Properties

Label 495.3.j.c.298.12
Level $495$
Weight $3$
Character 495.298
Analytic conductor $13.488$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(298,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.298"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 298.12
Character \(\chi\) \(=\) 495.298
Dual form 495.3.j.c.397.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.692901 - 0.692901i) q^{2} +3.03978i q^{4} +(4.55660 + 2.05850i) q^{5} +(3.68149 - 3.68149i) q^{7} +(4.87787 + 4.87787i) q^{8} +(4.58361 - 1.73093i) q^{10} +3.31662 q^{11} +(8.16727 + 8.16727i) q^{13} -5.10182i q^{14} -5.39934 q^{16} +(-8.96365 + 8.96365i) q^{17} -15.2705i q^{19} +(-6.25738 + 13.8510i) q^{20} +(2.29809 - 2.29809i) q^{22} +(-15.0992 - 15.0992i) q^{23} +(16.5251 + 18.7595i) q^{25} +11.3182 q^{26} +(11.1909 + 11.1909i) q^{28} +17.7614i q^{29} +49.7660 q^{31} +(-23.2527 + 23.2527i) q^{32} +12.4219i q^{34} +(24.3534 - 9.19671i) q^{35} +(-26.1351 + 26.1351i) q^{37} +(-10.5810 - 10.5810i) q^{38} +(12.1854 + 32.2676i) q^{40} -12.6463 q^{41} +(30.0705 + 30.0705i) q^{43} +10.0818i q^{44} -20.9245 q^{46} +(34.2331 - 34.2331i) q^{47} +21.8932i q^{49} +(24.4488 + 1.54821i) q^{50} +(-24.8267 + 24.8267i) q^{52} +(-55.2796 - 55.2796i) q^{53} +(15.1125 + 6.82728i) q^{55} +35.9157 q^{56} +(12.3069 + 12.3069i) q^{58} +57.6796i q^{59} +96.1575 q^{61} +(34.4829 - 34.4829i) q^{62} +10.6263i q^{64} +(20.4026 + 54.0273i) q^{65} +(64.4666 - 64.4666i) q^{67} +(-27.2475 - 27.2475i) q^{68} +(10.5021 - 23.2469i) q^{70} -48.5204 q^{71} +(-59.7343 - 59.7343i) q^{73} +36.2181i q^{74} +46.4189 q^{76} +(12.2101 - 12.2101i) q^{77} +27.3519i q^{79} +(-24.6026 - 11.1145i) q^{80} +(-8.76261 + 8.76261i) q^{82} +(9.39902 + 9.39902i) q^{83} +(-59.2955 + 22.3921i) q^{85} +41.6718 q^{86} +(16.1781 + 16.1781i) q^{88} -120.444i q^{89} +60.1355 q^{91} +(45.8982 - 45.8982i) q^{92} -47.4403i q^{94} +(31.4344 - 69.5816i) q^{95} +(35.0156 - 35.0156i) q^{97} +(15.1699 + 15.1699i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{10} - 88 q^{13} - 296 q^{16} + 168 q^{25} + 248 q^{28} - 32 q^{31} - 24 q^{37} + 296 q^{40} - 48 q^{43} + 48 q^{46} + 64 q^{52} + 104 q^{58} + 576 q^{61} - 544 q^{67} - 1048 q^{70} - 408 q^{73}+ \cdots + 712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.692901 0.692901i 0.346451 0.346451i −0.512335 0.858786i \(-0.671219\pi\)
0.858786 + 0.512335i \(0.171219\pi\)
\(3\) 0 0
\(4\) 3.03978i 0.759944i
\(5\) 4.55660 + 2.05850i 0.911319 + 0.411700i
\(6\) 0 0
\(7\) 3.68149 3.68149i 0.525927 0.525927i −0.393428 0.919355i \(-0.628711\pi\)
0.919355 + 0.393428i \(0.128711\pi\)
\(8\) 4.87787 + 4.87787i 0.609734 + 0.609734i
\(9\) 0 0
\(10\) 4.58361 1.73093i 0.458361 0.173093i
\(11\) 3.31662 0.301511
\(12\) 0 0
\(13\) 8.16727 + 8.16727i 0.628251 + 0.628251i 0.947628 0.319376i \(-0.103473\pi\)
−0.319376 + 0.947628i \(0.603473\pi\)
\(14\) 5.10182i 0.364416i
\(15\) 0 0
\(16\) −5.39934 −0.337459
\(17\) −8.96365 + 8.96365i −0.527274 + 0.527274i −0.919759 0.392485i \(-0.871616\pi\)
0.392485 + 0.919759i \(0.371616\pi\)
\(18\) 0 0
\(19\) 15.2705i 0.803711i −0.915703 0.401856i \(-0.868365\pi\)
0.915703 0.401856i \(-0.131635\pi\)
\(20\) −6.25738 + 13.8510i −0.312869 + 0.692551i
\(21\) 0 0
\(22\) 2.29809 2.29809i 0.104459 0.104459i
\(23\) −15.0992 15.0992i −0.656487 0.656487i 0.298060 0.954547i \(-0.403660\pi\)
−0.954547 + 0.298060i \(0.903660\pi\)
\(24\) 0 0
\(25\) 16.5251 + 18.7595i 0.661006 + 0.750381i
\(26\) 11.3182 0.435316
\(27\) 0 0
\(28\) 11.1909 + 11.1909i 0.399675 + 0.399675i
\(29\) 17.7614i 0.612461i 0.951957 + 0.306230i \(0.0990678\pi\)
−0.951957 + 0.306230i \(0.900932\pi\)
\(30\) 0 0
\(31\) 49.7660 1.60535 0.802677 0.596414i \(-0.203408\pi\)
0.802677 + 0.596414i \(0.203408\pi\)
\(32\) −23.2527 + 23.2527i −0.726646 + 0.726646i
\(33\) 0 0
\(34\) 12.4219i 0.365349i
\(35\) 24.3534 9.19671i 0.695812 0.262763i
\(36\) 0 0
\(37\) −26.1351 + 26.1351i −0.706355 + 0.706355i −0.965767 0.259412i \(-0.916471\pi\)
0.259412 + 0.965767i \(0.416471\pi\)
\(38\) −10.5810 10.5810i −0.278446 0.278446i
\(39\) 0 0
\(40\) 12.1854 + 32.2676i 0.304634 + 0.806690i
\(41\) −12.6463 −0.308445 −0.154223 0.988036i \(-0.549287\pi\)
−0.154223 + 0.988036i \(0.549287\pi\)
\(42\) 0 0
\(43\) 30.0705 + 30.0705i 0.699315 + 0.699315i 0.964263 0.264948i \(-0.0853547\pi\)
−0.264948 + 0.964263i \(0.585355\pi\)
\(44\) 10.0818i 0.229132i
\(45\) 0 0
\(46\) −20.9245 −0.454881
\(47\) 34.2331 34.2331i 0.728364 0.728364i −0.241930 0.970294i \(-0.577780\pi\)
0.970294 + 0.241930i \(0.0777805\pi\)
\(48\) 0 0
\(49\) 21.8932i 0.446801i
\(50\) 24.4488 + 1.54821i 0.488976 + 0.0309642i
\(51\) 0 0
\(52\) −24.8267 + 24.8267i −0.477436 + 0.477436i
\(53\) −55.2796 55.2796i −1.04301 1.04301i −0.999032 0.0439782i \(-0.985997\pi\)
−0.0439782 0.999032i \(-0.514003\pi\)
\(54\) 0 0
\(55\) 15.1125 + 6.82728i 0.274773 + 0.124132i
\(56\) 35.9157 0.641351
\(57\) 0 0
\(58\) 12.3069 + 12.3069i 0.212187 + 0.212187i
\(59\) 57.6796i 0.977620i 0.872390 + 0.488810i \(0.162569\pi\)
−0.872390 + 0.488810i \(0.837431\pi\)
\(60\) 0 0
\(61\) 96.1575 1.57635 0.788176 0.615450i \(-0.211026\pi\)
0.788176 + 0.615450i \(0.211026\pi\)
\(62\) 34.4829 34.4829i 0.556176 0.556176i
\(63\) 0 0
\(64\) 10.6263i 0.166036i
\(65\) 20.4026 + 54.0273i 0.313886 + 0.831189i
\(66\) 0 0
\(67\) 64.4666 64.4666i 0.962189 0.962189i −0.0371222 0.999311i \(-0.511819\pi\)
0.999311 + 0.0371222i \(0.0118191\pi\)
\(68\) −27.2475 27.2475i −0.400698 0.400698i
\(69\) 0 0
\(70\) 10.5021 23.2469i 0.150030 0.332099i
\(71\) −48.5204 −0.683385 −0.341693 0.939812i \(-0.611000\pi\)
−0.341693 + 0.939812i \(0.611000\pi\)
\(72\) 0 0
\(73\) −59.7343 59.7343i −0.818278 0.818278i 0.167581 0.985858i \(-0.446405\pi\)
−0.985858 + 0.167581i \(0.946405\pi\)
\(74\) 36.2181i 0.489434i
\(75\) 0 0
\(76\) 46.4189 0.610776
\(77\) 12.2101 12.2101i 0.158573 0.158573i
\(78\) 0 0
\(79\) 27.3519i 0.346226i 0.984902 + 0.173113i \(0.0553827\pi\)
−0.984902 + 0.173113i \(0.944617\pi\)
\(80\) −24.6026 11.1145i −0.307532 0.138932i
\(81\) 0 0
\(82\) −8.76261 + 8.76261i −0.106861 + 0.106861i
\(83\) 9.39902 + 9.39902i 0.113241 + 0.113241i 0.761457 0.648216i \(-0.224484\pi\)
−0.648216 + 0.761457i \(0.724484\pi\)
\(84\) 0 0
\(85\) −59.2955 + 22.3921i −0.697594 + 0.263436i
\(86\) 41.6718 0.484556
\(87\) 0 0
\(88\) 16.1781 + 16.1781i 0.183842 + 0.183842i
\(89\) 120.444i 1.35330i −0.736305 0.676649i \(-0.763431\pi\)
0.736305 0.676649i \(-0.236569\pi\)
\(90\) 0 0
\(91\) 60.1355 0.660829
\(92\) 45.8982 45.8982i 0.498893 0.498893i
\(93\) 0 0
\(94\) 47.4403i 0.504684i
\(95\) 31.4344 69.5816i 0.330888 0.732438i
\(96\) 0 0
\(97\) 35.0156 35.0156i 0.360985 0.360985i −0.503190 0.864176i \(-0.667841\pi\)
0.864176 + 0.503190i \(0.167841\pi\)
\(98\) 15.1699 + 15.1699i 0.154794 + 0.154794i
\(99\) 0 0
\(100\) −57.0247 + 50.2327i −0.570247 + 0.502327i
\(101\) −138.348 −1.36978 −0.684892 0.728644i \(-0.740151\pi\)
−0.684892 + 0.728644i \(0.740151\pi\)
\(102\) 0 0
\(103\) −53.3996 53.3996i −0.518443 0.518443i 0.398657 0.917100i \(-0.369476\pi\)
−0.917100 + 0.398657i \(0.869476\pi\)
\(104\) 79.6778i 0.766132i
\(105\) 0 0
\(106\) −76.6066 −0.722704
\(107\) −31.8185 + 31.8185i −0.297369 + 0.297369i −0.839983 0.542613i \(-0.817435\pi\)
0.542613 + 0.839983i \(0.317435\pi\)
\(108\) 0 0
\(109\) 128.209i 1.17623i −0.808777 0.588115i \(-0.799870\pi\)
0.808777 0.588115i \(-0.200130\pi\)
\(110\) 15.2021 5.74086i 0.138201 0.0521896i
\(111\) 0 0
\(112\) −19.8776 + 19.8776i −0.177479 + 0.177479i
\(113\) −6.33251 6.33251i −0.0560399 0.0560399i 0.678531 0.734571i \(-0.262617\pi\)
−0.734571 + 0.678531i \(0.762617\pi\)
\(114\) 0 0
\(115\) −37.7192 99.8827i −0.327993 0.868546i
\(116\) −53.9906 −0.465436
\(117\) 0 0
\(118\) 39.9663 + 39.9663i 0.338697 + 0.338697i
\(119\) 65.9992i 0.554615i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) 66.6276 66.6276i 0.546128 0.546128i
\(123\) 0 0
\(124\) 151.277i 1.21998i
\(125\) 36.6819 + 119.497i 0.293455 + 0.955973i
\(126\) 0 0
\(127\) −77.9047 + 77.9047i −0.613423 + 0.613423i −0.943836 0.330413i \(-0.892812\pi\)
0.330413 + 0.943836i \(0.392812\pi\)
\(128\) −85.6478 85.6478i −0.669123 0.669123i
\(129\) 0 0
\(130\) 51.5726 + 23.2986i 0.396712 + 0.179220i
\(131\) −164.860 −1.25847 −0.629236 0.777215i \(-0.716632\pi\)
−0.629236 + 0.777215i \(0.716632\pi\)
\(132\) 0 0
\(133\) −56.2183 56.2183i −0.422694 0.422694i
\(134\) 89.3380i 0.666702i
\(135\) 0 0
\(136\) −87.4471 −0.642993
\(137\) 93.1512 93.1512i 0.679936 0.679936i −0.280050 0.959985i \(-0.590351\pi\)
0.959985 + 0.280050i \(0.0903510\pi\)
\(138\) 0 0
\(139\) 89.7778i 0.645884i −0.946419 0.322942i \(-0.895328\pi\)
0.946419 0.322942i \(-0.104672\pi\)
\(140\) 27.9559 + 74.0289i 0.199685 + 0.528778i
\(141\) 0 0
\(142\) −33.6198 + 33.6198i −0.236759 + 0.236759i
\(143\) 27.0878 + 27.0878i 0.189425 + 0.189425i
\(144\) 0 0
\(145\) −36.5618 + 80.9314i −0.252150 + 0.558147i
\(146\) −82.7799 −0.566986
\(147\) 0 0
\(148\) −79.4450 79.4450i −0.536790 0.536790i
\(149\) 244.498i 1.64093i 0.571699 + 0.820463i \(0.306284\pi\)
−0.571699 + 0.820463i \(0.693716\pi\)
\(150\) 0 0
\(151\) −174.477 −1.15548 −0.577738 0.816222i \(-0.696065\pi\)
−0.577738 + 0.816222i \(0.696065\pi\)
\(152\) 74.4876 74.4876i 0.490050 0.490050i
\(153\) 0 0
\(154\) 16.9208i 0.109875i
\(155\) 226.763 + 102.443i 1.46299 + 0.660925i
\(156\) 0 0
\(157\) 83.4260 83.4260i 0.531376 0.531376i −0.389606 0.920982i \(-0.627389\pi\)
0.920982 + 0.389606i \(0.127389\pi\)
\(158\) 18.9522 + 18.9522i 0.119950 + 0.119950i
\(159\) 0 0
\(160\) −153.819 + 58.0874i −0.961368 + 0.363046i
\(161\) −111.175 −0.690529
\(162\) 0 0
\(163\) −156.440 156.440i −0.959755 0.959755i 0.0394656 0.999221i \(-0.487434\pi\)
−0.999221 + 0.0394656i \(0.987434\pi\)
\(164\) 38.4418i 0.234401i
\(165\) 0 0
\(166\) 13.0252 0.0784649
\(167\) −6.71225 + 6.71225i −0.0401931 + 0.0401931i −0.726918 0.686725i \(-0.759048\pi\)
0.686725 + 0.726918i \(0.259048\pi\)
\(168\) 0 0
\(169\) 35.5914i 0.210600i
\(170\) −25.5704 + 56.6014i −0.150414 + 0.332949i
\(171\) 0 0
\(172\) −91.4077 + 91.4077i −0.531440 + 0.531440i
\(173\) −41.6087 41.6087i −0.240513 0.240513i 0.576550 0.817062i \(-0.304399\pi\)
−0.817062 + 0.576550i \(0.804399\pi\)
\(174\) 0 0
\(175\) 129.900 + 8.22587i 0.742287 + 0.0470050i
\(176\) −17.9076 −0.101748
\(177\) 0 0
\(178\) −83.4555 83.4555i −0.468851 0.468851i
\(179\) 35.8421i 0.200235i 0.994976 + 0.100118i \(0.0319219\pi\)
−0.994976 + 0.100118i \(0.968078\pi\)
\(180\) 0 0
\(181\) 76.1361 0.420642 0.210321 0.977632i \(-0.432549\pi\)
0.210321 + 0.977632i \(0.432549\pi\)
\(182\) 41.6679 41.6679i 0.228945 0.228945i
\(183\) 0 0
\(184\) 147.304i 0.800565i
\(185\) −172.887 + 65.2880i −0.934522 + 0.352908i
\(186\) 0 0
\(187\) −29.7291 + 29.7291i −0.158979 + 0.158979i
\(188\) 104.061 + 104.061i 0.553515 + 0.553515i
\(189\) 0 0
\(190\) −26.4322 69.9941i −0.139117 0.368390i
\(191\) 327.166 1.71291 0.856455 0.516222i \(-0.172662\pi\)
0.856455 + 0.516222i \(0.172662\pi\)
\(192\) 0 0
\(193\) −45.7105 45.7105i −0.236842 0.236842i 0.578699 0.815541i \(-0.303561\pi\)
−0.815541 + 0.578699i \(0.803561\pi\)
\(194\) 48.5247i 0.250127i
\(195\) 0 0
\(196\) −66.5506 −0.339544
\(197\) 93.2886 93.2886i 0.473546 0.473546i −0.429514 0.903060i \(-0.641315\pi\)
0.903060 + 0.429514i \(0.141315\pi\)
\(198\) 0 0
\(199\) 249.951i 1.25603i −0.778200 0.628017i \(-0.783867\pi\)
0.778200 0.628017i \(-0.216133\pi\)
\(200\) −10.8990 + 172.114i −0.0544952 + 0.860570i
\(201\) 0 0
\(202\) −95.8617 + 95.8617i −0.474563 + 0.474563i
\(203\) 65.3883 + 65.3883i 0.322110 + 0.322110i
\(204\) 0 0
\(205\) −57.6239 26.0324i −0.281092 0.126987i
\(206\) −74.0013 −0.359230
\(207\) 0 0
\(208\) −44.0978 44.0978i −0.212009 0.212009i
\(209\) 50.6466i 0.242328i
\(210\) 0 0
\(211\) 154.127 0.730462 0.365231 0.930917i \(-0.380990\pi\)
0.365231 + 0.930917i \(0.380990\pi\)
\(212\) 168.037 168.037i 0.792630 0.792630i
\(213\) 0 0
\(214\) 44.0941i 0.206047i
\(215\) 75.1191 + 198.920i 0.349391 + 0.925208i
\(216\) 0 0
\(217\) 183.213 183.213i 0.844299 0.844299i
\(218\) −88.8362 88.8362i −0.407506 0.407506i
\(219\) 0 0
\(220\) −20.7534 + 45.9387i −0.0943336 + 0.208812i
\(221\) −146.417 −0.662521
\(222\) 0 0
\(223\) 185.905 + 185.905i 0.833653 + 0.833653i 0.988014 0.154362i \(-0.0493320\pi\)
−0.154362 + 0.988014i \(0.549332\pi\)
\(224\) 171.209i 0.764326i
\(225\) 0 0
\(226\) −8.77561 −0.0388302
\(227\) 150.732 150.732i 0.664018 0.664018i −0.292306 0.956325i \(-0.594423\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(228\) 0 0
\(229\) 172.693i 0.754120i −0.926189 0.377060i \(-0.876935\pi\)
0.926189 0.377060i \(-0.123065\pi\)
\(230\) −95.3446 43.0732i −0.414542 0.187275i
\(231\) 0 0
\(232\) −86.6376 + 86.6376i −0.373438 + 0.373438i
\(233\) −295.327 295.327i −1.26750 1.26750i −0.947377 0.320121i \(-0.896276\pi\)
−0.320121 0.947377i \(-0.603724\pi\)
\(234\) 0 0
\(235\) 226.455 85.5175i 0.963639 0.363904i
\(236\) −175.333 −0.742936
\(237\) 0 0
\(238\) 45.7310 + 45.7310i 0.192147 + 0.192147i
\(239\) 178.384i 0.746376i −0.927756 0.373188i \(-0.878265\pi\)
0.927756 0.373188i \(-0.121735\pi\)
\(240\) 0 0
\(241\) −280.305 −1.16309 −0.581546 0.813513i \(-0.697552\pi\)
−0.581546 + 0.813513i \(0.697552\pi\)
\(242\) 7.62191 7.62191i 0.0314955 0.0314955i
\(243\) 0 0
\(244\) 292.297i 1.19794i
\(245\) −45.0673 + 99.7587i −0.183948 + 0.407178i
\(246\) 0 0
\(247\) 124.718 124.718i 0.504933 0.504933i
\(248\) 242.752 + 242.752i 0.978838 + 0.978838i
\(249\) 0 0
\(250\) 108.216 + 57.3824i 0.432865 + 0.229530i
\(251\) −293.526 −1.16943 −0.584713 0.811240i \(-0.698793\pi\)
−0.584713 + 0.811240i \(0.698793\pi\)
\(252\) 0 0
\(253\) −50.0784 50.0784i −0.197938 0.197938i
\(254\) 107.961i 0.425042i
\(255\) 0 0
\(256\) −161.196 −0.629672
\(257\) 171.250 171.250i 0.666344 0.666344i −0.290524 0.956868i \(-0.593830\pi\)
0.956868 + 0.290524i \(0.0938296\pi\)
\(258\) 0 0
\(259\) 192.433i 0.742983i
\(260\) −164.231 + 62.0194i −0.631657 + 0.238536i
\(261\) 0 0
\(262\) −114.232 + 114.232i −0.435998 + 0.435998i
\(263\) −308.433 308.433i −1.17275 1.17275i −0.981552 0.191198i \(-0.938763\pi\)
−0.191198 0.981552i \(-0.561237\pi\)
\(264\) 0 0
\(265\) −138.094 365.680i −0.521108 1.37992i
\(266\) −77.9074 −0.292885
\(267\) 0 0
\(268\) 195.964 + 195.964i 0.731209 + 0.731209i
\(269\) 212.116i 0.788536i 0.918996 + 0.394268i \(0.129002\pi\)
−0.918996 + 0.394268i \(0.870998\pi\)
\(270\) 0 0
\(271\) 200.258 0.738959 0.369479 0.929239i \(-0.379536\pi\)
0.369479 + 0.929239i \(0.379536\pi\)
\(272\) 48.3978 48.3978i 0.177933 0.177933i
\(273\) 0 0
\(274\) 129.089i 0.471128i
\(275\) 54.8077 + 62.2183i 0.199301 + 0.226248i
\(276\) 0 0
\(277\) −183.873 + 183.873i −0.663801 + 0.663801i −0.956274 0.292473i \(-0.905522\pi\)
0.292473 + 0.956274i \(0.405522\pi\)
\(278\) −62.2072 62.2072i −0.223767 0.223767i
\(279\) 0 0
\(280\) 163.653 + 73.9325i 0.584476 + 0.264045i
\(281\) 323.782 1.15225 0.576125 0.817362i \(-0.304564\pi\)
0.576125 + 0.817362i \(0.304564\pi\)
\(282\) 0 0
\(283\) 267.253 + 267.253i 0.944357 + 0.944357i 0.998531 0.0541745i \(-0.0172527\pi\)
−0.0541745 + 0.998531i \(0.517253\pi\)
\(284\) 147.491i 0.519335i
\(285\) 0 0
\(286\) 37.5383 0.131253
\(287\) −46.5571 + 46.5571i −0.162220 + 0.162220i
\(288\) 0 0
\(289\) 128.306i 0.443965i
\(290\) 30.7437 + 81.4112i 0.106013 + 0.280728i
\(291\) 0 0
\(292\) 181.579 181.579i 0.621845 0.621845i
\(293\) −258.183 258.183i −0.881171 0.881171i 0.112483 0.993654i \(-0.464120\pi\)
−0.993654 + 0.112483i \(0.964120\pi\)
\(294\) 0 0
\(295\) −118.734 + 262.823i −0.402486 + 0.890924i
\(296\) −254.968 −0.861377
\(297\) 0 0
\(298\) 169.413 + 169.413i 0.568500 + 0.568500i
\(299\) 246.639i 0.824878i
\(300\) 0 0
\(301\) 221.409 0.735578
\(302\) −120.895 + 120.895i −0.400316 + 0.400316i
\(303\) 0 0
\(304\) 82.4507i 0.271219i
\(305\) 438.151 + 197.940i 1.43656 + 0.648985i
\(306\) 0 0
\(307\) 17.0001 17.0001i 0.0553748 0.0553748i −0.678877 0.734252i \(-0.737533\pi\)
0.734252 + 0.678877i \(0.237533\pi\)
\(308\) 37.1160 + 37.1160i 0.120507 + 0.120507i
\(309\) 0 0
\(310\) 228.108 86.1415i 0.735831 0.277876i
\(311\) 68.2297 0.219388 0.109694 0.993965i \(-0.465013\pi\)
0.109694 + 0.993965i \(0.465013\pi\)
\(312\) 0 0
\(313\) −199.246 199.246i −0.636568 0.636568i 0.313139 0.949707i \(-0.398619\pi\)
−0.949707 + 0.313139i \(0.898619\pi\)
\(314\) 115.612i 0.368191i
\(315\) 0 0
\(316\) −83.1436 −0.263113
\(317\) 83.4496 83.4496i 0.263248 0.263248i −0.563124 0.826372i \(-0.690401\pi\)
0.826372 + 0.563124i \(0.190401\pi\)
\(318\) 0 0
\(319\) 58.9078i 0.184664i
\(320\) −21.8742 + 48.4197i −0.0683570 + 0.151312i
\(321\) 0 0
\(322\) −77.0334 + 77.0334i −0.239234 + 0.239234i
\(323\) 136.880 + 136.880i 0.423776 + 0.423776i
\(324\) 0 0
\(325\) −18.2488 + 288.179i −0.0561502 + 0.886706i
\(326\) −216.795 −0.665016
\(327\) 0 0
\(328\) −61.6868 61.6868i −0.188070 0.188070i
\(329\) 252.058i 0.766133i
\(330\) 0 0
\(331\) 189.354 0.572065 0.286033 0.958220i \(-0.407663\pi\)
0.286033 + 0.958220i \(0.407663\pi\)
\(332\) −28.5709 + 28.5709i −0.0860569 + 0.0860569i
\(333\) 0 0
\(334\) 9.30185i 0.0278499i
\(335\) 426.453 161.044i 1.27299 0.480728i
\(336\) 0 0
\(337\) 327.468 327.468i 0.971716 0.971716i −0.0278952 0.999611i \(-0.508880\pi\)
0.999611 + 0.0278952i \(0.00888047\pi\)
\(338\) −24.6613 24.6613i −0.0729626 0.0729626i
\(339\) 0 0
\(340\) −68.0668 180.245i −0.200197 0.530132i
\(341\) 165.055 0.484032
\(342\) 0 0
\(343\) 260.993 + 260.993i 0.760912 + 0.760912i
\(344\) 293.360i 0.852792i
\(345\) 0 0
\(346\) −57.6614 −0.166651
\(347\) 304.837 304.837i 0.878494 0.878494i −0.114885 0.993379i \(-0.536650\pi\)
0.993379 + 0.114885i \(0.0366500\pi\)
\(348\) 0 0
\(349\) 410.903i 1.17737i 0.808361 + 0.588687i \(0.200355\pi\)
−0.808361 + 0.588687i \(0.799645\pi\)
\(350\) 95.7077 84.3083i 0.273451 0.240881i
\(351\) 0 0
\(352\) −77.1204 + 77.1204i −0.219092 + 0.219092i
\(353\) 215.002 + 215.002i 0.609071 + 0.609071i 0.942703 0.333633i \(-0.108274\pi\)
−0.333633 + 0.942703i \(0.608274\pi\)
\(354\) 0 0
\(355\) −221.088 99.8793i −0.622782 0.281350i
\(356\) 366.121 1.02843
\(357\) 0 0
\(358\) 24.8351 + 24.8351i 0.0693717 + 0.0693717i
\(359\) 356.681i 0.993540i 0.867882 + 0.496770i \(0.165481\pi\)
−0.867882 + 0.496770i \(0.834519\pi\)
\(360\) 0 0
\(361\) 127.811 0.354048
\(362\) 52.7548 52.7548i 0.145732 0.145732i
\(363\) 0 0
\(364\) 182.798i 0.502193i
\(365\) −149.222 395.148i −0.408827 1.08260i
\(366\) 0 0
\(367\) 82.8049 82.8049i 0.225626 0.225626i −0.585236 0.810863i \(-0.698998\pi\)
0.810863 + 0.585236i \(0.198998\pi\)
\(368\) 81.5257 + 81.5257i 0.221537 + 0.221537i
\(369\) 0 0
\(370\) −74.5551 + 165.031i −0.201500 + 0.446031i
\(371\) −407.022 −1.09710
\(372\) 0 0
\(373\) −51.3189 51.3189i −0.137584 0.137584i 0.634960 0.772545i \(-0.281016\pi\)
−0.772545 + 0.634960i \(0.781016\pi\)
\(374\) 41.1986i 0.110157i
\(375\) 0 0
\(376\) 333.969 0.888216
\(377\) −145.062 + 145.062i −0.384779 + 0.384779i
\(378\) 0 0
\(379\) 743.254i 1.96109i 0.196287 + 0.980546i \(0.437112\pi\)
−0.196287 + 0.980546i \(0.562888\pi\)
\(380\) 211.512 + 95.5535i 0.556611 + 0.251457i
\(381\) 0 0
\(382\) 226.694 226.694i 0.593439 0.593439i
\(383\) −369.744 369.744i −0.965390 0.965390i 0.0340308 0.999421i \(-0.489166\pi\)
−0.999421 + 0.0340308i \(0.989166\pi\)
\(384\) 0 0
\(385\) 80.7712 30.5020i 0.209795 0.0792261i
\(386\) −63.3457 −0.164108
\(387\) 0 0
\(388\) 106.439 + 106.439i 0.274329 + 0.274329i
\(389\) 742.252i 1.90810i 0.299644 + 0.954051i \(0.403132\pi\)
−0.299644 + 0.954051i \(0.596868\pi\)
\(390\) 0 0
\(391\) 270.688 0.692297
\(392\) −106.792 + 106.792i −0.272430 + 0.272430i
\(393\) 0 0
\(394\) 129.280i 0.328121i
\(395\) −56.3039 + 124.632i −0.142542 + 0.315523i
\(396\) 0 0
\(397\) −70.6003 + 70.6003i −0.177835 + 0.177835i −0.790411 0.612577i \(-0.790133\pi\)
0.612577 + 0.790411i \(0.290133\pi\)
\(398\) −173.191 173.191i −0.435154 0.435154i
\(399\) 0 0
\(400\) −89.2248 101.289i −0.223062 0.253222i
\(401\) 162.318 0.404783 0.202391 0.979305i \(-0.435129\pi\)
0.202391 + 0.979305i \(0.435129\pi\)
\(402\) 0 0
\(403\) 406.452 + 406.452i 1.00857 + 1.00857i
\(404\) 420.547i 1.04096i
\(405\) 0 0
\(406\) 90.6153 0.223190
\(407\) −86.6804 + 86.6804i −0.212974 + 0.212974i
\(408\) 0 0
\(409\) 3.19036i 0.00780038i −0.999992 0.00390019i \(-0.998759\pi\)
0.999992 0.00390019i \(-0.00124147\pi\)
\(410\) −57.9655 + 21.8898i −0.141379 + 0.0533898i
\(411\) 0 0
\(412\) 162.323 162.323i 0.393987 0.393987i
\(413\) 212.347 + 212.347i 0.514157 + 0.514157i
\(414\) 0 0
\(415\) 23.4796 + 62.1754i 0.0565774 + 0.149820i
\(416\) −379.822 −0.913033
\(417\) 0 0
\(418\) −35.0931 35.0931i −0.0839547 0.0839547i
\(419\) 656.966i 1.56794i 0.620800 + 0.783969i \(0.286808\pi\)
−0.620800 + 0.783969i \(0.713192\pi\)
\(420\) 0 0
\(421\) −713.995 −1.69595 −0.847975 0.530037i \(-0.822178\pi\)
−0.847975 + 0.530037i \(0.822178\pi\)
\(422\) 106.795 106.795i 0.253069 0.253069i
\(423\) 0 0
\(424\) 539.293i 1.27192i
\(425\) −316.280 20.0282i −0.744187 0.0471253i
\(426\) 0 0
\(427\) 354.003 354.003i 0.829046 0.829046i
\(428\) −96.7211 96.7211i −0.225984 0.225984i
\(429\) 0 0
\(430\) 189.882 + 85.7816i 0.441586 + 0.199492i
\(431\) −811.634 −1.88314 −0.941571 0.336816i \(-0.890650\pi\)
−0.941571 + 0.336816i \(0.890650\pi\)
\(432\) 0 0
\(433\) −25.0648 25.0648i −0.0578863 0.0578863i 0.677571 0.735457i \(-0.263033\pi\)
−0.735457 + 0.677571i \(0.763033\pi\)
\(434\) 253.897i 0.585016i
\(435\) 0 0
\(436\) 389.727 0.893869
\(437\) −230.573 + 230.573i −0.527626 + 0.527626i
\(438\) 0 0
\(439\) 276.543i 0.629939i 0.949102 + 0.314969i \(0.101994\pi\)
−0.949102 + 0.314969i \(0.898006\pi\)
\(440\) 40.4143 + 107.019i 0.0918508 + 0.243226i
\(441\) 0 0
\(442\) −101.453 + 101.453i −0.229531 + 0.229531i
\(443\) −321.159 321.159i −0.724965 0.724965i 0.244647 0.969612i \(-0.421328\pi\)
−0.969612 + 0.244647i \(0.921328\pi\)
\(444\) 0 0
\(445\) 247.933 548.813i 0.557154 1.23329i
\(446\) 257.627 0.577639
\(447\) 0 0
\(448\) 39.1206 + 39.1206i 0.0873227 + 0.0873227i
\(449\) 195.462i 0.435327i −0.976024 0.217663i \(-0.930156\pi\)
0.976024 0.217663i \(-0.0698435\pi\)
\(450\) 0 0
\(451\) −41.9429 −0.0929998
\(452\) 19.2494 19.2494i 0.0425872 0.0425872i
\(453\) 0 0
\(454\) 208.885i 0.460099i
\(455\) 274.013 + 123.789i 0.602226 + 0.272064i
\(456\) 0 0
\(457\) −308.165 + 308.165i −0.674322 + 0.674322i −0.958709 0.284388i \(-0.908210\pi\)
0.284388 + 0.958709i \(0.408210\pi\)
\(458\) −119.660 119.660i −0.261265 0.261265i
\(459\) 0 0
\(460\) 303.621 114.658i 0.660046 0.249257i
\(461\) 743.850 1.61356 0.806779 0.590854i \(-0.201209\pi\)
0.806779 + 0.590854i \(0.201209\pi\)
\(462\) 0 0
\(463\) −380.768 380.768i −0.822393 0.822393i 0.164058 0.986451i \(-0.447542\pi\)
−0.986451 + 0.164058i \(0.947542\pi\)
\(464\) 95.8996i 0.206680i
\(465\) 0 0
\(466\) −409.265 −0.878251
\(467\) 352.366 352.366i 0.754531 0.754531i −0.220790 0.975321i \(-0.570864\pi\)
0.975321 + 0.220790i \(0.0708637\pi\)
\(468\) 0 0
\(469\) 474.667i 1.01208i
\(470\) 97.6560 216.166i 0.207779 0.459928i
\(471\) 0 0
\(472\) −281.353 + 281.353i −0.596088 + 0.596088i
\(473\) 99.7327 + 99.7327i 0.210851 + 0.210851i
\(474\) 0 0
\(475\) 286.468 252.347i 0.603090 0.531258i
\(476\) −200.623 −0.421477
\(477\) 0 0
\(478\) −123.602 123.602i −0.258583 0.258583i
\(479\) 831.630i 1.73618i 0.496406 + 0.868090i \(0.334653\pi\)
−0.496406 + 0.868090i \(0.665347\pi\)
\(480\) 0 0
\(481\) −426.905 −0.887537
\(482\) −194.224 + 194.224i −0.402954 + 0.402954i
\(483\) 0 0
\(484\) 33.4375i 0.0690858i
\(485\) 231.631 87.4722i 0.477591 0.180355i
\(486\) 0 0
\(487\) 54.4187 54.4187i 0.111743 0.111743i −0.649025 0.760767i \(-0.724823\pi\)
0.760767 + 0.649025i \(0.224823\pi\)
\(488\) 469.044 + 469.044i 0.961155 + 0.961155i
\(489\) 0 0
\(490\) 37.8957 + 100.350i 0.0773382 + 0.204796i
\(491\) −151.009 −0.307554 −0.153777 0.988106i \(-0.549144\pi\)
−0.153777 + 0.988106i \(0.549144\pi\)
\(492\) 0 0
\(493\) −159.207 159.207i −0.322935 0.322935i
\(494\) 172.835i 0.349869i
\(495\) 0 0
\(496\) −268.703 −0.541740
\(497\) −178.627 + 178.627i −0.359411 + 0.359411i
\(498\) 0 0
\(499\) 469.179i 0.940238i 0.882603 + 0.470119i \(0.155789\pi\)
−0.882603 + 0.470119i \(0.844211\pi\)
\(500\) −363.243 + 111.505i −0.726486 + 0.223009i
\(501\) 0 0
\(502\) −203.384 + 203.384i −0.405148 + 0.405148i
\(503\) 254.121 + 254.121i 0.505211 + 0.505211i 0.913053 0.407842i \(-0.133718\pi\)
−0.407842 + 0.913053i \(0.633718\pi\)
\(504\) 0 0
\(505\) −630.397 284.790i −1.24831 0.563941i
\(506\) −69.3988 −0.137152
\(507\) 0 0
\(508\) −236.813 236.813i −0.466167 0.466167i
\(509\) 58.9749i 0.115864i 0.998321 + 0.0579322i \(0.0184507\pi\)
−0.998321 + 0.0579322i \(0.981549\pi\)
\(510\) 0 0
\(511\) −439.822 −0.860709
\(512\) 230.898 230.898i 0.450973 0.450973i
\(513\) 0 0
\(514\) 237.319i 0.461710i
\(515\) −133.397 353.244i −0.259024 0.685910i
\(516\) 0 0
\(517\) 113.538 113.538i 0.219610 0.219610i
\(518\) 133.337 + 133.337i 0.257407 + 0.257407i
\(519\) 0 0
\(520\) −164.017 + 363.059i −0.315417 + 0.698191i
\(521\) 869.983 1.66983 0.834916 0.550377i \(-0.185516\pi\)
0.834916 + 0.550377i \(0.185516\pi\)
\(522\) 0 0
\(523\) 418.179 + 418.179i 0.799577 + 0.799577i 0.983029 0.183452i \(-0.0587271\pi\)
−0.183452 + 0.983029i \(0.558727\pi\)
\(524\) 501.137i 0.956368i
\(525\) 0 0
\(526\) −427.427 −0.812600
\(527\) −446.085 + 446.085i −0.846461 + 0.846461i
\(528\) 0 0
\(529\) 73.0279i 0.138049i
\(530\) −349.065 157.695i −0.658614 0.297537i
\(531\) 0 0
\(532\) 170.891 170.891i 0.321224 0.321224i
\(533\) −103.285 103.285i −0.193781 0.193781i
\(534\) 0 0
\(535\) −210.482 + 79.4856i −0.393425 + 0.148571i
\(536\) 628.920 1.17336
\(537\) 0 0
\(538\) 146.976 + 146.976i 0.273189 + 0.273189i
\(539\) 72.6117i 0.134716i
\(540\) 0 0
\(541\) −198.651 −0.367193 −0.183596 0.983002i \(-0.558774\pi\)
−0.183596 + 0.983002i \(0.558774\pi\)
\(542\) 138.759 138.759i 0.256013 0.256013i
\(543\) 0 0
\(544\) 416.858i 0.766283i
\(545\) 263.919 584.197i 0.484254 1.07192i
\(546\) 0 0
\(547\) −118.406 + 118.406i −0.216464 + 0.216464i −0.807007 0.590543i \(-0.798914\pi\)
0.590543 + 0.807007i \(0.298914\pi\)
\(548\) 283.159 + 283.159i 0.516713 + 0.516713i
\(549\) 0 0
\(550\) 81.0875 + 5.13482i 0.147432 + 0.00933604i
\(551\) 271.225 0.492242
\(552\) 0 0
\(553\) 100.696 + 100.696i 0.182090 + 0.182090i
\(554\) 254.812i 0.459949i
\(555\) 0 0
\(556\) 272.904 0.490835
\(557\) −483.193 + 483.193i −0.867492 + 0.867492i −0.992194 0.124702i \(-0.960202\pi\)
0.124702 + 0.992194i \(0.460202\pi\)
\(558\) 0 0
\(559\) 491.189i 0.878691i
\(560\) −131.492 + 49.6561i −0.234808 + 0.0886717i
\(561\) 0 0
\(562\) 224.349 224.349i 0.399198 0.399198i
\(563\) −264.442 264.442i −0.469701 0.469701i 0.432117 0.901818i \(-0.357767\pi\)
−0.901818 + 0.432117i \(0.857767\pi\)
\(564\) 0 0
\(565\) −15.8192 41.8902i −0.0279986 0.0741419i
\(566\) 370.360 0.654346
\(567\) 0 0
\(568\) −236.676 236.676i −0.416683 0.416683i
\(569\) 94.2465i 0.165635i 0.996565 + 0.0828177i \(0.0263919\pi\)
−0.996565 + 0.0828177i \(0.973608\pi\)
\(570\) 0 0
\(571\) 588.505 1.03066 0.515328 0.856993i \(-0.327670\pi\)
0.515328 + 0.856993i \(0.327670\pi\)
\(572\) −82.3407 + 82.3407i −0.143952 + 0.143952i
\(573\) 0 0
\(574\) 64.5189i 0.112402i
\(575\) 33.7374 532.770i 0.0586738 0.926557i
\(576\) 0 0
\(577\) −758.203 + 758.203i −1.31404 + 1.31404i −0.395635 + 0.918408i \(0.629475\pi\)
−0.918408 + 0.395635i \(0.870525\pi\)
\(578\) 88.9033 + 88.9033i 0.153812 + 0.153812i
\(579\) 0 0
\(580\) −246.013 111.140i −0.424161 0.191620i
\(581\) 69.2048 0.119113
\(582\) 0 0
\(583\) −183.342 183.342i −0.314480 0.314480i
\(584\) 582.752i 0.997863i
\(585\) 0 0
\(586\) −357.791 −0.610564
\(587\) −74.4278 + 74.4278i −0.126793 + 0.126793i −0.767656 0.640862i \(-0.778577\pi\)
0.640862 + 0.767656i \(0.278577\pi\)
\(588\) 0 0
\(589\) 759.952i 1.29024i
\(590\) 99.8395 + 264.381i 0.169219 + 0.448103i
\(591\) 0 0
\(592\) 141.112 141.112i 0.238366 0.238366i
\(593\) −760.346 760.346i −1.28220 1.28220i −0.939412 0.342790i \(-0.888628\pi\)
−0.342790 0.939412i \(-0.611372\pi\)
\(594\) 0 0
\(595\) −135.860 + 300.732i −0.228335 + 0.505432i
\(596\) −743.219 −1.24701
\(597\) 0 0
\(598\) −170.896 170.896i −0.285780 0.285780i
\(599\) 553.984i 0.924848i −0.886659 0.462424i \(-0.846980\pi\)
0.886659 0.462424i \(-0.153020\pi\)
\(600\) 0 0
\(601\) −907.051 −1.50924 −0.754618 0.656164i \(-0.772178\pi\)
−0.754618 + 0.656164i \(0.772178\pi\)
\(602\) 153.415 153.415i 0.254841 0.254841i
\(603\) 0 0
\(604\) 530.371i 0.878097i
\(605\) 50.1226 + 22.6435i 0.0828472 + 0.0374273i
\(606\) 0 0
\(607\) −466.312 + 466.312i −0.768224 + 0.768224i −0.977794 0.209570i \(-0.932794\pi\)
0.209570 + 0.977794i \(0.432794\pi\)
\(608\) 355.081 + 355.081i 0.584014 + 0.584014i
\(609\) 0 0
\(610\) 440.748 166.442i 0.722538 0.272856i
\(611\) 559.182 0.915191
\(612\) 0 0
\(613\) −542.769 542.769i −0.885431 0.885431i 0.108649 0.994080i \(-0.465348\pi\)
−0.994080 + 0.108649i \(0.965348\pi\)
\(614\) 23.5588i 0.0383693i
\(615\) 0 0
\(616\) 119.119 0.193375
\(617\) −368.002 + 368.002i −0.596438 + 0.596438i −0.939363 0.342925i \(-0.888582\pi\)
0.342925 + 0.939363i \(0.388582\pi\)
\(618\) 0 0
\(619\) 349.062i 0.563912i −0.959427 0.281956i \(-0.909017\pi\)
0.959427 0.281956i \(-0.0909832\pi\)
\(620\) −311.405 + 689.310i −0.502266 + 1.11179i
\(621\) 0 0
\(622\) 47.2764 47.2764i 0.0760071 0.0760071i
\(623\) −443.412 443.412i −0.711737 0.711737i
\(624\) 0 0
\(625\) −78.8395 + 620.008i −0.126143 + 0.992012i
\(626\) −276.115 −0.441079
\(627\) 0 0
\(628\) 253.596 + 253.596i 0.403816 + 0.403816i
\(629\) 468.533i 0.744885i
\(630\) 0 0
\(631\) −197.799 −0.313470 −0.156735 0.987641i \(-0.550097\pi\)
−0.156735 + 0.987641i \(0.550097\pi\)
\(632\) −133.419 + 133.419i −0.211106 + 0.211106i
\(633\) 0 0
\(634\) 115.645i 0.182405i
\(635\) −515.347 + 194.613i −0.811571 + 0.306478i
\(636\) 0 0
\(637\) −178.808 + 178.808i −0.280703 + 0.280703i
\(638\) 40.8173 + 40.8173i 0.0639769 + 0.0639769i
\(639\) 0 0
\(640\) −213.956 566.568i −0.334307 0.885263i
\(641\) −557.454 −0.869663 −0.434832 0.900512i \(-0.643192\pi\)
−0.434832 + 0.900512i \(0.643192\pi\)
\(642\) 0 0
\(643\) 124.138 + 124.138i 0.193061 + 0.193061i 0.797017 0.603956i \(-0.206410\pi\)
−0.603956 + 0.797017i \(0.706410\pi\)
\(644\) 337.948i 0.524763i
\(645\) 0 0
\(646\) 189.688 0.293635
\(647\) −70.4444 + 70.4444i −0.108879 + 0.108879i −0.759447 0.650569i \(-0.774531\pi\)
0.650569 + 0.759447i \(0.274531\pi\)
\(648\) 0 0
\(649\) 191.301i 0.294763i
\(650\) 187.035 + 212.324i 0.287747 + 0.326653i
\(651\) 0 0
\(652\) 475.543 475.543i 0.729360 0.729360i
\(653\) 764.443 + 764.443i 1.17066 + 1.17066i 0.982052 + 0.188612i \(0.0603988\pi\)
0.188612 + 0.982052i \(0.439601\pi\)
\(654\) 0 0
\(655\) −751.199 339.364i −1.14687 0.518113i
\(656\) 68.2814 0.104088
\(657\) 0 0
\(658\) −174.651 174.651i −0.265427 0.265427i
\(659\) 361.616i 0.548735i −0.961625 0.274367i \(-0.911532\pi\)
0.961625 0.274367i \(-0.0884684\pi\)
\(660\) 0 0
\(661\) 4.35847 0.00659376 0.00329688 0.999995i \(-0.498951\pi\)
0.00329688 + 0.999995i \(0.498951\pi\)
\(662\) 131.203 131.203i 0.198192 0.198192i
\(663\) 0 0
\(664\) 91.6944i 0.138094i
\(665\) −140.439 371.889i −0.211186 0.559232i
\(666\) 0 0
\(667\) 268.183 268.183i 0.402073 0.402073i
\(668\) −20.4037 20.4037i −0.0305445 0.0305445i
\(669\) 0 0
\(670\) 183.903 407.077i 0.274481 0.607578i
\(671\) 318.918 0.475288
\(672\) 0 0
\(673\) −805.217 805.217i −1.19646 1.19646i −0.975219 0.221240i \(-0.928990\pi\)
−0.221240 0.975219i \(-0.571010\pi\)
\(674\) 453.806i 0.673303i
\(675\) 0 0
\(676\) 108.190 0.160044
\(677\) −302.616 + 302.616i −0.446996 + 0.446996i −0.894355 0.447358i \(-0.852365\pi\)
0.447358 + 0.894355i \(0.352365\pi\)
\(678\) 0 0
\(679\) 257.819i 0.379704i
\(680\) −398.461 180.010i −0.585972 0.264721i
\(681\) 0 0
\(682\) 114.367 114.367i 0.167693 0.167693i
\(683\) 444.248 + 444.248i 0.650437 + 0.650437i 0.953098 0.302661i \(-0.0978751\pi\)
−0.302661 + 0.953098i \(0.597875\pi\)
\(684\) 0 0
\(685\) 616.204 232.700i 0.899568 0.339709i
\(686\) 361.685 0.527237
\(687\) 0 0
\(688\) −162.361 162.361i −0.235990 0.235990i
\(689\) 902.966i 1.31055i
\(690\) 0 0
\(691\) 522.237 0.755770 0.377885 0.925853i \(-0.376652\pi\)
0.377885 + 0.925853i \(0.376652\pi\)
\(692\) 126.481 126.481i 0.182776 0.182776i
\(693\) 0 0
\(694\) 422.444i 0.608709i
\(695\) 184.808 409.081i 0.265911 0.588606i
\(696\) 0 0
\(697\) 113.357 113.357i 0.162635 0.162635i
\(698\) 284.715 + 284.715i 0.407902 + 0.407902i
\(699\) 0 0
\(700\) −25.0048 + 394.867i −0.0357211 + 0.564096i
\(701\) 414.800 0.591727 0.295863 0.955230i \(-0.404393\pi\)
0.295863 + 0.955230i \(0.404393\pi\)
\(702\) 0 0
\(703\) 399.097 + 399.097i 0.567706 + 0.567706i
\(704\) 35.2434i 0.0500617i
\(705\) 0 0
\(706\) 297.950 0.422026
\(707\) −509.328 + 509.328i −0.720407 + 0.720407i
\(708\) 0 0
\(709\) 64.4155i 0.0908540i 0.998968 + 0.0454270i \(0.0144648\pi\)
−0.998968 + 0.0454270i \(0.985535\pi\)
\(710\) −222.398 + 83.9855i −0.313237 + 0.118289i
\(711\) 0 0
\(712\) 587.508 587.508i 0.825152 0.825152i
\(713\) −751.426 751.426i −1.05389 1.05389i
\(714\) 0 0
\(715\) 67.6678 + 179.188i 0.0946403 + 0.250613i
\(716\) −108.952 −0.152168
\(717\) 0 0
\(718\) 247.145 + 247.145i 0.344212 + 0.344212i
\(719\) 684.369i 0.951834i −0.879490 0.475917i \(-0.842116\pi\)
0.879490 0.475917i \(-0.157884\pi\)
\(720\) 0 0
\(721\) −393.180 −0.545326
\(722\) 88.5607 88.5607i 0.122660 0.122660i
\(723\) 0 0
\(724\) 231.437i 0.319664i
\(725\) −333.195 + 293.509i −0.459579 + 0.404840i
\(726\) 0 0
\(727\) −542.160 + 542.160i −0.745750 + 0.745750i −0.973678 0.227928i \(-0.926805\pi\)
0.227928 + 0.973678i \(0.426805\pi\)
\(728\) 293.333 + 293.333i 0.402930 + 0.402930i
\(729\) 0 0
\(730\) −377.195 170.403i −0.516705 0.233428i
\(731\) −539.084 −0.737461
\(732\) 0 0
\(733\) −186.770 186.770i −0.254803 0.254803i 0.568134 0.822936i \(-0.307666\pi\)
−0.822936 + 0.568134i \(0.807666\pi\)
\(734\) 114.751i 0.156337i
\(735\) 0 0
\(736\) 702.194 0.954068
\(737\) 213.812 213.812i 0.290111 0.290111i
\(738\) 0 0
\(739\) 252.800i 0.342084i −0.985264 0.171042i \(-0.945287\pi\)
0.985264 0.171042i \(-0.0547133\pi\)
\(740\) −198.461 525.536i −0.268191 0.710184i
\(741\) 0 0
\(742\) −282.026 + 282.026i −0.380090 + 0.380090i
\(743\) 966.342 + 966.342i 1.30059 + 1.30059i 0.927990 + 0.372605i \(0.121535\pi\)
0.372605 + 0.927990i \(0.378465\pi\)
\(744\) 0 0
\(745\) −503.300 + 1114.08i −0.675570 + 1.49541i
\(746\) −71.1179 −0.0953323
\(747\) 0 0
\(748\) −90.3697 90.3697i −0.120815 0.120815i
\(749\) 234.279i 0.312789i
\(750\) 0 0
\(751\) 1248.62 1.66261 0.831307 0.555814i \(-0.187593\pi\)
0.831307 + 0.555814i \(0.187593\pi\)
\(752\) −184.836 + 184.836i −0.245793 + 0.245793i
\(753\) 0 0
\(754\) 201.027i 0.266614i
\(755\) −795.021 359.161i −1.05301 0.475710i
\(756\) 0 0
\(757\) −111.550 + 111.550i −0.147357 + 0.147357i −0.776936 0.629579i \(-0.783227\pi\)
0.629579 + 0.776936i \(0.283227\pi\)
\(758\) 515.002 + 515.002i 0.679422 + 0.679422i
\(759\) 0 0
\(760\) 492.743 186.077i 0.648346 0.244838i
\(761\) 752.350 0.988633 0.494317 0.869282i \(-0.335418\pi\)
0.494317 + 0.869282i \(0.335418\pi\)
\(762\) 0 0
\(763\) −472.001 472.001i −0.618612 0.618612i
\(764\) 994.510i 1.30171i
\(765\) 0 0
\(766\) −512.393 −0.668920
\(767\) −471.085 + 471.085i −0.614191 + 0.614191i
\(768\) 0 0
\(769\) 1143.74i 1.48730i 0.668568 + 0.743651i \(0.266908\pi\)
−0.668568 + 0.743651i \(0.733092\pi\)
\(770\) 34.8315 77.1014i 0.0452358 0.100132i
\(771\) 0 0
\(772\) 138.950 138.950i 0.179987 0.179987i
\(773\) 654.811 + 654.811i 0.847103 + 0.847103i 0.989771 0.142667i \(-0.0455679\pi\)
−0.142667 + 0.989771i \(0.545568\pi\)
\(774\) 0 0
\(775\) 822.389 + 933.586i 1.06115 + 1.20463i
\(776\) 341.603 0.440210
\(777\) 0 0
\(778\) 514.307 + 514.307i 0.661063 + 0.661063i
\(779\) 193.115i 0.247901i
\(780\) 0 0
\(781\) −160.924 −0.206048
\(782\) 187.560 187.560i 0.239847 0.239847i
\(783\) 0 0
\(784\) 118.209i 0.150777i
\(785\) 551.871 208.406i 0.703020 0.265485i
\(786\) 0 0
\(787\) −281.035 + 281.035i −0.357096 + 0.357096i −0.862741 0.505645i \(-0.831254\pi\)
0.505645 + 0.862741i \(0.331254\pi\)
\(788\) 283.576 + 283.576i 0.359869 + 0.359869i
\(789\) 0 0
\(790\) 47.3443 + 125.370i 0.0599295 + 0.158697i
\(791\) −46.6262 −0.0589459
\(792\) 0 0
\(793\) 785.344 + 785.344i 0.990345 + 0.990345i
\(794\) 97.8381i 0.123222i
\(795\) 0 0
\(796\) 759.794 0.954515
\(797\) −133.596 + 133.596i −0.167624 + 0.167624i −0.785934 0.618310i \(-0.787818\pi\)
0.618310 + 0.785934i \(0.287818\pi\)
\(798\) 0 0
\(799\) 613.707i 0.768094i
\(800\) −820.463 51.9554i −1.02558 0.0649443i
\(801\) 0 0
\(802\) 112.470 112.470i 0.140237 0.140237i
\(803\) −198.116 198.116i −0.246720 0.246720i
\(804\) 0 0
\(805\) −506.580 228.854i −0.629293 0.284291i
\(806\) 563.262 0.698836
\(807\) 0 0
\(808\) −674.845 674.845i −0.835204 0.835204i
\(809\) 263.012i 0.325107i 0.986700 + 0.162553i \(0.0519730\pi\)
−0.986700 + 0.162553i \(0.948027\pi\)
\(810\) 0 0
\(811\) −796.014 −0.981522 −0.490761 0.871294i \(-0.663281\pi\)
−0.490761 + 0.871294i \(0.663281\pi\)
\(812\) −198.766 + 198.766i −0.244785 + 0.244785i
\(813\) 0 0
\(814\) 120.122i 0.147570i
\(815\) −390.802 1034.87i −0.479512 1.26978i
\(816\) 0 0
\(817\) 459.193 459.193i 0.562047 0.562047i
\(818\) −2.21060 2.21060i −0.00270245 0.00270245i
\(819\) 0 0
\(820\) 79.1325 175.164i 0.0965031 0.213614i
\(821\) 405.321 0.493691 0.246846 0.969055i \(-0.420606\pi\)
0.246846 + 0.969055i \(0.420606\pi\)
\(822\) 0 0
\(823\) −178.127 178.127i −0.216436 0.216436i 0.590559 0.806995i \(-0.298907\pi\)
−0.806995 + 0.590559i \(0.798907\pi\)
\(824\) 520.953i 0.632224i
\(825\) 0 0
\(826\) 294.271 0.356260
\(827\) 38.9361 38.9361i 0.0470812 0.0470812i −0.683174 0.730255i \(-0.739401\pi\)
0.730255 + 0.683174i \(0.239401\pi\)
\(828\) 0 0
\(829\) 171.269i 0.206597i 0.994650 + 0.103299i \(0.0329397\pi\)
−0.994650 + 0.103299i \(0.967060\pi\)
\(830\) 59.3505 + 26.8124i 0.0715066 + 0.0323040i
\(831\) 0 0
\(832\) −86.7878 + 86.7878i −0.104312 + 0.104312i
\(833\) −196.243 196.243i −0.235586 0.235586i
\(834\) 0 0
\(835\) −44.4022 + 16.7678i −0.0531763 + 0.0200812i
\(836\) 153.954 0.184156
\(837\) 0 0
\(838\) 455.212 + 455.212i 0.543213 + 0.543213i
\(839\) 465.310i 0.554600i 0.960783 + 0.277300i \(0.0894397\pi\)
−0.960783 + 0.277300i \(0.910560\pi\)
\(840\) 0 0
\(841\) 525.534 0.624892
\(842\) −494.728 + 494.728i −0.587563 + 0.587563i
\(843\) 0 0
\(844\) 468.513i 0.555110i
\(845\) 73.2650 162.176i 0.0867042 0.191924i
\(846\) 0 0
\(847\) 40.4964 40.4964i 0.0478116 0.0478116i
\(848\) 298.473 + 298.473i 0.351973 + 0.351973i
\(849\) 0 0
\(850\) −233.028 + 205.273i −0.274151 + 0.241498i
\(851\) 789.240 0.927426
\(852\) 0 0
\(853\) 554.474 + 554.474i 0.650028 + 0.650028i 0.953000 0.302971i \(-0.0979786\pi\)
−0.302971 + 0.953000i \(0.597979\pi\)
\(854\) 490.578i 0.574447i
\(855\) 0 0
\(856\) −310.413 −0.362632
\(857\) −995.353 + 995.353i −1.16144 + 1.16144i −0.177278 + 0.984161i \(0.556729\pi\)
−0.984161 + 0.177278i \(0.943271\pi\)
\(858\) 0 0
\(859\) 660.228i 0.768601i 0.923208 + 0.384300i \(0.125557\pi\)
−0.923208 + 0.384300i \(0.874443\pi\)
\(860\) −604.671 + 228.345i −0.703106 + 0.265518i
\(861\) 0 0
\(862\) −562.382 + 562.382i −0.652416 + 0.652416i
\(863\) 553.402 + 553.402i 0.641253 + 0.641253i 0.950864 0.309610i \(-0.100199\pi\)
−0.309610 + 0.950864i \(0.600199\pi\)
\(864\) 0 0
\(865\) −103.942 275.245i −0.120165 0.318203i
\(866\) −34.7348 −0.0401095
\(867\) 0 0
\(868\) 556.926 + 556.926i 0.641620 + 0.641620i
\(869\) 90.7160i 0.104391i
\(870\) 0 0
\(871\) 1053.03 1.20899
\(872\) 625.387 625.387i 0.717187 0.717187i
\(873\) 0 0
\(874\) 319.528i 0.365593i
\(875\) 574.970 + 304.882i 0.657108 + 0.348436i
\(876\) 0 0
\(877\) 863.196 863.196i 0.984260 0.984260i −0.0156176 0.999878i \(-0.504971\pi\)
0.999878 + 0.0156176i \(0.00497145\pi\)
\(878\) 191.617 + 191.617i 0.218243 + 0.218243i
\(879\) 0 0
\(880\) −81.5976 36.8628i −0.0927245 0.0418895i
\(881\) 498.888 0.566275 0.283137 0.959079i \(-0.408625\pi\)
0.283137 + 0.959079i \(0.408625\pi\)
\(882\) 0 0
\(883\) 206.575 + 206.575i 0.233947 + 0.233947i 0.814338 0.580391i \(-0.197100\pi\)
−0.580391 + 0.814338i \(0.697100\pi\)
\(884\) 445.075i 0.503479i
\(885\) 0 0
\(886\) −445.064 −0.502329
\(887\) −182.818 + 182.818i −0.206108 + 0.206108i −0.802611 0.596503i \(-0.796556\pi\)
0.596503 + 0.802611i \(0.296556\pi\)
\(888\) 0 0
\(889\) 573.611i 0.645232i
\(890\) −208.480 552.066i −0.234247 0.620299i
\(891\) 0 0
\(892\) −565.108 + 565.108i −0.633529 + 0.633529i
\(893\) −522.757 522.757i −0.585394 0.585394i
\(894\) 0 0
\(895\) −73.7811 + 163.318i −0.0824370 + 0.182478i
\(896\) −630.623 −0.703820
\(897\) 0 0
\(898\) −135.436 135.436i −0.150819 0.150819i
\(899\) 883.911i 0.983216i
\(900\) 0 0
\(901\) 991.014 1.09990
\(902\) −29.0623 + 29.0623i −0.0322198 + 0.0322198i
\(903\) 0 0
\(904\) 61.7784i 0.0683389i
\(905\) 346.922 + 156.726i 0.383339 + 0.173178i
\(906\) 0 0
\(907\) 910.065 910.065i 1.00338 1.00338i 0.00338553 0.999994i \(-0.498922\pi\)
0.999994 0.00338553i \(-0.00107765\pi\)
\(908\) 458.192 + 458.192i 0.504617 + 0.504617i
\(909\) 0 0
\(910\) 275.638 104.090i 0.302898 0.114385i
\(911\) 493.142 0.541320 0.270660 0.962675i \(-0.412758\pi\)
0.270660 + 0.962675i \(0.412758\pi\)
\(912\) 0 0
\(913\) 31.1730 + 31.1730i 0.0341435 + 0.0341435i
\(914\) 427.056i 0.467238i
\(915\) 0 0
\(916\) 524.949 0.573089
\(917\) −606.930 + 606.930i −0.661864 + 0.661864i
\(918\) 0 0
\(919\) 464.091i 0.504996i −0.967597 0.252498i \(-0.918748\pi\)
0.967597 0.252498i \(-0.0812521\pi\)
\(920\) 303.225 671.205i 0.329593 0.729570i
\(921\) 0 0
\(922\) 515.415 515.415i 0.559018 0.559018i
\(923\) −396.279 396.279i −0.429338 0.429338i
\(924\) 0 0
\(925\) −922.170 58.3959i −0.996940 0.0631308i
\(926\) −527.669 −0.569837
\(927\) 0 0
\(928\) −412.999 412.999i −0.445043 0.445043i
\(929\) 1150.61i 1.23855i 0.785176 + 0.619273i \(0.212573\pi\)
−0.785176 + 0.619273i \(0.787427\pi\)
\(930\) 0 0
\(931\) 334.321 0.359099
\(932\) 897.728 897.728i 0.963227 0.963227i
\(933\) 0 0
\(934\) 488.310i 0.522815i
\(935\) −196.661 + 74.2660i −0.210332 + 0.0794289i
\(936\) 0 0
\(937\) −740.662 + 740.662i −0.790461 + 0.790461i −0.981569 0.191108i \(-0.938792\pi\)
0.191108 + 0.981569i \(0.438792\pi\)
\(938\) −328.897 328.897i −0.350637 0.350637i
\(939\) 0 0
\(940\) 259.954 + 688.373i 0.276547 + 0.732312i
\(941\) −1596.26 −1.69635 −0.848173 0.529719i \(-0.822297\pi\)
−0.848173 + 0.529719i \(0.822297\pi\)
\(942\) 0 0
\(943\) 190.948 + 190.948i 0.202490 + 0.202490i
\(944\) 311.431i 0.329906i
\(945\) 0 0
\(946\) 138.210 0.146099
\(947\) 761.299 761.299i 0.803906 0.803906i −0.179798 0.983704i \(-0.557544\pi\)
0.983704 + 0.179798i \(0.0575444\pi\)
\(948\) 0 0
\(949\) 975.732i 1.02817i
\(950\) 23.6419 373.346i 0.0248862 0.392995i
\(951\) 0 0
\(952\) −321.936 + 321.936i −0.338168 + 0.338168i
\(953\) 400.371 + 400.371i 0.420117 + 0.420117i 0.885244 0.465127i \(-0.153991\pi\)
−0.465127 + 0.885244i \(0.653991\pi\)
\(954\) 0 0
\(955\) 1490.76 + 673.471i 1.56101 + 0.705205i
\(956\) 542.247 0.567204
\(957\) 0 0
\(958\) 576.238 + 576.238i 0.601501 + 0.601501i
\(959\) 685.871i 0.715193i
\(960\) 0 0
\(961\) 1515.65 1.57716
\(962\) −295.803 + 295.803i −0.307488 + 0.307488i
\(963\) 0 0
\(964\) 852.065i 0.883885i
\(965\) −114.189 302.379i −0.118331 0.313347i
\(966\) 0 0
\(967\) −533.179 + 533.179i −0.551375 + 0.551375i −0.926837 0.375463i \(-0.877484\pi\)
0.375463 + 0.926837i \(0.377484\pi\)
\(968\) 53.6566 + 53.6566i 0.0554303 + 0.0554303i
\(969\) 0 0
\(970\) 99.8881 221.107i 0.102977 0.227946i
\(971\) 211.859 0.218186 0.109093 0.994032i \(-0.465205\pi\)
0.109093 + 0.994032i \(0.465205\pi\)
\(972\) 0 0
\(973\) −330.516 330.516i −0.339688 0.339688i
\(974\) 75.4135i 0.0774266i
\(975\) 0 0
\(976\) −519.187 −0.531953
\(977\) −327.740 + 327.740i −0.335456 + 0.335456i −0.854654 0.519198i \(-0.826231\pi\)
0.519198 + 0.854654i \(0.326231\pi\)
\(978\) 0 0
\(979\) 399.466i 0.408035i
\(980\) −303.244 136.994i −0.309433 0.139790i
\(981\) 0 0
\(982\) −104.634 + 104.634i −0.106552 + 0.106552i
\(983\) −879.861 879.861i −0.895077 0.895077i 0.0999187 0.994996i \(-0.468142\pi\)
−0.994996 + 0.0999187i \(0.968142\pi\)
\(984\) 0 0
\(985\) 617.113 233.044i 0.626511 0.236593i
\(986\) −220.629 −0.223762
\(987\) 0 0
\(988\) 379.116 + 379.116i 0.383721 + 0.383721i
\(989\) 908.083i 0.918183i
\(990\) 0 0
\(991\) 1357.79 1.37012 0.685062 0.728484i \(-0.259775\pi\)
0.685062 + 0.728484i \(0.259775\pi\)
\(992\) −1157.19 + 1157.19i −1.16652 + 1.16652i
\(993\) 0 0
\(994\) 247.542i 0.249036i
\(995\) 514.524 1138.92i 0.517109 1.14465i
\(996\) 0 0
\(997\) −555.302 + 555.302i −0.556973 + 0.556973i −0.928444 0.371471i \(-0.878853\pi\)
0.371471 + 0.928444i \(0.378853\pi\)
\(998\) 325.095 + 325.095i 0.325746 + 0.325746i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.j.c.298.12 yes 40
3.2 odd 2 inner 495.3.j.c.298.9 40
5.2 odd 4 inner 495.3.j.c.397.12 yes 40
15.2 even 4 inner 495.3.j.c.397.9 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.j.c.298.9 40 3.2 odd 2 inner
495.3.j.c.298.12 yes 40 1.1 even 1 trivial
495.3.j.c.397.9 yes 40 15.2 even 4 inner
495.3.j.c.397.12 yes 40 5.2 odd 4 inner