L(s) = 1 | + (0.692 − 0.692i)2-s + 3.03i·4-s + (4.55 + 2.05i)5-s + (3.68 − 3.68i)7-s + (4.87 + 4.87i)8-s + (4.58 − 1.73i)10-s + 3.31·11-s + (8.16 + 8.16i)13-s − 5.10i·14-s − 5.39·16-s + (−8.96 + 8.96i)17-s − 15.2i·19-s + (−6.25 + 13.8i)20-s + (2.29 − 2.29i)22-s + (−15.0 − 15.0i)23-s + ⋯ |
L(s) = 1 | + (0.346 − 0.346i)2-s + 0.759i·4-s + (0.911 + 0.411i)5-s + (0.525 − 0.525i)7-s + (0.609 + 0.609i)8-s + (0.458 − 0.173i)10-s + 0.301·11-s + (0.628 + 0.628i)13-s − 0.364i·14-s − 0.337·16-s + (−0.527 + 0.527i)17-s − 0.803i·19-s + (−0.312 + 0.692i)20-s + (0.104 − 0.104i)22-s + (−0.656 − 0.656i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 - 0.558i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.829 - 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.715865005\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.715865005\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-4.55 - 2.05i)T \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (-0.692 + 0.692i)T - 4iT^{2} \) |
| 7 | \( 1 + (-3.68 + 3.68i)T - 49iT^{2} \) |
| 13 | \( 1 + (-8.16 - 8.16i)T + 169iT^{2} \) |
| 17 | \( 1 + (8.96 - 8.96i)T - 289iT^{2} \) |
| 19 | \( 1 + 15.2iT - 361T^{2} \) |
| 23 | \( 1 + (15.0 + 15.0i)T + 529iT^{2} \) |
| 29 | \( 1 - 17.7iT - 841T^{2} \) |
| 31 | \( 1 - 49.7T + 961T^{2} \) |
| 37 | \( 1 + (26.1 - 26.1i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 12.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-30.0 - 30.0i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-34.2 + 34.2i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (55.2 + 55.2i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 57.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 96.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-64.4 + 64.4i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 48.5T + 5.04e3T^{2} \) |
| 73 | \( 1 + (59.7 + 59.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 27.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-9.39 - 9.39i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 120. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-35.0 + 35.0i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94812744388232781280214561234, −10.14962274421791037795313515474, −8.943660157918497121815370838159, −8.236272644759229508156902726752, −7.01913479165470228529290915271, −6.32531606429964510864230082938, −4.86971235262427804413146100023, −4.02042038353184561789658615140, −2.76776824598249623518976281411, −1.62853075214582860738509924294,
1.11482735724741201192948649600, 2.27451085498848924070077508423, 4.12536636009550353375829997464, 5.25466135827267119438362479150, 5.81566857266710026113464232503, 6.64203142487158628976981008267, 7.993544716114449744231703185696, 8.945130552943332612543840006626, 9.797545211653633230550383807950, 10.50156120273358463034074143914