01193 + 2.73066i −0.0641380 + 0.0870504i
\(985\) 3.26280i 0.103962i
\(986\) 47.3542 + 42.8291i 1.50806 + 1.36396i
\(987\) 0 0
\(988\) −1.42124 + 0.142987i −0.0452156 + 0.00454901i
\(989\) 2.88385i 0.0917012i
\(990\) −17.6185 15.9349i −0.559951 0.506443i
\(991\) 44.2149i 1.40453i −0.711915 0.702266i \(-0.752172\pi\)
0.711915 0.702266i \(-0.247828\pi\)
\(992\) −18.6470 11.0443i −0.592044 0.350656i
\(993\) 19.7186i 0.625750i
\(994\) 0 0
\(995\) −24.5960 −0.779747
\(996\) 0.0965065 + 0.959242i 0.00305793 + 0.0303948i
\(997\) 26.6863 0.845165 0.422582 0.906325i \(-0.361124\pi\)
0.422582 + 0.906325i \(0.361124\pi\)
\(998\) −28.3107 25.6053i −0.896159 0.810523i
\(999\) 2.38082 0.0753257
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.p.a.979.5 32
4.3 odd 2 4704.2.p.a.3919.29 32
7.2 even 3 168.2.t.a.115.9 yes 32
7.3 odd 6 168.2.t.a.19.14 yes 32
7.6 odd 2 inner 1176.2.p.a.979.6 32
8.3 odd 2 inner 1176.2.p.a.979.8 32
8.5 even 2 4704.2.p.a.3919.25 32
21.2 odd 6 504.2.bk.c.451.8 32
21.17 even 6 504.2.bk.c.19.3 32
28.3 even 6 672.2.bb.a.271.15 32
28.23 odd 6 672.2.bb.a.367.10 32
28.27 even 2 4704.2.p.a.3919.26 32
56.3 even 6 168.2.t.a.19.9 32
56.13 odd 2 4704.2.p.a.3919.30 32
56.27 even 2 inner 1176.2.p.a.979.7 32
56.37 even 6 672.2.bb.a.367.15 32
56.45 odd 6 672.2.bb.a.271.10 32
56.51 odd 6 168.2.t.a.115.14 yes 32
84.23 even 6 2016.2.bs.c.1711.14 32
84.59 odd 6 2016.2.bs.c.271.3 32
168.59 odd 6 504.2.bk.c.19.8 32
168.101 even 6 2016.2.bs.c.271.14 32
168.107 even 6 504.2.bk.c.451.3 32
168.149 odd 6 2016.2.bs.c.1711.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.9 32 56.3 even 6
168.2.t.a.19.14 yes 32 7.3 odd 6
168.2.t.a.115.9 yes 32 7.2 even 3
168.2.t.a.115.14 yes 32 56.51 odd 6
504.2.bk.c.19.3 32 21.17 even 6
504.2.bk.c.19.8 32 168.59 odd 6
504.2.bk.c.451.3 32 168.107 even 6
504.2.bk.c.451.8 32 21.2 odd 6
672.2.bb.a.271.10 32 56.45 odd 6
672.2.bb.a.271.15 32 28.3 even 6
672.2.bb.a.367.10 32 28.23 odd 6
672.2.bb.a.367.15 32 56.37 even 6
1176.2.p.a.979.5 32 1.1 even 1 trivial
1176.2.p.a.979.6 32 7.6 odd 2 inner
1176.2.p.a.979.7 32 56.27 even 2 inner
1176.2.p.a.979.8 32 8.3 odd 2 inner
2016.2.bs.c.271.3 32 84.59 odd 6
2016.2.bs.c.271.14 32 168.101 even 6
2016.2.bs.c.1711.3 32 168.149 odd 6
2016.2.bs.c.1711.14 32 84.23 even 6
4704.2.p.a.3919.25 32 8.5 even 2
4704.2.p.a.3919.26 32 28.27 even 2
4704.2.p.a.3919.29 32 4.3 odd 2
4704.2.p.a.3919.30 32 56.13 odd 2