Properties

Label 2-4704-56.27-c1-0-12
Degree $2$
Conductor $4704$
Sign $-0.0215 - 0.999i$
Analytic cond. $37.5616$
Root an. cond. $6.12875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s − 2.88·5-s − 9-s + 5.82·11-s + 1.04·13-s + 2.88i·15-s + 6.82i·17-s + 0.681i·19-s + 2.14i·23-s + 3.31·25-s + i·27-s − 6.61i·29-s − 3.83·31-s − 5.82i·33-s − 2.38i·37-s + ⋯
L(s)  = 1  − 0.577i·3-s − 1.28·5-s − 0.333·9-s + 1.75·11-s + 0.290·13-s + 0.744i·15-s + 1.65i·17-s + 0.156i·19-s + 0.447i·23-s + 0.662·25-s + 0.192i·27-s − 1.22i·29-s − 0.688·31-s − 1.01i·33-s − 0.391i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0215 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0215 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4704\)    =    \(2^{5} \cdot 3 \cdot 7^{2}\)
Sign: $-0.0215 - 0.999i$
Analytic conductor: \(37.5616\)
Root analytic conductor: \(6.12875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4704} (3919, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4704,\ (\ :1/2),\ -0.0215 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8246919668\)
\(L(\frac12)\) \(\approx\) \(0.8246919668\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
7 \( 1 \)
good5 \( 1 + 2.88T + 5T^{2} \)
11 \( 1 - 5.82T + 11T^{2} \)
13 \( 1 - 1.04T + 13T^{2} \)
17 \( 1 - 6.82iT - 17T^{2} \)
19 \( 1 - 0.681iT - 19T^{2} \)
23 \( 1 - 2.14iT - 23T^{2} \)
29 \( 1 + 6.61iT - 29T^{2} \)
31 \( 1 + 3.83T + 31T^{2} \)
37 \( 1 + 2.38iT - 37T^{2} \)
41 \( 1 - 1.19iT - 41T^{2} \)
43 \( 1 + 1.34T + 43T^{2} \)
47 \( 1 + 11.0T + 47T^{2} \)
53 \( 1 + 8.07iT - 53T^{2} \)
59 \( 1 - 7.87iT - 59T^{2} \)
61 \( 1 + 3.26T + 61T^{2} \)
67 \( 1 + 13.3T + 67T^{2} \)
71 \( 1 - 1.08iT - 71T^{2} \)
73 \( 1 + 5.64iT - 73T^{2} \)
79 \( 1 - 12.6iT - 79T^{2} \)
83 \( 1 - 0.482iT - 83T^{2} \)
89 \( 1 - 12.3iT - 89T^{2} \)
97 \( 1 - 3.63iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.314080707361970119267028666874, −7.84794717424954719478499716088, −7.06032908895972323257641500918, −6.37431570248956327996365224068, −5.82582903055321035653408305326, −4.53518906340647821758457827795, −3.81741328953332961932550205719, −3.45938236907843355992081809980, −1.95114939028123364926994130670, −1.12361275119277606623811426221, 0.25964689008620198963277978235, 1.50126315265522180812776033257, 3.07315546801811073905437638394, 3.52694131298527918303308596033, 4.42321121715167370918583474620, 4.83294554677113151455340425621, 5.96311649117339208059480831854, 6.84848836103871110357739756978, 7.29919563904417259322236733745, 8.191816798850373697964758309629

Graph of the $Z$-function along the critical line