Newspace parameters
Level: | \( N \) | \(=\) | \( 495 = 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 495.j (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.4877730858\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
298.1 | −2.79494 | + | 2.79494i | 0 | − | 11.6234i | 3.96554 | − | 3.04540i | 0 | −8.48340 | + | 8.48340i | 21.3068 | + | 21.3068i | 0 | −2.57174 | + | 19.5952i | |||||||
298.2 | −2.44305 | + | 2.44305i | 0 | − | 7.93698i | −4.99234 | − | 0.276657i | 0 | 3.71159 | − | 3.71159i | 9.61822 | + | 9.61822i | 0 | 12.8724 | − | 11.5206i | |||||||
298.3 | −2.40357 | + | 2.40357i | 0 | − | 7.55431i | 2.32654 | + | 4.42574i | 0 | 3.28861 | − | 3.28861i | 8.54304 | + | 8.54304i | 0 | −16.2296 | − | 5.04559i | |||||||
298.4 | −2.02576 | + | 2.02576i | 0 | − | 4.20738i | 2.30178 | − | 4.43867i | 0 | 5.06405 | − | 5.06405i | 0.420106 | + | 0.420106i | 0 | 4.32882 | + | 13.6545i | |||||||
298.5 | −1.89153 | + | 1.89153i | 0 | − | 3.15579i | −3.98330 | − | 3.02214i | 0 | −9.02252 | + | 9.02252i | −1.59685 | − | 1.59685i | 0 | 13.2510 | − | 1.81805i | |||||||
298.6 | −1.40545 | + | 1.40545i | 0 | 0.0494143i | 4.99874 | − | 0.112178i | 0 | 1.33355 | − | 1.33355i | −5.69125 | − | 5.69125i | 0 | −6.86783 | + | 7.18315i | ||||||||
298.7 | −0.768581 | + | 0.768581i | 0 | 2.81857i | −2.92182 | + | 4.05746i | 0 | 8.07326 | − | 8.07326i | −5.24062 | − | 5.24062i | 0 | −0.872829 | − | 5.36414i | ||||||||
298.8 | −0.762894 | + | 0.762894i | 0 | 2.83599i | 4.94835 | + | 0.716812i | 0 | −5.64620 | + | 5.64620i | −5.21513 | − | 5.21513i | 0 | −4.32192 | + | 3.22822i | ||||||||
298.9 | −0.692901 | + | 0.692901i | 0 | 3.03978i | −4.55660 | − | 2.05850i | 0 | 3.68149 | − | 3.68149i | −4.87787 | − | 4.87787i | 0 | 4.58361 | − | 1.73093i | ||||||||
298.10 | −0.364637 | + | 0.364637i | 0 | 3.73408i | −0.0133418 | − | 4.99998i | 0 | −2.00042 | + | 2.00042i | −2.82013 | − | 2.82013i | 0 | 1.82804 | + | 1.81831i | ||||||||
298.11 | 0.364637 | − | 0.364637i | 0 | 3.73408i | 0.0133418 | + | 4.99998i | 0 | −2.00042 | + | 2.00042i | 2.82013 | + | 2.82013i | 0 | 1.82804 | + | 1.81831i | ||||||||
298.12 | 0.692901 | − | 0.692901i | 0 | 3.03978i | 4.55660 | + | 2.05850i | 0 | 3.68149 | − | 3.68149i | 4.87787 | + | 4.87787i | 0 | 4.58361 | − | 1.73093i | ||||||||
298.13 | 0.762894 | − | 0.762894i | 0 | 2.83599i | −4.94835 | − | 0.716812i | 0 | −5.64620 | + | 5.64620i | 5.21513 | + | 5.21513i | 0 | −4.32192 | + | 3.22822i | ||||||||
298.14 | 0.768581 | − | 0.768581i | 0 | 2.81857i | 2.92182 | − | 4.05746i | 0 | 8.07326 | − | 8.07326i | 5.24062 | + | 5.24062i | 0 | −0.872829 | − | 5.36414i | ||||||||
298.15 | 1.40545 | − | 1.40545i | 0 | 0.0494143i | −4.99874 | + | 0.112178i | 0 | 1.33355 | − | 1.33355i | 5.69125 | + | 5.69125i | 0 | −6.86783 | + | 7.18315i | ||||||||
298.16 | 1.89153 | − | 1.89153i | 0 | − | 3.15579i | 3.98330 | + | 3.02214i | 0 | −9.02252 | + | 9.02252i | 1.59685 | + | 1.59685i | 0 | 13.2510 | − | 1.81805i | |||||||
298.17 | 2.02576 | − | 2.02576i | 0 | − | 4.20738i | −2.30178 | + | 4.43867i | 0 | 5.06405 | − | 5.06405i | −0.420106 | − | 0.420106i | 0 | 4.32882 | + | 13.6545i | |||||||
298.18 | 2.40357 | − | 2.40357i | 0 | − | 7.55431i | −2.32654 | − | 4.42574i | 0 | 3.28861 | − | 3.28861i | −8.54304 | − | 8.54304i | 0 | −16.2296 | − | 5.04559i | |||||||
298.19 | 2.44305 | − | 2.44305i | 0 | − | 7.93698i | 4.99234 | + | 0.276657i | 0 | 3.71159 | − | 3.71159i | −9.61822 | − | 9.61822i | 0 | 12.8724 | − | 11.5206i | |||||||
298.20 | 2.79494 | − | 2.79494i | 0 | − | 11.6234i | −3.96554 | + | 3.04540i | 0 | −8.48340 | + | 8.48340i | −21.3068 | − | 21.3068i | 0 | −2.57174 | + | 19.5952i | |||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 495.3.j.c | ✓ | 40 |
3.b | odd | 2 | 1 | inner | 495.3.j.c | ✓ | 40 |
5.c | odd | 4 | 1 | inner | 495.3.j.c | ✓ | 40 |
15.e | even | 4 | 1 | inner | 495.3.j.c | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
495.3.j.c | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
495.3.j.c | ✓ | 40 | 3.b | odd | 2 | 1 | inner |
495.3.j.c | ✓ | 40 | 5.c | odd | 4 | 1 | inner |
495.3.j.c | ✓ | 40 | 15.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{40} + 658 T_{2}^{36} + 163925 T_{2}^{32} + 19652208 T_{2}^{28} + 1180899290 T_{2}^{24} + \cdots + 30821664721 \)
acting on \(S_{3}^{\mathrm{new}}(495, [\chi])\).