L(s) = 1 | + (−1.04 − 0.948i)2-s + i·3-s + (0.200 + 1.98i)4-s + 2.88·5-s + (0.948 − 1.04i)6-s + (1.67 − 2.27i)8-s − 9-s + (−3.02 − 2.73i)10-s − 5.82·11-s + (−1.98 + 0.200i)12-s − 1.04·13-s + 2.88i·15-s + (−3.91 + 0.796i)16-s + 6.82i·17-s + (1.04 + 0.948i)18-s − 0.681i·19-s + ⋯ |
L(s) = 1 | + (−0.741 − 0.670i)2-s + 0.577i·3-s + (0.100 + 0.994i)4-s + 1.28·5-s + (0.387 − 0.428i)6-s + (0.593 − 0.805i)8-s − 0.333·9-s + (−0.956 − 0.864i)10-s − 1.75·11-s + (−0.574 + 0.0577i)12-s − 0.290·13-s + 0.744i·15-s + (−0.979 + 0.199i)16-s + 1.65i·17-s + (0.247 + 0.223i)18-s − 0.156i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.220 - 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.220 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7962062731\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7962062731\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.04 + 0.948i)T \) |
| 3 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 2.88T + 5T^{2} \) |
| 11 | \( 1 + 5.82T + 11T^{2} \) |
| 13 | \( 1 + 1.04T + 13T^{2} \) |
| 17 | \( 1 - 6.82iT - 17T^{2} \) |
| 19 | \( 1 + 0.681iT - 19T^{2} \) |
| 23 | \( 1 - 2.14iT - 23T^{2} \) |
| 29 | \( 1 - 6.61iT - 29T^{2} \) |
| 31 | \( 1 + 3.83T + 31T^{2} \) |
| 37 | \( 1 - 2.38iT - 37T^{2} \) |
| 41 | \( 1 - 1.19iT - 41T^{2} \) |
| 43 | \( 1 - 1.34T + 43T^{2} \) |
| 47 | \( 1 + 11.0T + 47T^{2} \) |
| 53 | \( 1 - 8.07iT - 53T^{2} \) |
| 59 | \( 1 + 7.87iT - 59T^{2} \) |
| 61 | \( 1 - 3.26T + 61T^{2} \) |
| 67 | \( 1 - 13.3T + 67T^{2} \) |
| 71 | \( 1 - 1.08iT - 71T^{2} \) |
| 73 | \( 1 + 5.64iT - 73T^{2} \) |
| 79 | \( 1 - 12.6iT - 79T^{2} \) |
| 83 | \( 1 + 0.482iT - 83T^{2} \) |
| 89 | \( 1 - 12.3iT - 89T^{2} \) |
| 97 | \( 1 - 3.63iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.946153303875996948040579890238, −9.518971643979497224647211483356, −8.500474880229682342126727834432, −7.908488130033462729615753447819, −6.74405560442342011698261643735, −5.66379903731968433117927097877, −4.91348365921320012357705904214, −3.57793768332163276319169316279, −2.58454038139381017088635227108, −1.67714278389013110526048108609,
0.40402690490794365808913882045, 2.02567720499037652003676567933, 2.67009212178742872370074681598, 4.94320077106570934696461242706, 5.45587426656853331548082021545, 6.25948649098126696825419703705, 7.17664088467779524721006443158, 7.80051059209762665418311986639, 8.654450049693321807651346591944, 9.649571716970131207818879717138