Properties

Label 4704.2.p.a.3919.25
Level $4704$
Weight $2$
Character 4704.3919
Analytic conductor $37.562$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4704,2,Mod(3919,4704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4704, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4704.3919"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4704 = 2^{5} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4704.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.5616291108\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3919.25
Character \(\chi\) \(=\) 4704.3919
Dual form 4704.2.p.a.3919.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -2.88284 q^{5} -1.00000 q^{9} +5.82680 q^{11} +1.04841 q^{13} +2.88284i q^{15} +6.82499i q^{17} +0.681229i q^{19} +2.14701i q^{23} +3.31079 q^{25} +1.00000i q^{27} -6.61515i q^{29} -3.83116 q^{31} -5.82680i q^{33} -2.38082i q^{37} -1.04841i q^{39} +1.19919i q^{41} -1.34319 q^{43} +2.88284 q^{45} -11.0534 q^{47} +6.82499 q^{51} -8.07845i q^{53} -16.7978 q^{55} +0.681229 q^{57} +7.87073i q^{59} -3.26942 q^{61} -3.02240 q^{65} -13.3126 q^{67} +2.14701 q^{69} +1.08533i q^{71} -5.64507i q^{73} -3.31079i q^{75} +12.6589i q^{79} +1.00000 q^{81} +0.482042i q^{83} -19.6754i q^{85} -6.61515 q^{87} +12.3909i q^{89} +3.83116i q^{93} -1.96388i q^{95} +3.63532i q^{97} -5.82680 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{9} + 16 q^{11} + 32 q^{25} + 16 q^{43} + 16 q^{57} - 64 q^{67} + 32 q^{81} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4704\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(1765\) \(3137\) \(4609\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) −2.88284 −1.28925 −0.644624 0.764500i \(-0.722986\pi\)
−0.644624 + 0.764500i \(0.722986\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 5.82680 1.75685 0.878423 0.477883i \(-0.158596\pi\)
0.878423 + 0.477883i \(0.158596\pi\)
\(12\) 0 0
\(13\) 1.04841 0.290776 0.145388 0.989375i \(-0.453557\pi\)
0.145388 + 0.989375i \(0.453557\pi\)
\(14\) 0 0
\(15\) 2.88284i 0.744347i
\(16\) 0 0
\(17\) 6.82499i 1.65530i 0.561241 + 0.827652i \(0.310324\pi\)
−0.561241 + 0.827652i \(0.689676\pi\)
\(18\) 0 0
\(19\) 0.681229i 0.156285i 0.996942 + 0.0781423i \(0.0248989\pi\)
−0.996942 + 0.0781423i \(0.975101\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.14701i 0.447683i 0.974626 + 0.223841i \(0.0718598\pi\)
−0.974626 + 0.223841i \(0.928140\pi\)
\(24\) 0 0
\(25\) 3.31079 0.662159
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) − 6.61515i − 1.22840i −0.789149 0.614201i \(-0.789478\pi\)
0.789149 0.614201i \(-0.210522\pi\)
\(30\) 0 0
\(31\) −3.83116 −0.688096 −0.344048 0.938952i \(-0.611798\pi\)
−0.344048 + 0.938952i \(0.611798\pi\)
\(32\) 0 0
\(33\) − 5.82680i − 1.01432i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.38082i − 0.391404i −0.980663 0.195702i \(-0.937302\pi\)
0.980663 0.195702i \(-0.0626985\pi\)
\(38\) 0 0
\(39\) − 1.04841i − 0.167880i
\(40\) 0 0
\(41\) 1.19919i 0.187281i 0.995606 + 0.0936407i \(0.0298505\pi\)
−0.995606 + 0.0936407i \(0.970149\pi\)
\(42\) 0 0
\(43\) −1.34319 −0.204835 −0.102418 0.994741i \(-0.532658\pi\)
−0.102418 + 0.994741i \(0.532658\pi\)
\(44\) 0 0
\(45\) 2.88284 0.429749
\(46\) 0 0
\(47\) −11.0534 −1.61230 −0.806152 0.591708i \(-0.798454\pi\)
−0.806152 + 0.591708i \(0.798454\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 6.82499 0.955690
\(52\) 0 0
\(53\) − 8.07845i − 1.10966i −0.831963 0.554830i \(-0.812783\pi\)
0.831963 0.554830i \(-0.187217\pi\)
\(54\) 0 0
\(55\) −16.7978 −2.26501
\(56\) 0 0
\(57\) 0.681229 0.0902310
\(58\) 0 0
\(59\) 7.87073i 1.02468i 0.858782 + 0.512341i \(0.171222\pi\)
−0.858782 + 0.512341i \(0.828778\pi\)
\(60\) 0 0
\(61\) −3.26942 −0.418607 −0.209303 0.977851i \(-0.567120\pi\)
−0.209303 + 0.977851i \(0.567120\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.02240 −0.374883
\(66\) 0 0
\(67\) −13.3126 −1.62639 −0.813195 0.581991i \(-0.802274\pi\)
−0.813195 + 0.581991i \(0.802274\pi\)
\(68\) 0 0
\(69\) 2.14701 0.258470
\(70\) 0 0
\(71\) 1.08533i 0.128805i 0.997924 + 0.0644027i \(0.0205142\pi\)
−0.997924 + 0.0644027i \(0.979486\pi\)
\(72\) 0 0
\(73\) − 5.64507i − 0.660706i −0.943858 0.330353i \(-0.892832\pi\)
0.943858 0.330353i \(-0.107168\pi\)
\(74\) 0 0
\(75\) − 3.31079i − 0.382298i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.6589i 1.42424i 0.702057 + 0.712120i \(0.252265\pi\)
−0.702057 + 0.712120i \(0.747735\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.482042i 0.0529110i 0.999650 + 0.0264555i \(0.00842203\pi\)
−0.999650 + 0.0264555i \(0.991578\pi\)
\(84\) 0 0
\(85\) − 19.6754i − 2.13410i
\(86\) 0 0
\(87\) −6.61515 −0.709218
\(88\) 0 0
\(89\) 12.3909i 1.31343i 0.754140 + 0.656714i \(0.228054\pi\)
−0.754140 + 0.656714i \(0.771946\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.83116i 0.397272i
\(94\) 0 0
\(95\) − 1.96388i − 0.201490i
\(96\) 0 0
\(97\) 3.63532i 0.369111i 0.982822 + 0.184556i \(0.0590846\pi\)
−0.982822 + 0.184556i \(0.940915\pi\)
\(98\) 0 0
\(99\) −5.82680 −0.585616
\(100\) 0 0
\(101\) 2.50468 0.249225 0.124612 0.992206i \(-0.460231\pi\)
0.124612 + 0.992206i \(0.460231\pi\)
\(102\) 0 0
\(103\) 4.62644 0.455857 0.227928 0.973678i \(-0.426805\pi\)
0.227928 + 0.973678i \(0.426805\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.06946 0.586757 0.293378 0.955996i \(-0.405220\pi\)
0.293378 + 0.955996i \(0.405220\pi\)
\(108\) 0 0
\(109\) 14.5645i 1.39503i 0.716573 + 0.697513i \(0.245710\pi\)
−0.716573 + 0.697513i \(0.754290\pi\)
\(110\) 0 0
\(111\) −2.38082 −0.225977
\(112\) 0 0
\(113\) −3.82875 −0.360179 −0.180089 0.983650i \(-0.557639\pi\)
−0.180089 + 0.983650i \(0.557639\pi\)
\(114\) 0 0
\(115\) − 6.18950i − 0.577174i
\(116\) 0 0
\(117\) −1.04841 −0.0969254
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 22.9516 2.08651
\(122\) 0 0
\(123\) 1.19919 0.108127
\(124\) 0 0
\(125\) 4.86972 0.435561
\(126\) 0 0
\(127\) 0.550415i 0.0488415i 0.999702 + 0.0244207i \(0.00777413\pi\)
−0.999702 + 0.0244207i \(0.992226\pi\)
\(128\) 0 0
\(129\) 1.34319i 0.118262i
\(130\) 0 0
\(131\) 2.80383i 0.244971i 0.992470 + 0.122486i \(0.0390866\pi\)
−0.992470 + 0.122486i \(0.960913\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 2.88284i − 0.248116i
\(136\) 0 0
\(137\) 12.7630 1.09041 0.545206 0.838302i \(-0.316451\pi\)
0.545206 + 0.838302i \(0.316451\pi\)
\(138\) 0 0
\(139\) 6.11761i 0.518889i 0.965758 + 0.259444i \(0.0835394\pi\)
−0.965758 + 0.259444i \(0.916461\pi\)
\(140\) 0 0
\(141\) 11.0534i 0.930864i
\(142\) 0 0
\(143\) 6.10887 0.510849
\(144\) 0 0
\(145\) 19.0704i 1.58371i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.02260i 0.165698i 0.996562 + 0.0828491i \(0.0264019\pi\)
−0.996562 + 0.0828491i \(0.973598\pi\)
\(150\) 0 0
\(151\) 14.0681i 1.14484i 0.819959 + 0.572422i \(0.193996\pi\)
−0.819959 + 0.572422i \(0.806004\pi\)
\(152\) 0 0
\(153\) − 6.82499i − 0.551768i
\(154\) 0 0
\(155\) 11.0446 0.887126
\(156\) 0 0
\(157\) −5.23477 −0.417780 −0.208890 0.977939i \(-0.566985\pi\)
−0.208890 + 0.977939i \(0.566985\pi\)
\(158\) 0 0
\(159\) −8.07845 −0.640663
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.976425 −0.0764795 −0.0382397 0.999269i \(-0.512175\pi\)
−0.0382397 + 0.999269i \(0.512175\pi\)
\(164\) 0 0
\(165\) 16.7978i 1.30770i
\(166\) 0 0
\(167\) 2.08267 0.161162 0.0805808 0.996748i \(-0.474322\pi\)
0.0805808 + 0.996748i \(0.474322\pi\)
\(168\) 0 0
\(169\) −11.9008 −0.915449
\(170\) 0 0
\(171\) − 0.681229i − 0.0520949i
\(172\) 0 0
\(173\) 21.3463 1.62293 0.811465 0.584402i \(-0.198671\pi\)
0.811465 + 0.584402i \(0.198671\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.87073 0.591600
\(178\) 0 0
\(179\) 6.94974 0.519448 0.259724 0.965683i \(-0.416368\pi\)
0.259724 + 0.965683i \(0.416368\pi\)
\(180\) 0 0
\(181\) −7.67619 −0.570566 −0.285283 0.958443i \(-0.592088\pi\)
−0.285283 + 0.958443i \(0.592088\pi\)
\(182\) 0 0
\(183\) 3.26942i 0.241683i
\(184\) 0 0
\(185\) 6.86352i 0.504616i
\(186\) 0 0
\(187\) 39.7679i 2.90812i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.8099i 1.28868i 0.764739 + 0.644340i \(0.222868\pi\)
−0.764739 + 0.644340i \(0.777132\pi\)
\(192\) 0 0
\(193\) −13.7959 −0.993054 −0.496527 0.868021i \(-0.665392\pi\)
−0.496527 + 0.868021i \(0.665392\pi\)
\(194\) 0 0
\(195\) 3.02240i 0.216439i
\(196\) 0 0
\(197\) − 1.13180i − 0.0806374i −0.999187 0.0403187i \(-0.987163\pi\)
0.999187 0.0403187i \(-0.0128373\pi\)
\(198\) 0 0
\(199\) −8.53186 −0.604808 −0.302404 0.953180i \(-0.597789\pi\)
−0.302404 + 0.953180i \(0.597789\pi\)
\(200\) 0 0
\(201\) 13.3126i 0.938997i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 3.45707i − 0.241452i
\(206\) 0 0
\(207\) − 2.14701i − 0.149228i
\(208\) 0 0
\(209\) 3.96939i 0.274568i
\(210\) 0 0
\(211\) −21.2436 −1.46247 −0.731237 0.682124i \(-0.761056\pi\)
−0.731237 + 0.682124i \(0.761056\pi\)
\(212\) 0 0
\(213\) 1.08533 0.0743658
\(214\) 0 0
\(215\) 3.87222 0.264083
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −5.64507 −0.381459
\(220\) 0 0
\(221\) 7.15538i 0.481323i
\(222\) 0 0
\(223\) −3.12207 −0.209069 −0.104535 0.994521i \(-0.533335\pi\)
−0.104535 + 0.994521i \(0.533335\pi\)
\(224\) 0 0
\(225\) −3.31079 −0.220720
\(226\) 0 0
\(227\) 5.22675i 0.346911i 0.984842 + 0.173456i \(0.0554933\pi\)
−0.984842 + 0.173456i \(0.944507\pi\)
\(228\) 0 0
\(229\) −28.4258 −1.87843 −0.939215 0.343329i \(-0.888446\pi\)
−0.939215 + 0.343329i \(0.888446\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.11941 0.400896 0.200448 0.979704i \(-0.435760\pi\)
0.200448 + 0.979704i \(0.435760\pi\)
\(234\) 0 0
\(235\) 31.8652 2.07866
\(236\) 0 0
\(237\) 12.6589 0.822286
\(238\) 0 0
\(239\) 8.83528i 0.571507i 0.958303 + 0.285753i \(0.0922439\pi\)
−0.958303 + 0.285753i \(0.907756\pi\)
\(240\) 0 0
\(241\) − 5.95545i − 0.383624i −0.981432 0.191812i \(-0.938564\pi\)
0.981432 0.191812i \(-0.0614364\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.714206i 0.0454439i
\(248\) 0 0
\(249\) 0.482042 0.0305482
\(250\) 0 0
\(251\) − 2.13955i − 0.135047i −0.997718 0.0675235i \(-0.978490\pi\)
0.997718 0.0675235i \(-0.0215098\pi\)
\(252\) 0 0
\(253\) 12.5102i 0.786510i
\(254\) 0 0
\(255\) −19.6754 −1.23212
\(256\) 0 0
\(257\) − 19.2869i − 1.20309i −0.798841 0.601543i \(-0.794553\pi\)
0.798841 0.601543i \(-0.205447\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.61515i 0.409467i
\(262\) 0 0
\(263\) 24.3341i 1.50051i 0.661150 + 0.750254i \(0.270069\pi\)
−0.661150 + 0.750254i \(0.729931\pi\)
\(264\) 0 0
\(265\) 23.2889i 1.43063i
\(266\) 0 0
\(267\) 12.3909 0.758308
\(268\) 0 0
\(269\) −20.9009 −1.27435 −0.637176 0.770718i \(-0.719898\pi\)
−0.637176 + 0.770718i \(0.719898\pi\)
\(270\) 0 0
\(271\) −19.9939 −1.21455 −0.607273 0.794493i \(-0.707736\pi\)
−0.607273 + 0.794493i \(0.707736\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 19.2913 1.16331
\(276\) 0 0
\(277\) 15.2920i 0.918807i 0.888228 + 0.459404i \(0.151937\pi\)
−0.888228 + 0.459404i \(0.848063\pi\)
\(278\) 0 0
\(279\) 3.83116 0.229365
\(280\) 0 0
\(281\) 5.59802 0.333950 0.166975 0.985961i \(-0.446600\pi\)
0.166975 + 0.985961i \(0.446600\pi\)
\(282\) 0 0
\(283\) 11.2342i 0.667804i 0.942608 + 0.333902i \(0.108365\pi\)
−0.942608 + 0.333902i \(0.891635\pi\)
\(284\) 0 0
\(285\) −1.96388 −0.116330
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −29.5806 −1.74003
\(290\) 0 0
\(291\) 3.63532 0.213106
\(292\) 0 0
\(293\) −17.7212 −1.03528 −0.517642 0.855598i \(-0.673190\pi\)
−0.517642 + 0.855598i \(0.673190\pi\)
\(294\) 0 0
\(295\) − 22.6901i − 1.32107i
\(296\) 0 0
\(297\) 5.82680i 0.338105i
\(298\) 0 0
\(299\) 2.25095i 0.130176i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 2.50468i − 0.143890i
\(304\) 0 0
\(305\) 9.42524 0.539688
\(306\) 0 0
\(307\) 20.3724i 1.16271i 0.813649 + 0.581357i \(0.197478\pi\)
−0.813649 + 0.581357i \(0.802522\pi\)
\(308\) 0 0
\(309\) − 4.62644i − 0.263189i
\(310\) 0 0
\(311\) 28.8727 1.63722 0.818610 0.574350i \(-0.194745\pi\)
0.818610 + 0.574350i \(0.194745\pi\)
\(312\) 0 0
\(313\) − 4.71947i − 0.266760i −0.991065 0.133380i \(-0.957417\pi\)
0.991065 0.133380i \(-0.0425831\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.4437i 1.42906i 0.699606 + 0.714529i \(0.253359\pi\)
−0.699606 + 0.714529i \(0.746641\pi\)
\(318\) 0 0
\(319\) − 38.5452i − 2.15811i
\(320\) 0 0
\(321\) − 6.06946i − 0.338764i
\(322\) 0 0
\(323\) −4.64938 −0.258699
\(324\) 0 0
\(325\) 3.47107 0.192540
\(326\) 0 0
\(327\) 14.5645 0.805418
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 19.7186 1.08383 0.541916 0.840433i \(-0.317699\pi\)
0.541916 + 0.840433i \(0.317699\pi\)
\(332\) 0 0
\(333\) 2.38082i 0.130468i
\(334\) 0 0
\(335\) 38.3781 2.09682
\(336\) 0 0
\(337\) −24.7720 −1.34942 −0.674709 0.738084i \(-0.735731\pi\)
−0.674709 + 0.738084i \(0.735731\pi\)
\(338\) 0 0
\(339\) 3.82875i 0.207949i
\(340\) 0 0
\(341\) −22.3234 −1.20888
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −6.18950 −0.333232
\(346\) 0 0
\(347\) 14.9883 0.804612 0.402306 0.915505i \(-0.368209\pi\)
0.402306 + 0.915505i \(0.368209\pi\)
\(348\) 0 0
\(349\) 27.4546 1.46961 0.734806 0.678278i \(-0.237273\pi\)
0.734806 + 0.678278i \(0.237273\pi\)
\(350\) 0 0
\(351\) 1.04841i 0.0559599i
\(352\) 0 0
\(353\) − 24.0043i − 1.27762i −0.769364 0.638811i \(-0.779427\pi\)
0.769364 0.638811i \(-0.220573\pi\)
\(354\) 0 0
\(355\) − 3.12885i − 0.166062i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.6543i 0.720645i 0.932828 + 0.360322i \(0.117333\pi\)
−0.932828 + 0.360322i \(0.882667\pi\)
\(360\) 0 0
\(361\) 18.5359 0.975575
\(362\) 0 0
\(363\) − 22.9516i − 1.20465i
\(364\) 0 0
\(365\) 16.2739i 0.851813i
\(366\) 0 0
\(367\) 34.6847 1.81053 0.905264 0.424849i \(-0.139673\pi\)
0.905264 + 0.424849i \(0.139673\pi\)
\(368\) 0 0
\(369\) − 1.19919i − 0.0624272i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6.08232i 0.314931i 0.987525 + 0.157465i \(0.0503322\pi\)
−0.987525 + 0.157465i \(0.949668\pi\)
\(374\) 0 0
\(375\) − 4.86972i − 0.251471i
\(376\) 0 0
\(377\) − 6.93538i − 0.357190i
\(378\) 0 0
\(379\) −19.0628 −0.979189 −0.489594 0.871950i \(-0.662855\pi\)
−0.489594 + 0.871950i \(0.662855\pi\)
\(380\) 0 0
\(381\) 0.550415 0.0281986
\(382\) 0 0
\(383\) −8.25003 −0.421557 −0.210778 0.977534i \(-0.567600\pi\)
−0.210778 + 0.977534i \(0.567600\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.34319 0.0682784
\(388\) 0 0
\(389\) − 19.6214i − 0.994844i −0.867509 0.497422i \(-0.834280\pi\)
0.867509 0.497422i \(-0.165720\pi\)
\(390\) 0 0
\(391\) −14.6533 −0.741051
\(392\) 0 0
\(393\) 2.80383 0.141434
\(394\) 0 0
\(395\) − 36.4937i − 1.83620i
\(396\) 0 0
\(397\) −31.3631 −1.57407 −0.787035 0.616908i \(-0.788385\pi\)
−0.787035 + 0.616908i \(0.788385\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 34.9124 1.74344 0.871722 0.490002i \(-0.163004\pi\)
0.871722 + 0.490002i \(0.163004\pi\)
\(402\) 0 0
\(403\) −4.01662 −0.200082
\(404\) 0 0
\(405\) −2.88284 −0.143250
\(406\) 0 0
\(407\) − 13.8725i − 0.687636i
\(408\) 0 0
\(409\) − 13.6465i − 0.674776i −0.941366 0.337388i \(-0.890457\pi\)
0.941366 0.337388i \(-0.109543\pi\)
\(410\) 0 0
\(411\) − 12.7630i − 0.629550i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 1.38965i − 0.0682154i
\(416\) 0 0
\(417\) 6.11761 0.299581
\(418\) 0 0
\(419\) − 4.22322i − 0.206318i −0.994665 0.103159i \(-0.967105\pi\)
0.994665 0.103159i \(-0.0328950\pi\)
\(420\) 0 0
\(421\) − 11.6892i − 0.569697i −0.958573 0.284849i \(-0.908057\pi\)
0.958573 0.284849i \(-0.0919433\pi\)
\(422\) 0 0
\(423\) 11.0534 0.537435
\(424\) 0 0
\(425\) 22.5962i 1.09607i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) − 6.10887i − 0.294939i
\(430\) 0 0
\(431\) 34.3020i 1.65227i 0.563471 + 0.826136i \(0.309465\pi\)
−0.563471 + 0.826136i \(0.690535\pi\)
\(432\) 0 0
\(433\) − 14.1884i − 0.681853i −0.940090 0.340926i \(-0.889259\pi\)
0.940090 0.340926i \(-0.110741\pi\)
\(434\) 0 0
\(435\) 19.0704 0.914358
\(436\) 0 0
\(437\) −1.46261 −0.0699659
\(438\) 0 0
\(439\) −28.0504 −1.33877 −0.669386 0.742915i \(-0.733443\pi\)
−0.669386 + 0.742915i \(0.733443\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.0208 −0.523614 −0.261807 0.965120i \(-0.584318\pi\)
−0.261807 + 0.965120i \(0.584318\pi\)
\(444\) 0 0
\(445\) − 35.7209i − 1.69333i
\(446\) 0 0
\(447\) 2.02260 0.0956659
\(448\) 0 0
\(449\) 30.2270 1.42650 0.713250 0.700910i \(-0.247222\pi\)
0.713250 + 0.700910i \(0.247222\pi\)
\(450\) 0 0
\(451\) 6.98742i 0.329025i
\(452\) 0 0
\(453\) 14.0681 0.660976
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.4772 1.19177 0.595887 0.803068i \(-0.296801\pi\)
0.595887 + 0.803068i \(0.296801\pi\)
\(458\) 0 0
\(459\) −6.82499 −0.318563
\(460\) 0 0
\(461\) −27.9292 −1.30079 −0.650395 0.759596i \(-0.725397\pi\)
−0.650395 + 0.759596i \(0.725397\pi\)
\(462\) 0 0
\(463\) − 19.4232i − 0.902674i −0.892354 0.451337i \(-0.850947\pi\)
0.892354 0.451337i \(-0.149053\pi\)
\(464\) 0 0
\(465\) − 11.0446i − 0.512182i
\(466\) 0 0
\(467\) 1.50989i 0.0698691i 0.999390 + 0.0349346i \(0.0111223\pi\)
−0.999390 + 0.0349346i \(0.988878\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.23477i 0.241206i
\(472\) 0 0
\(473\) −7.82653 −0.359864
\(474\) 0 0
\(475\) 2.25541i 0.103485i
\(476\) 0 0
\(477\) 8.07845i 0.369887i
\(478\) 0 0
\(479\) −14.2406 −0.650669 −0.325335 0.945599i \(-0.605477\pi\)
−0.325335 + 0.945599i \(0.605477\pi\)
\(480\) 0 0
\(481\) − 2.49607i − 0.113811i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 10.4801i − 0.475876i
\(486\) 0 0
\(487\) 7.39097i 0.334917i 0.985879 + 0.167458i \(0.0535560\pi\)
−0.985879 + 0.167458i \(0.946444\pi\)
\(488\) 0 0
\(489\) 0.976425i 0.0441555i
\(490\) 0 0
\(491\) −14.0578 −0.634420 −0.317210 0.948355i \(-0.602746\pi\)
−0.317210 + 0.948355i \(0.602746\pi\)
\(492\) 0 0
\(493\) 45.1484 2.03338
\(494\) 0 0
\(495\) 16.7978 0.755003
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −26.9919 −1.20832 −0.604162 0.796861i \(-0.706492\pi\)
−0.604162 + 0.796861i \(0.706492\pi\)
\(500\) 0 0
\(501\) − 2.08267i − 0.0930467i
\(502\) 0 0
\(503\) 3.15505 0.140677 0.0703384 0.997523i \(-0.477592\pi\)
0.0703384 + 0.997523i \(0.477592\pi\)
\(504\) 0 0
\(505\) −7.22059 −0.321312
\(506\) 0 0
\(507\) 11.9008i 0.528535i
\(508\) 0 0
\(509\) 21.7630 0.964630 0.482315 0.875998i \(-0.339796\pi\)
0.482315 + 0.875998i \(0.339796\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −0.681229 −0.0300770
\(514\) 0 0
\(515\) −13.3373 −0.587712
\(516\) 0 0
\(517\) −64.4060 −2.83257
\(518\) 0 0
\(519\) − 21.3463i − 0.936999i
\(520\) 0 0
\(521\) 40.3946i 1.76972i 0.465856 + 0.884860i \(0.345746\pi\)
−0.465856 + 0.884860i \(0.654254\pi\)
\(522\) 0 0
\(523\) − 29.3834i − 1.28485i −0.766349 0.642424i \(-0.777929\pi\)
0.766349 0.642424i \(-0.222071\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 26.1476i − 1.13901i
\(528\) 0 0
\(529\) 18.3903 0.799580
\(530\) 0 0
\(531\) − 7.87073i − 0.341561i
\(532\) 0 0
\(533\) 1.25724i 0.0544570i
\(534\) 0 0
\(535\) −17.4973 −0.756475
\(536\) 0 0
\(537\) − 6.94974i − 0.299903i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 30.6975i 1.31979i 0.751359 + 0.659893i \(0.229399\pi\)
−0.751359 + 0.659893i \(0.770601\pi\)
\(542\) 0 0
\(543\) 7.67619i 0.329417i
\(544\) 0 0
\(545\) − 41.9872i − 1.79853i
\(546\) 0 0
\(547\) 15.7691 0.674240 0.337120 0.941462i \(-0.390547\pi\)
0.337120 + 0.941462i \(0.390547\pi\)
\(548\) 0 0
\(549\) 3.26942 0.139536
\(550\) 0 0
\(551\) 4.50643 0.191980
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6.86352 0.291340
\(556\) 0 0
\(557\) 22.2196i 0.941474i 0.882274 + 0.470737i \(0.156012\pi\)
−0.882274 + 0.470737i \(0.843988\pi\)
\(558\) 0 0
\(559\) −1.40822 −0.0595612
\(560\) 0 0
\(561\) 39.7679 1.67900
\(562\) 0 0
\(563\) 23.9957i 1.01130i 0.862740 + 0.505648i \(0.168747\pi\)
−0.862740 + 0.505648i \(0.831253\pi\)
\(564\) 0 0
\(565\) 11.0377 0.464359
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.26379 0.0529810 0.0264905 0.999649i \(-0.491567\pi\)
0.0264905 + 0.999649i \(0.491567\pi\)
\(570\) 0 0
\(571\) −20.7111 −0.866731 −0.433365 0.901218i \(-0.642674\pi\)
−0.433365 + 0.901218i \(0.642674\pi\)
\(572\) 0 0
\(573\) 17.8099 0.744019
\(574\) 0 0
\(575\) 7.10831i 0.296437i
\(576\) 0 0
\(577\) 31.4542i 1.30946i 0.755864 + 0.654728i \(0.227217\pi\)
−0.755864 + 0.654728i \(0.772783\pi\)
\(578\) 0 0
\(579\) 13.7959i 0.573340i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 47.0715i − 1.94950i
\(584\) 0 0
\(585\) 3.02240 0.124961
\(586\) 0 0
\(587\) − 5.93391i − 0.244919i −0.992474 0.122459i \(-0.960922\pi\)
0.992474 0.122459i \(-0.0390781\pi\)
\(588\) 0 0
\(589\) − 2.60989i − 0.107539i
\(590\) 0 0
\(591\) −1.13180 −0.0465560
\(592\) 0 0
\(593\) − 15.7040i − 0.644885i −0.946589 0.322443i \(-0.895496\pi\)
0.946589 0.322443i \(-0.104504\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.53186i 0.349186i
\(598\) 0 0
\(599\) 17.3726i 0.709827i 0.934899 + 0.354914i \(0.115490\pi\)
−0.934899 + 0.354914i \(0.884510\pi\)
\(600\) 0 0
\(601\) 43.6846i 1.78193i 0.454069 + 0.890966i \(0.349972\pi\)
−0.454069 + 0.890966i \(0.650028\pi\)
\(602\) 0 0
\(603\) 13.3126 0.542130
\(604\) 0 0
\(605\) −66.1659 −2.69003
\(606\) 0 0
\(607\) 19.2009 0.779341 0.389671 0.920954i \(-0.372589\pi\)
0.389671 + 0.920954i \(0.372589\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.5885 −0.468820
\(612\) 0 0
\(613\) − 17.1672i − 0.693375i −0.937981 0.346688i \(-0.887306\pi\)
0.937981 0.346688i \(-0.112694\pi\)
\(614\) 0 0
\(615\) −3.45707 −0.139402
\(616\) 0 0
\(617\) −16.8150 −0.676946 −0.338473 0.940976i \(-0.609910\pi\)
−0.338473 + 0.940976i \(0.609910\pi\)
\(618\) 0 0
\(619\) − 34.8225i − 1.39964i −0.714322 0.699818i \(-0.753265\pi\)
0.714322 0.699818i \(-0.246735\pi\)
\(620\) 0 0
\(621\) −2.14701 −0.0861566
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −30.5926 −1.22370
\(626\) 0 0
\(627\) 3.96939 0.158522
\(628\) 0 0
\(629\) 16.2491 0.647892
\(630\) 0 0
\(631\) 11.8869i 0.473210i 0.971606 + 0.236605i \(0.0760346\pi\)
−0.971606 + 0.236605i \(0.923965\pi\)
\(632\) 0 0
\(633\) 21.2436i 0.844359i
\(634\) 0 0
\(635\) − 1.58676i − 0.0629687i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 1.08533i − 0.0429351i
\(640\) 0 0
\(641\) −36.8895 −1.45705 −0.728523 0.685021i \(-0.759793\pi\)
−0.728523 + 0.685021i \(0.759793\pi\)
\(642\) 0 0
\(643\) 10.0475i 0.396235i 0.980178 + 0.198117i \(0.0634827\pi\)
−0.980178 + 0.198117i \(0.936517\pi\)
\(644\) 0 0
\(645\) − 3.87222i − 0.152469i
\(646\) 0 0
\(647\) −39.1647 −1.53972 −0.769862 0.638210i \(-0.779675\pi\)
−0.769862 + 0.638210i \(0.779675\pi\)
\(648\) 0 0
\(649\) 45.8612i 1.80021i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 41.5024i − 1.62412i −0.583577 0.812058i \(-0.698347\pi\)
0.583577 0.812058i \(-0.301653\pi\)
\(654\) 0 0
\(655\) − 8.08300i − 0.315829i
\(656\) 0 0
\(657\) 5.64507i 0.220235i
\(658\) 0 0
\(659\) 35.4347 1.38034 0.690170 0.723647i \(-0.257536\pi\)
0.690170 + 0.723647i \(0.257536\pi\)
\(660\) 0 0
\(661\) 23.6331 0.919219 0.459610 0.888121i \(-0.347989\pi\)
0.459610 + 0.888121i \(0.347989\pi\)
\(662\) 0 0
\(663\) 7.15538 0.277892
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 14.2028 0.549935
\(668\) 0 0
\(669\) 3.12207i 0.120706i
\(670\) 0 0
\(671\) −19.0503 −0.735428
\(672\) 0 0
\(673\) 8.69720 0.335253 0.167626 0.985851i \(-0.446390\pi\)
0.167626 + 0.985851i \(0.446390\pi\)
\(674\) 0 0
\(675\) 3.31079i 0.127433i
\(676\) 0 0
\(677\) −10.9189 −0.419649 −0.209825 0.977739i \(-0.567289\pi\)
−0.209825 + 0.977739i \(0.567289\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 5.22675 0.200289
\(682\) 0 0
\(683\) −36.5517 −1.39861 −0.699305 0.714823i \(-0.746507\pi\)
−0.699305 + 0.714823i \(0.746507\pi\)
\(684\) 0 0
\(685\) −36.7936 −1.40581
\(686\) 0 0
\(687\) 28.4258i 1.08451i
\(688\) 0 0
\(689\) − 8.46952i − 0.322663i
\(690\) 0 0
\(691\) 5.30956i 0.201985i 0.994887 + 0.100993i \(0.0322018\pi\)
−0.994887 + 0.100993i \(0.967798\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 17.6361i − 0.668976i
\(696\) 0 0
\(697\) −8.18444 −0.310008
\(698\) 0 0
\(699\) − 6.11941i − 0.231457i
\(700\) 0 0
\(701\) − 6.16681i − 0.232917i −0.993196 0.116459i \(-0.962846\pi\)
0.993196 0.116459i \(-0.0371542\pi\)
\(702\) 0 0
\(703\) 1.62188 0.0611704
\(704\) 0 0
\(705\) − 31.8652i − 1.20011i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.99834i 0.0750494i 0.999296 + 0.0375247i \(0.0119473\pi\)
−0.999296 + 0.0375247i \(0.988053\pi\)
\(710\) 0 0
\(711\) − 12.6589i − 0.474747i
\(712\) 0 0
\(713\) − 8.22554i − 0.308049i
\(714\) 0 0
\(715\) −17.6109 −0.658611
\(716\) 0 0
\(717\) 8.83528 0.329960
\(718\) 0 0
\(719\) 13.4489 0.501560 0.250780 0.968044i \(-0.419313\pi\)
0.250780 + 0.968044i \(0.419313\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −5.95545 −0.221485
\(724\) 0 0
\(725\) − 21.9014i − 0.813398i
\(726\) 0 0
\(727\) 19.6532 0.728897 0.364448 0.931224i \(-0.381258\pi\)
0.364448 + 0.931224i \(0.381258\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 9.16729i − 0.339065i
\(732\) 0 0
\(733\) 25.2279 0.931814 0.465907 0.884834i \(-0.345728\pi\)
0.465907 + 0.884834i \(0.345728\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −77.5698 −2.85732
\(738\) 0 0
\(739\) −6.70955 −0.246815 −0.123407 0.992356i \(-0.539382\pi\)
−0.123407 + 0.992356i \(0.539382\pi\)
\(740\) 0 0
\(741\) 0.714206 0.0262370
\(742\) 0 0
\(743\) 26.0661i 0.956273i 0.878286 + 0.478137i \(0.158688\pi\)
−0.878286 + 0.478137i \(0.841312\pi\)
\(744\) 0 0
\(745\) − 5.83085i − 0.213626i
\(746\) 0 0
\(747\) − 0.482042i − 0.0176370i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 5.71302i − 0.208471i −0.994553 0.104236i \(-0.966760\pi\)
0.994553 0.104236i \(-0.0332396\pi\)
\(752\) 0 0
\(753\) −2.13955 −0.0779694
\(754\) 0 0
\(755\) − 40.5561i − 1.47599i
\(756\) 0 0
\(757\) − 4.75364i − 0.172774i −0.996262 0.0863869i \(-0.972468\pi\)
0.996262 0.0863869i \(-0.0275321\pi\)
\(758\) 0 0
\(759\) 12.5102 0.454092
\(760\) 0 0
\(761\) − 27.3284i − 0.990654i −0.868707 0.495327i \(-0.835048\pi\)
0.868707 0.495327i \(-0.164952\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 19.6754i 0.711366i
\(766\) 0 0
\(767\) 8.25174i 0.297953i
\(768\) 0 0
\(769\) 22.7151i 0.819127i 0.912282 + 0.409564i \(0.134319\pi\)
−0.912282 + 0.409564i \(0.865681\pi\)
\(770\) 0 0
\(771\) −19.2869 −0.694602
\(772\) 0 0
\(773\) 18.1187 0.651685 0.325843 0.945424i \(-0.394352\pi\)
0.325843 + 0.945424i \(0.394352\pi\)
\(774\) 0 0
\(775\) −12.6842 −0.455629
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.816920 −0.0292692
\(780\) 0 0
\(781\) 6.32402i 0.226291i
\(782\) 0 0
\(783\) 6.61515 0.236406
\(784\) 0 0
\(785\) 15.0910 0.538622
\(786\) 0 0
\(787\) 4.91161i 0.175080i 0.996161 + 0.0875400i \(0.0279006\pi\)
−0.996161 + 0.0875400i \(0.972099\pi\)
\(788\) 0 0
\(789\) 24.3341 0.866319
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.42769 −0.121721
\(794\) 0 0
\(795\) 23.2889 0.825973
\(796\) 0 0
\(797\) 23.8384 0.844398 0.422199 0.906503i \(-0.361258\pi\)
0.422199 + 0.906503i \(0.361258\pi\)
\(798\) 0 0
\(799\) − 75.4394i − 2.66885i
\(800\) 0 0
\(801\) − 12.3909i − 0.437809i
\(802\) 0 0
\(803\) − 32.8927i − 1.16076i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 20.9009i 0.735748i
\(808\) 0 0
\(809\) −1.19583 −0.0420431 −0.0210216 0.999779i \(-0.506692\pi\)
−0.0210216 + 0.999779i \(0.506692\pi\)
\(810\) 0 0
\(811\) − 6.44559i − 0.226335i −0.993576 0.113168i \(-0.963900\pi\)
0.993576 0.113168i \(-0.0360997\pi\)
\(812\) 0 0
\(813\) 19.9939i 0.701218i
\(814\) 0 0
\(815\) 2.81488 0.0986010
\(816\) 0 0
\(817\) − 0.915023i − 0.0320126i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 2.16738i − 0.0756420i −0.999285 0.0378210i \(-0.987958\pi\)
0.999285 0.0378210i \(-0.0120417\pi\)
\(822\) 0 0
\(823\) 5.99900i 0.209112i 0.994519 + 0.104556i \(0.0333422\pi\)
−0.994519 + 0.104556i \(0.966658\pi\)
\(824\) 0 0
\(825\) − 19.2913i − 0.671638i
\(826\) 0 0
\(827\) −21.0143 −0.730738 −0.365369 0.930863i \(-0.619057\pi\)
−0.365369 + 0.930863i \(0.619057\pi\)
\(828\) 0 0
\(829\) −13.1978 −0.458379 −0.229190 0.973382i \(-0.573608\pi\)
−0.229190 + 0.973382i \(0.573608\pi\)
\(830\) 0 0
\(831\) 15.2920 0.530474
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −6.00400 −0.207777
\(836\) 0 0
\(837\) − 3.83116i − 0.132424i
\(838\) 0 0
\(839\) 33.8661 1.16919 0.584594 0.811326i \(-0.301254\pi\)
0.584594 + 0.811326i \(0.301254\pi\)
\(840\) 0 0
\(841\) −14.7602 −0.508973
\(842\) 0 0
\(843\) − 5.59802i − 0.192806i
\(844\) 0 0
\(845\) 34.3083 1.18024
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.2342 0.385557
\(850\) 0 0
\(851\) 5.11164 0.175225
\(852\) 0 0
\(853\) 50.0832 1.71482 0.857408 0.514638i \(-0.172074\pi\)
0.857408 + 0.514638i \(0.172074\pi\)
\(854\) 0 0
\(855\) 1.96388i 0.0671632i
\(856\) 0 0
\(857\) − 49.2628i − 1.68279i −0.540424 0.841393i \(-0.681736\pi\)
0.540424 0.841393i \(-0.318264\pi\)
\(858\) 0 0
\(859\) 3.91059i 0.133428i 0.997772 + 0.0667139i \(0.0212515\pi\)
−0.997772 + 0.0667139i \(0.978749\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 43.2124i − 1.47097i −0.677542 0.735484i \(-0.736955\pi\)
0.677542 0.735484i \(-0.263045\pi\)
\(864\) 0 0
\(865\) −61.5381 −2.09236
\(866\) 0 0
\(867\) 29.5806i 1.00461i
\(868\) 0 0
\(869\) 73.7611i 2.50217i
\(870\) 0 0
\(871\) −13.9570 −0.472916
\(872\) 0 0
\(873\) − 3.63532i − 0.123037i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 21.1390i − 0.713815i −0.934140 0.356907i \(-0.883831\pi\)
0.934140 0.356907i \(-0.116169\pi\)
\(878\) 0 0
\(879\) 17.7212i 0.597721i
\(880\) 0 0
\(881\) 49.1167i 1.65478i 0.561625 + 0.827392i \(0.310177\pi\)
−0.561625 + 0.827392i \(0.689823\pi\)
\(882\) 0 0
\(883\) −37.8457 −1.27361 −0.636804 0.771025i \(-0.719744\pi\)
−0.636804 + 0.771025i \(0.719744\pi\)
\(884\) 0 0
\(885\) −22.6901 −0.762719
\(886\) 0 0
\(887\) 17.9408 0.602393 0.301196 0.953562i \(-0.402614\pi\)
0.301196 + 0.953562i \(0.402614\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 5.82680 0.195205
\(892\) 0 0
\(893\) − 7.52989i − 0.251978i
\(894\) 0 0
\(895\) −20.0350 −0.669697
\(896\) 0 0
\(897\) 2.25095 0.0751569
\(898\) 0 0
\(899\) 25.3437i 0.845259i
\(900\) 0 0
\(901\) 55.1354 1.83683
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.1293 0.735601
\(906\) 0 0
\(907\) −22.1774 −0.736388 −0.368194 0.929749i \(-0.620024\pi\)
−0.368194 + 0.929749i \(0.620024\pi\)
\(908\) 0 0
\(909\) −2.50468 −0.0830748
\(910\) 0 0
\(911\) 35.2495i 1.16787i 0.811801 + 0.583934i \(0.198487\pi\)
−0.811801 + 0.583934i \(0.801513\pi\)
\(912\) 0 0
\(913\) 2.80877i 0.0929566i
\(914\) 0 0
\(915\) − 9.42524i − 0.311589i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 17.5326i 0.578348i 0.957277 + 0.289174i \(0.0933806\pi\)
−0.957277 + 0.289174i \(0.906619\pi\)
\(920\) 0 0
\(921\) 20.3724 0.671293
\(922\) 0 0
\(923\) 1.13787i 0.0374535i
\(924\) 0 0
\(925\) − 7.88239i − 0.259171i
\(926\) 0 0
\(927\) −4.62644 −0.151952
\(928\) 0 0
\(929\) − 51.8583i − 1.70142i −0.525638 0.850708i \(-0.676173\pi\)
0.525638 0.850708i \(-0.323827\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) − 28.8727i − 0.945249i
\(934\) 0 0
\(935\) − 114.645i − 3.74928i
\(936\) 0 0
\(937\) − 36.9665i − 1.20764i −0.797120 0.603821i \(-0.793644\pi\)
0.797120 0.603821i \(-0.206356\pi\)
\(938\) 0 0
\(939\) −4.71947 −0.154014
\(940\) 0 0
\(941\) 52.5502 1.71309 0.856544 0.516075i \(-0.172607\pi\)
0.856544 + 0.516075i \(0.172607\pi\)
\(942\) 0 0
\(943\) −2.57467 −0.0838427
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26.9341 −0.875242 −0.437621 0.899160i \(-0.644179\pi\)
−0.437621 + 0.899160i \(0.644179\pi\)
\(948\) 0 0
\(949\) − 5.91834i − 0.192118i
\(950\) 0 0
\(951\) 25.4437 0.825067
\(952\) 0 0
\(953\) −31.5488 −1.02196 −0.510982 0.859591i \(-0.670718\pi\)
−0.510982 + 0.859591i \(0.670718\pi\)
\(954\) 0 0
\(955\) − 51.3432i − 1.66143i
\(956\) 0 0
\(957\) −38.5452 −1.24599
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −16.3222 −0.526524
\(962\) 0 0
\(963\) −6.06946 −0.195586
\(964\) 0 0
\(965\) 39.7716 1.28029
\(966\) 0 0
\(967\) 60.7635i 1.95402i 0.213187 + 0.977011i \(0.431616\pi\)
−0.213187 + 0.977011i \(0.568384\pi\)
\(968\) 0 0
\(969\) 4.64938i 0.149360i
\(970\) 0 0
\(971\) 16.0945i 0.516496i 0.966079 + 0.258248i \(0.0831452\pi\)
−0.966079 + 0.258248i \(0.916855\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) − 3.47107i − 0.111163i
\(976\) 0 0
\(977\) −32.7166 −1.04670 −0.523349 0.852119i \(-0.675318\pi\)
−0.523349 + 0.852119i \(0.675318\pi\)
\(978\) 0 0
\(979\) 72.1991i 2.30749i
\(980\) 0 0
\(981\) − 14.5645i − 0.465008i
\(982\) 0 0
\(983\) 37.1569 1.18512 0.592561 0.805525i \(-0.298117\pi\)
0.592561 + 0.805525i \(0.298117\pi\)
\(984\) 0 0
\(985\) 3.26280i 0.103962i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 2.88385i − 0.0917012i
\(990\) 0 0
\(991\) − 44.2149i − 1.40453i −0.711915 0.702266i \(-0.752172\pi\)
0.711915 0.702266i \(-0.247828\pi\)
\(992\) 0 0
\(993\) − 19.7186i − 0.625750i
\(994\) 0 0
\(995\) 24.5960 0.779747
\(996\) 0 0
\(997\) −26.6863 −0.845165 −0.422582 0.906325i \(-0.638876\pi\)
−0.422582 + 0.906325i \(0.638876\pi\)
\(998\) 0 0
\(999\) 2.38082 0.0753257
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4704.2.p.a.3919.25 32
4.3 odd 2 1176.2.p.a.979.8 32
7.2 even 3 672.2.bb.a.367.15 32
7.3 odd 6 672.2.bb.a.271.10 32
7.6 odd 2 inner 4704.2.p.a.3919.30 32
8.3 odd 2 inner 4704.2.p.a.3919.29 32
8.5 even 2 1176.2.p.a.979.5 32
21.2 odd 6 2016.2.bs.c.1711.3 32
21.17 even 6 2016.2.bs.c.271.14 32
28.3 even 6 168.2.t.a.19.9 32
28.23 odd 6 168.2.t.a.115.14 yes 32
28.27 even 2 1176.2.p.a.979.7 32
56.3 even 6 672.2.bb.a.271.15 32
56.13 odd 2 1176.2.p.a.979.6 32
56.27 even 2 inner 4704.2.p.a.3919.26 32
56.37 even 6 168.2.t.a.115.9 yes 32
56.45 odd 6 168.2.t.a.19.14 yes 32
56.51 odd 6 672.2.bb.a.367.10 32
84.23 even 6 504.2.bk.c.451.3 32
84.59 odd 6 504.2.bk.c.19.8 32
168.59 odd 6 2016.2.bs.c.271.3 32
168.101 even 6 504.2.bk.c.19.3 32
168.107 even 6 2016.2.bs.c.1711.14 32
168.149 odd 6 504.2.bk.c.451.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.9 32 28.3 even 6
168.2.t.a.19.14 yes 32 56.45 odd 6
168.2.t.a.115.9 yes 32 56.37 even 6
168.2.t.a.115.14 yes 32 28.23 odd 6
504.2.bk.c.19.3 32 168.101 even 6
504.2.bk.c.19.8 32 84.59 odd 6
504.2.bk.c.451.3 32 84.23 even 6
504.2.bk.c.451.8 32 168.149 odd 6
672.2.bb.a.271.10 32 7.3 odd 6
672.2.bb.a.271.15 32 56.3 even 6
672.2.bb.a.367.10 32 56.51 odd 6
672.2.bb.a.367.15 32 7.2 even 3
1176.2.p.a.979.5 32 8.5 even 2
1176.2.p.a.979.6 32 56.13 odd 2
1176.2.p.a.979.7 32 28.27 even 2
1176.2.p.a.979.8 32 4.3 odd 2
2016.2.bs.c.271.3 32 168.59 odd 6
2016.2.bs.c.271.14 32 21.17 even 6
2016.2.bs.c.1711.3 32 21.2 odd 6
2016.2.bs.c.1711.14 32 168.107 even 6
4704.2.p.a.3919.25 32 1.1 even 1 trivial
4704.2.p.a.3919.26 32 56.27 even 2 inner
4704.2.p.a.3919.29 32 8.3 odd 2 inner
4704.2.p.a.3919.30 32 7.6 odd 2 inner